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Based on material from:

https://github.com/spcl/hls_tutorial_examples

Transformations of High-Level Synthesis Codes for High-Performance Computing 

https://arxiv.org/abs/1805.08288

Code examples found at:

Nimbix Alveo Trial
http://spcl.inf.ethz.ch/~definelj/HLS_Tutorial.7z

Virtual machine for emulation

https://www.nimbix.net/alveotrial
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Our goal

Perform compute in every piece 
of available logic – every cycle!!
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A single operation

int c = a + b;
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Register transfer level

Input regInput reg

Output reg

Logic 1 cycle

always @(posedge clk)

if (start) begin

out <= in + 1;

end

int c = a + b;
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Nakayama, T. Hardware arrangement for floating-point addition and subtraction,
1993, US Patent 5,197,023.
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Single floating point operation
RegReg

Reg

Logic Logic too deep!Logic

Transient 
register

Transient 
register

L = 8 cycles

Logic

…

1 cycle

1 cycle

float c = a + b;
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Our point of view
RegReg

Reg

Logic

Transient 
register

Transient 
register

Logic

…

+
(L = 8)

ba

c

In HLS, we treat 
pipelines.

float c = a + b;
Implies L – 1 internal 
pipeline stages.
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Pipelines

ops

Latency (L)

cycles
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+
(L = 8)

(L = 5)
*
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Multiple floating point operations

float c = (a + b) * (a - b);

+
(L = 8)

+
(L = 8)

(L = 5)
*

-baa b

c

L = 13 cyclesaddmult
(L = 13)

ba

c

≥ Two ways to implement this

addmult
(L = 14)

L = 14 cycles

Interleave: +1 cycle
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In addition to latency (L), we introduce
the property initiation interval (“II”, here I).

Interpretations:

1. No. of cycles before we can accept
new inputs (sometimes called “gap”)

2. Inverse throughput of the pipeline

3. Factor slowdown of your application 
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Initiation interval

+
(L = 8)

+
(L = 8)

(L = 5)
*

+
(L = 8)

(L = 5)
*

L = 13 cycles

I = 1 cycle

2 adds, 1 mult

L = 14 cycles

I = 2 cycles

1 add, 1 mult
3 op/1 cycle 3 op/2 cycles

Throughput is halved!

Can accept all four 
inputs in parallel
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Pipelines vol. II

ops

Latency (L)

Initiation 
interval/gap (I)

cycles
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Adding loops

+
(L = 8)

+
(L = 8)

(L = 5)
*

loop body
(L = 13, I = 1)

b[i]a[i]

c[i]

for (int i = 0; i < N; ++i) {

#pragma HLS PIPELINE II=1

c[i] = (a[i] + b[i]) *

(a[i] - b[i]);

}

1 iteration 13 + 1 = 14 cycles

10 iterations 13 + 10 = 23 cycles

N iterations 13 + N cycles

Loop iterations affect the runtime 
additively, regardless of body content
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Adding loops

for (int i = 0; i < N; ++i) {

#pragma HLS PIPELINE II=2

c[i] = (a[i] + b[i]) *

(a[i] - b[i]);

}

1 iteration 14 + 2 = 16 cycles

10 iterations 14 + 20 = 34 cycles

N iterations 14 + 2N cycles

+
(L = 8)

(L = 5)
*

loop body
(L = 14, I = 2)

b[i]a[i]

c[i]
Generally:

Initiation interval paid at every iteration

Let’s see this in practice…
(example 0)
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Why do we worry so much? Just set I = 1…

Increased II is commonly found in the wild:

1. Intra-iteration (now):

 Multiple accesses to the same interface

2. Inter-iteration (later)

 Data dependencies

3. Low throughput requirements (rare)

 e.g. input only received every 16 cycles
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Pipeline stalls in practice

loop
(L = 23)

arr

for (int i = 1; i < N - 1; ++i) {

#pragma HLS PIPELINE II=1

res[i] = 0.3333 *

(arr[i-1] + arr[i] + arr[i+1]);

}

for (int i = 1; i < N - 1; ++i) {

#pragma HLS PIPELINE II=1 II=3

res[i] = 0.3333 *

(arr[i-1] + arr[i] + arr[i+1]);

}

Interface 
contention!
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Fast memory everywhere

Hardened RAM 

blocks

32-bit register

LUTs as RAM



spcl.inf.ethz.ch

@spcl_eth

16

Inserting registers

Reg Reg

loop
(L = 21, I = 1)

arr[i-1]arr[i]arr[i+1]

Stage 1

Stage 2

Stage 3

arr
Let’s see this in practice…

(example 1)

for (int i = 1; i < N - 1; ++i) {

res[i] = 0.3333 *

(arr[i-1] + arr[i] + arr[i+1]);

}
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On-chip RAM

Useful to think of memory in terms of depth (D) and width (W)
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≥ Two classes of storage

WRAM = 32 bit

32 bit

DRAM = 1024

4096 Byte = 32 bit ⋅ 1024

Reg

Wreg = 32 bit

Dreg = 1

(example configuration of Xilinx BRAM)

FF

FF

FF

FF

……

4 Byte = 32 bit ⋅ 1
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Buffer depth

Memory arrangement

1D stencil program:

W = 2, D = 1

2D row-major:

W = 2, D = N
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Modified example

arr

arr[i - N]arr[i]arr[i+N]

Stage 1

Stage 2

Stage 3

On-chip RAM On-chip RAM

interpolate
(L = 21, I = 1)

W unchanged, D changed from 1 to N

Let’s try this…
(example 2)
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Thinking in width and depth

W = 128 bit

D = 1

W = 128 bit

D = N

W = 32 bit

D = N

W = 32 bit

D = 1

Reg

Reg Reg

Reg Reg

On-chip RAMOn-chip RAM

On-chip RAMOn-chip RAM

On-chip RAM

float reg; Vec<float, 4> vec_reg;

float buffer[N];

Stream<float> fifo(N);

Vec<float, 4> vec_buffer[N];

Stream<Vec<float, 4>> fifo(N);
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Finite state machine

FSM Stage 0 FSM Stage 2

initialize center

arr

center

initialize above

arr

above

State transition State transition
compute

arr

result

FSM Stage 1

Sequential execution of 
(pipeline-)parallel stages

L = N + L1
L = N + L0

L = NM + L2
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Draining and initialization phases

L0 + I0⋅N0 L1 + I1⋅N1

M ⋅ ((L0 + I0⋅N0) + (L1 + I1⋅N1))  

(L0, I0) (L1, I1)

Latency penalty 
when draining

Latency paid 
every iteration!

If we put it 
in a loop...

Let’s see this in practice…
(example 3)
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Flattening

L0 + I0⋅N0 L1 + I1⋅N1

M ⋅ ((L0 + I0⋅N0) + (L1 + I1⋅N1))  

(L0, I0) (L1, I1)

L2 + I ⋅MN

(L, I)

FSM moved into 
the pipeline

We will see an example of this shortly
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Multiple concurrent pipelines

pipeline0 pipeline1 pipeline2

a[i]

a[i]

b[i]

b[i]

a[i] b[i]

(L0 + I0⋅N0) + (L1 + I1⋅N1) + (L2 + I2⋅N2)  ((L0 + L1) + I ⋅N) + (L2 + I2⋅N2)  (L0 + L1 + L2) + I ⋅N
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Streams

In
p

u
t

O
u

tp
u

t

depth D buffer

W W

Synchronize Synchronize

Can be 1, or even 0

Same properties as a buffer 
(because it is one) 

(FIFOs, queues...)
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Processing elements

(L0, I0)

(L1, I1)

(L2, I2)

(L3, I3)

(L3, I3)

Global pipeline

Expressed in HLS as:
- OpenCL kernels (Intel)
- Dataflow functions (Xilinx)

Properties L and I remain Connected by streams
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Properties of the global pipeline

Ltot,0,out = Ltot,1,in What goes in must come out:
Every stream write needs a corresponding read

L0

I0,in

I0,out

I0,1 = max(I0,out, I1,in)
L1

I1,in

I1,out

Slow dominates:
Can only stream with the highest initiation 
interval (producer/consumer) at each interface

I, L0

I, L1

I, L2

I, L3

Ltot = I N + L0 + L1  + L3 ≈ I N

Depth is “free”:
In a perfect pipeline for large N, the influence of 
pipeline latency is negligible w.r.t. the total runtime

Let’s see this in practice…
(example 4)
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Much stronger meaning on FPGA than for an instruction-based architecture.

29

Unrolling

#pragma HLS PIPELINE II=1

res[0] = a[0] + b[0];

res[1] = a[1] + b[1];

res[2] = a[2] + b[2];

res[3] = a[3] + b[3];

+ + + ++ In a pipelined section, every 
”instruction” is separate hardware

for (int w = 0; w < 4; ++w) {

#pragma HLS PIPELINE II=1

res[w] = a[w] + b[w];

}

#pragma HLS PIPELINE II=1

for (int w = 0; w < 4; ++w) {

#pragma HLS UNROLL

res[w] = a[w] + b[w];

}
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Unrolling is scaling

op op op

op

op

op

op

op

op

Unroll width

U
n

ro
ll d

ep
th

Unroll width

U
n

ro
ll d

ep
th

Traditional SIMD vectorization
Consumes off-chip bandwidth

Data reuse from temporal locality
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Matrix-matrix multiplication

for (int n = 0; n < N; ++n)

for (int p = 0; p < P; ++p)

for (int m = 0; m < M; ++m)

C[n, p] += A[n, m] * B[m, p];

Our intuition of temporal 
locality does not work here!

+
L = 8

Every iteration 
depends on the 
previous:

I = 8

Let’s see this in practice…
(example 5)
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Solving loop-carried data dependencies

+

Transpose the 
iteration space.

Only needs to be larger 
than the latency

for (int i = 0; i < N; ++i) {

float acc = 0;

for (int j = 0; j < M; ++j) {

acc += ...

}

out[i*M+j] = acc;

}

float acc[N];

for (int j = 0; j < M; ++j) {

for (int i = 0; i < N; ++i) {

acc[i] += ...

}

}

for (int i = 0; i < N; ++i) {

out[i*M+i] = acc[i];

}

Comes at the cost 
of buffer space.
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Locality in the program

for (int n = 0; n < N; ++n) {

float acc[P];

for (int k = 0; k < K; ++k) {

const auto a = A[n*K + k];

for (int m = 0; m < M; ++m) {

#pragma HLS PIPELINE II=1

const float prev = (k == 0) ? 0 : acc[m];

acc[m] = prev + a * B[k*M + m];

}

}

// ...

}

Temporal locality:
Reused P times. Load 

more of these and tile N!

Spatial locality: Vectorizable.
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op op op

op

op

op

op

op

op

Vectorization

D
ata reu

se

Vectorization

D
ata reu

se

Tile size in N

Divides size in P

Spends buffer space

Spends bandwidth

Unrolling GEMM

Let’s play with this…
(example 6)
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Fanout issue

op op

op op

op op

op opA[N]

A[0]

...

A[1]

A[2]

B

Represent physical 
connections on the chip!

Not scalable.
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op opA[0]

B

PE

op opPE

op opPE

...

A B C

A

A[1]

A[N]

Global pipeline

Asynchronous 
streams

Only local communication 
remains!

A and B only 
accessed at head

Sometimes referred to 
as a systolic array.

Constant number of 
connections per PE!!

Implemented in example 7

Breaking into processing elements

Concepts enough to “fully” utilize an FPGA 
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Remaining optimization potential

Buffer A Stream B Write C

FSM Stage 0 FSM Stage 1 FSM Stage 2

Double-buffering
Write output on 
last iteration

Pipelined 
saturation phase

Fully optimized implementation at: https://github.com/spcl/gemm_hls

https://github.com/spcl/gemm_hls
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Summary

Challenge: Pipeline throughput (initiation 
interval) is limited by hardware interfaces.

Solution: Exploit abundant on-chip fast 
memory to minimize I/O requirements.

Challenge: Designing for maximum 
throughput for competitive performance.

Solution: Exploit a dimension of temporal 
reuse by unrolling it vertically.

Challenge: Loop-carried dependencies 
cause pipeline stalls that kill performance.

Solution: Transpose iteration space to 
delay inter-iteration dependencies.

Challenge: Large fan-out causes 
placement and routing to fail.

Solution: Partition into async. processing 
elements with constant fan-out.

loop
(L = 23, I = 3)

arr
Reg Reg

interpolate
(L = 21, I = 1)

arr[i-1]arr[i]arr[i+1]

arr

op op op

op

op

op

op

op

op

Unroll width

U
n

ro
ll d

ep
th

Unroll width

U
n

ro
ll d

ep
th

for (int i = 0; i < N; ++i) {

float acc = 0;

for (int j = 0; j < M; ++j) {

acc += stream.Pop();

}

}

float acc[M];

for (int i = 0; i < N; ++i) {

for (int j = 0; j < M; ++j) {

acc[M] += stream.Pop();

}

}

+
L = 8

Every iteration 
depends on the 
previous:

I = 8

op op

op op

op op

op opA[N]

A[0]

...

A[1]

A[2]

B

op opA[0]

B

PE

op opPE

op opPE

...

A B C

A

A[1]

A[N]
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Thank you for your attention 
Reach out at: definelicht@inf.ethz.ch

For a detailed description of HLS 
transformations, see:

Transformations of High-Level Synthesis Codes
for High-Performance Computing
https://arxiv.org/abs/1805.08288

mailto:definelicht@inf.ethz.ch
https://arxiv.org/abs/1805.08288
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Two flavors of systolic arrays

op opA[0]

B

PE

opPE

opPE

...

A

A[1]

A[N]

Asynchronous interface

FIFOs offset 
initialization and 
draining phases: 
easier to program.

“PE”

op“PE”

op op“PE”

...

BA
Sin

gle p
ip

elin
e

Use a synchronous 
distribution network. 
Requires careful predicated 
orchestration of loops.

Only attempt this if you fully 
understand your schedule!

All PEs are inlined.
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Approaching a new problem

?

Scalable source of 
temporal locality?

Can we tile the problem 
to fit on the FPGA?

Where are the 
memory accesses?

Can we partition 
into PEs?
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When HDL should be involved

always @(posedge ACLK) begin

if (~ARESETN | system_reset) begin

write_state <= WRITE_IDLE;

write_addr <= 0;

start_kernel_signal <= 1'b0;

SC_reset <= 1'b0;

icap_wr <= 1'b0;

host2device_wr <= 1'b0;

host2device <= 32'h0;

system_reset <= 1'b0;

end

else begin

AWREADY <= 1'b1;

WREADY <= 1'b0;

BVALID <= 1'b0;

system_reset <= 1'b0;

for (int i = 1; i < N - 1; ++i) {

for (int j = 0; j < M; ++j) {

#pragma HLS PIPELINE II=1

const auto above = above_buffer.read();

const auto center = center_buffer.read();

const auto below = memory_in[(i + 1)*M + j];

constexpr float factor = 0.3333;

const auto average =

factor * (above + center + below);

above_buffer.write(center);

center_buffer.write(below);

memory_out[i * M + j] = average;

}

}

Latency critical optimizations

Interfacing

HDL and HLS can (and do often) 
happily co-exist!
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FPGAs are more energy efficient than GPUs

Claim

What does this
actually mean?

Compute throughput

Power draw

How do we 
measure it?

Count these...

...and integrate the 
instanteous power.
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FPGAs are more energy efficient than GPUs

Claim

Compute throughput

Power draw

? GOp/s

30 W

(for now, accept these numbers for the sake of argument)

150 W

? GOp/sAt FFPGA = FGPU, we are looking at a 
5x improvement in energy efficiency.

For a 10× slowdown, we lose a
factor 2× in energy efficiency

Might seem trivial... F matters!

Only if the performance is competitive

Verdict
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Types on FPGA

+
(L = 8)

+
(L = 8)

(L = 5)
*

+
(L = 12)

+
(L = 12)

(L = 7)
*

+
(L = 1)

+
(L = 1)

(L = 1)
*

+
(L = 1)

+
(L = 1)

(L = 1)
*

float double int fixed_point

Same concepts, different latencies (some problems go away at L = 1).


