Copyright Notice:
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.
Publications of SPCL
S. Shen, M. Khalilov, L. Gianinazzi, T. Schneider, M. Chrapek, J. Dayal, M. Gajbe, R. Wisniewski, T. Hoefler: | ||
EDAN: Towards Understanding Memory Parallelism and Latency Sensitivity in HPC (In Proceedings of the International Conference on Supercomputing (ICS'25), presented in Salt Lake City, UT, USA, Association for Computing Machinery,, Jun. 2025) AbstractResource disaggregation is a promising technique for improving the efficiency of large-scale computing systems. However, this comes at the cost of increased memory access latency due to the need to rely on the network fabric to transfer data between remote nodes. As such, it is crucial to ascertain an application's memory latency sensitivity to minimize the overall performance impact. Existing tools for measuring memory latency sensitivity often rely on custom ad-hoc hardware or cycle-accurate simulators, which can be inflexible and time-consuming. To address this, we present EDAN (Execution DAG Analyzer), a novel performance analysis tool that leverages an application's runtime instruction trace to generate its corresponding execution DAG. This approach allows us to estimate the latency sensitivity of sequential programs and investigate the impact of different hardware configurations. EDAN not only provides us with the capability of calculating the theoretical bounds for performance metrics, but it also helps us gain insight into the memory-level parallelism inherent to HPC applications. We apply EDAN to applications and benchmarks such as PolyBench, HPCG, and LULESH to unveil the characteristics of their intrinsic memory-level parallelism and latency sensitivity.Documentsdownload article:![]() download slides: ![]() | ||
BibTeX | ||
|