
spcl.inf.ethz.ch

@spcl_eth

J. DE FINE LICHT AND T. HOEFLER

Productive Parallel Programming on FPGA
with High-Level Synthesis

spcl.inf.ethz.ch

@spcl_eth

2

Based on material from:

https://github.com/spcl/hls_tutorial_examples

Transformations of High-Level Synthesis Codes for High-Performance Computing

https://arxiv.org/abs/1805.08288

Code examples found at:

Nimbix Alveo Trial
http://spcl.inf.ethz.ch/~definelj/HLS_Tutorial.7z

Virtual machine for emulation

https://www.nimbix.net/alveotrial

spcl.inf.ethz.ch

@spcl_eth

3

Our goal

Perform compute in every piece
of available logic – every cycle!!

spcl.inf.ethz.ch

@spcl_eth

4

A single operation

int c = a + b;

spcl.inf.ethz.ch

@spcl_eth

5

Register transfer level

Input regInput reg

Output reg

Logic 1 cycle

always @(posedge clk)

if (start) begin

out <= in + 1;

end

int c = a + b;

spcl.inf.ethz.ch

@spcl_eth

Nakayama, T. Hardware arrangement for floating-point addition and subtraction,
1993, US Patent 5,197,023.

6

Single floating point operation
RegReg

Reg

Logic Logic too deep!Logic

Transient
register

Transient
register

L = 8 cycles

Logic

…

1 cycle

1 cycle

float c = a + b;

spcl.inf.ethz.ch

@spcl_eth

7

Our point of view
RegReg

Reg

Logic

Transient
register

Transient
register

Logic

…

+
(L = 8)

ba

c

In HLS, we treat
pipelines.

float c = a + b;
Implies L – 1 internal
pipeline stages.

spcl.inf.ethz.ch

@spcl_eth

8

Pipelines

ops

Latency (L)

cycles

spcl.inf.ethz.ch

@spcl_eth

+
(L = 8)

(L = 5)
*

9

Multiple floating point operations

float c = (a + b) * (a - b);

+
(L = 8)

+
(L = 8)

(L = 5)
*

-baa b

c

L = 13 cyclesaddmult
(L = 13)

ba

c

≥ Two ways to implement this

addmult
(L = 14)

L = 14 cycles

Interleave: +1 cycle

spcl.inf.ethz.ch

@spcl_eth

In addition to latency (L), we introduce
the property initiation interval (“II”, here I).

Interpretations:

1. No. of cycles before we can accept
new inputs (sometimes called “gap”)

2. Inverse throughput of the pipeline

3. Factor slowdown of your application

10

Initiation interval

+
(L = 8)

+
(L = 8)

(L = 5)
*

+
(L = 8)

(L = 5)
*

L = 13 cycles

I = 1 cycle

2 adds, 1 mult

L = 14 cycles

I = 2 cycles

1 add, 1 mult
3 op/1 cycle 3 op/2 cycles

Throughput is halved!

Can accept all four
inputs in parallel

spcl.inf.ethz.ch

@spcl_eth

11

Pipelines vol. II

ops

Latency (L)

Initiation
interval/gap (I)

cycles

spcl.inf.ethz.ch

@spcl_eth

12

Adding loops

+
(L = 8)

+
(L = 8)

(L = 5)
*

loop body
(L = 13, I = 1)

b[i]a[i]

c[i]

for (int i = 0; i < N; ++i) {

#pragma HLS PIPELINE II=1

c[i] = (a[i] + b[i]) *

(a[i] - b[i]);

}

1 iteration 13 + 1 = 14 cycles

10 iterations 13 + 10 = 23 cycles

N iterations 13 + N cycles

Loop iterations affect the runtime
additively, regardless of body content

spcl.inf.ethz.ch

@spcl_eth

13

Adding loops

for (int i = 0; i < N; ++i) {

#pragma HLS PIPELINE II=2

c[i] = (a[i] + b[i]) *

(a[i] - b[i]);

}

1 iteration 14 + 2 = 16 cycles

10 iterations 14 + 20 = 34 cycles

N iterations 14 + 2N cycles

+
(L = 8)

(L = 5)
*

loop body
(L = 14, I = 2)

b[i]a[i]

c[i]
Generally:

Initiation interval paid at every iteration

Let’s see this in practice…
(example 0)

spcl.inf.ethz.ch

@spcl_eth

Why do we worry so much? Just set I = 1…

Increased II is commonly found in the wild:

1. Intra-iteration (now):

 Multiple accesses to the same interface

2. Inter-iteration (later)

 Data dependencies

3. Low throughput requirements (rare)

 e.g. input only received every 16 cycles

14

Pipeline stalls in practice

loop
(L = 23)

arr

for (int i = 1; i < N - 1; ++i) {

#pragma HLS PIPELINE II=1

res[i] = 0.3333 *

(arr[i-1] + arr[i] + arr[i+1]);

}

for (int i = 1; i < N - 1; ++i) {

#pragma HLS PIPELINE II=1 II=3

res[i] = 0.3333 *

(arr[i-1] + arr[i] + arr[i+1]);

}

Interface
contention!

spcl.inf.ethz.ch

@spcl_eth

15

Fast memory everywhere

Hardened RAM

blocks

32-bit register

LUTs as RAM

spcl.inf.ethz.ch

@spcl_eth

16

Inserting registers

Reg Reg

loop
(L = 21, I = 1)

arr[i-1]arr[i]arr[i+1]

Stage 1

Stage 2

Stage 3

arr
Let’s see this in practice…

(example 1)

for (int i = 1; i < N - 1; ++i) {

res[i] = 0.3333 *

(arr[i-1] + arr[i] + arr[i+1]);

}

spcl.inf.ethz.ch

@spcl_eth

On-chip RAM

Useful to think of memory in terms of depth (D) and width (W)

17

≥ Two classes of storage

WRAM = 32 bit

32 bit

DRAM = 1024

4096 Byte = 32 bit ⋅ 1024

Reg

Wreg = 32 bit

Dreg = 1

(example configuration of Xilinx BRAM)

FF

FF

FF

FF

……

4 Byte = 32 bit ⋅ 1

spcl.inf.ethz.ch

@spcl_eth

18

Buffer depth

Memory arrangement

1D stencil program:

W = 2, D = 1

2D row-major:

W = 2, D = N

spcl.inf.ethz.ch

@spcl_eth

19

Modified example

arr

arr[i - N]arr[i]arr[i+N]

Stage 1

Stage 2

Stage 3

On-chip RAM On-chip RAM

interpolate
(L = 21, I = 1)

W unchanged, D changed from 1 to N

Let’s try this…
(example 2)

spcl.inf.ethz.ch

@spcl_eth

20

Thinking in width and depth

W = 128 bit

D = 1

W = 128 bit

D = N

W = 32 bit

D = N

W = 32 bit

D = 1

Reg

Reg Reg

Reg Reg

On-chip RAMOn-chip RAM

On-chip RAMOn-chip RAM

On-chip RAM

float reg; Vec<float, 4> vec_reg;

float buffer[N];

Stream<float> fifo(N);

Vec<float, 4> vec_buffer[N];

Stream<Vec<float, 4>> fifo(N);

spcl.inf.ethz.ch

@spcl_eth

21

Finite state machine

FSM Stage 0 FSM Stage 2

initialize center

arr

center

initialize above

arr

above

State transition State transition
compute

arr

result

FSM Stage 1

Sequential execution of
(pipeline-)parallel stages

L = N + L1
L = N + L0

L = NM + L2

spcl.inf.ethz.ch

@spcl_eth

22

Draining and initialization phases

L0 + I0⋅N0 L1 + I1⋅N1

M ⋅ ((L0 + I0⋅N0) + (L1 + I1⋅N1))

(L0, I0) (L1, I1)

Latency penalty
when draining

Latency paid
every iteration!

If we put it
in a loop...

Let’s see this in practice…
(example 3)

spcl.inf.ethz.ch

@spcl_eth

23

Flattening

L0 + I0⋅N0 L1 + I1⋅N1

M ⋅ ((L0 + I0⋅N0) + (L1 + I1⋅N1))

(L0, I0) (L1, I1)

L2 + I ⋅MN

(L, I)

FSM moved into
the pipeline

We will see an example of this shortly

spcl.inf.ethz.ch

@spcl_eth

Multiple concurrent pipelines

pipeline0 pipeline1 pipeline2

a[i]

a[i]

b[i]

b[i]

a[i] b[i]

(L0 + I0⋅N0) + (L1 + I1⋅N1) + (L2 + I2⋅N2) ((L0 + L1) + I ⋅N) + (L2 + I2⋅N2) (L0 + L1 + L2) + I ⋅N

spcl.inf.ethz.ch

@spcl_eth

25

Streams

In
p

u
t

O
u

tp
u

t

depth D buffer

W W

Synchronize Synchronize

Can be 1, or even 0

Same properties as a buffer
(because it is one)

(FIFOs, queues...)

spcl.inf.ethz.ch

@spcl_eth

27

Processing elements

(L0, I0)

(L1, I1)

(L2, I2)

(L3, I3)

(L3, I3)

Global pipeline

Expressed in HLS as:
- OpenCL kernels (Intel)
- Dataflow functions (Xilinx)

Properties L and I remain Connected by streams

spcl.inf.ethz.ch

@spcl_eth

28

Properties of the global pipeline

Ltot,0,out = Ltot,1,in What goes in must come out:
Every stream write needs a corresponding read

L0

I0,in

I0,out

I0,1 = max(I0,out, I1,in)
L1

I1,in

I1,out

Slow dominates:
Can only stream with the highest initiation
interval (producer/consumer) at each interface

I, L0

I, L1

I, L2

I, L3

Ltot = I N + L0 + L1 + L3 ≈ I N

Depth is “free”:
In a perfect pipeline for large N, the influence of
pipeline latency is negligible w.r.t. the total runtime

Let’s see this in practice…
(example 4)

spcl.inf.ethz.ch

@spcl_eth

Much stronger meaning on FPGA than for an instruction-based architecture.

29

Unrolling

#pragma HLS PIPELINE II=1

res[0] = a[0] + b[0];

res[1] = a[1] + b[1];

res[2] = a[2] + b[2];

res[3] = a[3] + b[3];

+ + + ++ In a pipelined section, every
”instruction” is separate hardware

for (int w = 0; w < 4; ++w) {

#pragma HLS PIPELINE II=1

res[w] = a[w] + b[w];

}

#pragma HLS PIPELINE II=1

for (int w = 0; w < 4; ++w) {

#pragma HLS UNROLL

res[w] = a[w] + b[w];

}

spcl.inf.ethz.ch

@spcl_eth

30

Unrolling is scaling

op op op

op

op

op

op

op

op

Unroll width

U
n

ro
ll d

ep
th

Unroll width

U
n

ro
ll d

ep
th

Traditional SIMD vectorization
Consumes off-chip bandwidth

Data reuse from temporal locality

spcl.inf.ethz.ch

@spcl_eth

31

Matrix-matrix multiplication

for (int n = 0; n < N; ++n)

for (int p = 0; p < P; ++p)

for (int m = 0; m < M; ++m)

C[n, p] += A[n, m] * B[m, p];

Our intuition of temporal
locality does not work here!

+
L = 8

Every iteration
depends on the
previous:

I = 8

Let’s see this in practice…
(example 5)

spcl.inf.ethz.ch

@spcl_eth

32

Solving loop-carried data dependencies

+

Transpose the
iteration space.

Only needs to be larger
than the latency

for (int i = 0; i < N; ++i) {

float acc = 0;

for (int j = 0; j < M; ++j) {

acc += ...

}

out[i*M+j] = acc;

}

float acc[N];

for (int j = 0; j < M; ++j) {

for (int i = 0; i < N; ++i) {

acc[i] += ...

}

}

for (int i = 0; i < N; ++i) {

out[i*M+i] = acc[i];

}

Comes at the cost
of buffer space.

spcl.inf.ethz.ch

@spcl_eth

33

Locality in the program

for (int n = 0; n < N; ++n) {

float acc[P];

for (int k = 0; k < K; ++k) {

const auto a = A[n*K + k];

for (int m = 0; m < M; ++m) {

#pragma HLS PIPELINE II=1

const float prev = (k == 0) ? 0 : acc[m];

acc[m] = prev + a * B[k*M + m];

}

}

// ...

}

Temporal locality:
Reused P times. Load

more of these and tile N!

Spatial locality: Vectorizable.

spcl.inf.ethz.ch

@spcl_eth

34

op op op

op

op

op

op

op

op

Vectorization

D
ata reu

se

Vectorization

D
ata reu

se

Tile size in N

Divides size in P

Spends buffer space

Spends bandwidth

Unrolling GEMM

Let’s play with this…
(example 6)

spcl.inf.ethz.ch

@spcl_eth

35

Fanout issue

op op

op op

op op

op opA[N]

A[0]

...

A[1]

A[2]

B

Represent physical
connections on the chip!

Not scalable.

spcl.inf.ethz.ch

@spcl_eth

36

op opA[0]

B

PE

op opPE

op opPE

...

A B C

A

A[1]

A[N]

Global pipeline

Asynchronous
streams

Only local communication
remains!

A and B only
accessed at head

Sometimes referred to
as a systolic array.

Constant number of
connections per PE!!

Implemented in example 7

Breaking into processing elements

Concepts enough to “fully” utilize an FPGA

spcl.inf.ethz.ch

@spcl_eth

37

Remaining optimization potential

Buffer A Stream B Write C

FSM Stage 0 FSM Stage 1 FSM Stage 2

Double-buffering
Write output on
last iteration

Pipelined
saturation phase

Fully optimized implementation at: https://github.com/spcl/gemm_hls

https://github.com/spcl/gemm_hls

spcl.inf.ethz.ch

@spcl_eth

38

Summary

Challenge: Pipeline throughput (initiation
interval) is limited by hardware interfaces.

Solution: Exploit abundant on-chip fast
memory to minimize I/O requirements.

Challenge: Designing for maximum
throughput for competitive performance.

Solution: Exploit a dimension of temporal
reuse by unrolling it vertically.

Challenge: Loop-carried dependencies
cause pipeline stalls that kill performance.

Solution: Transpose iteration space to
delay inter-iteration dependencies.

Challenge: Large fan-out causes
placement and routing to fail.

Solution: Partition into async. processing
elements with constant fan-out.

loop
(L = 23, I = 3)

arr
Reg Reg

interpolate
(L = 21, I = 1)

arr[i-1]arr[i]arr[i+1]

arr

op op op

op

op

op

op

op

op

Unroll width

U
n

ro
ll d

ep
th

Unroll width

U
n

ro
ll d

ep
th

for (int i = 0; i < N; ++i) {

float acc = 0;

for (int j = 0; j < M; ++j) {

acc += stream.Pop();

}

}

float acc[M];

for (int i = 0; i < N; ++i) {

for (int j = 0; j < M; ++j) {

acc[M] += stream.Pop();

}

}

+
L = 8

Every iteration
depends on the
previous:

I = 8

op op

op op

op op

op opA[N]

A[0]

...

A[1]

A[2]

B

op opA[0]

B

PE

op opPE

op opPE

...

A B C

A

A[1]

A[N]

spcl.inf.ethz.ch

@spcl_eth

39

Thank you for your attention
Reach out at: definelicht@inf.ethz.ch

For a detailed description of HLS
transformations, see:

Transformations of High-Level Synthesis Codes
for High-Performance Computing
https://arxiv.org/abs/1805.08288

mailto:definelicht@inf.ethz.ch
https://arxiv.org/abs/1805.08288

spcl.inf.ethz.ch

@spcl_eth

40

Two flavors of systolic arrays

op opA[0]

B

PE

opPE

opPE

...

A

A[1]

A[N]

Asynchronous interface

FIFOs offset
initialization and
draining phases:
easier to program.

“PE”

op“PE”

op op“PE”

...

BA
Sin

gle p
ip

elin
e

Use a synchronous
distribution network.
Requires careful predicated
orchestration of loops.

Only attempt this if you fully
understand your schedule!

All PEs are inlined.

spcl.inf.ethz.ch

@spcl_eth

41

Approaching a new problem

?

Scalable source of
temporal locality?

Can we tile the problem
to fit on the FPGA?

Where are the
memory accesses?

Can we partition
into PEs?

spcl.inf.ethz.ch

@spcl_eth

42

When HDL should be involved

always @(posedge ACLK) begin

if (~ARESETN | system_reset) begin

write_state <= WRITE_IDLE;

write_addr <= 0;

start_kernel_signal <= 1'b0;

SC_reset <= 1'b0;

icap_wr <= 1'b0;

host2device_wr <= 1'b0;

host2device <= 32'h0;

system_reset <= 1'b0;

end

else begin

AWREADY <= 1'b1;

WREADY <= 1'b0;

BVALID <= 1'b0;

system_reset <= 1'b0;

for (int i = 1; i < N - 1; ++i) {

for (int j = 0; j < M; ++j) {

#pragma HLS PIPELINE II=1

const auto above = above_buffer.read();

const auto center = center_buffer.read();

const auto below = memory_in[(i + 1)*M + j];

constexpr float factor = 0.3333;

const auto average =

factor * (above + center + below);

above_buffer.write(center);

center_buffer.write(below);

memory_out[i * M + j] = average;

}

}

Latency critical optimizations

Interfacing

HDL and HLS can (and do often)
happily co-exist!

spcl.inf.ethz.ch

@spcl_eth

43

FPGAs are more energy efficient than GPUs

Claim

What does this
actually mean?

Compute throughput

Power draw

How do we
measure it?

Count these...

...and integrate the
instanteous power.

spcl.inf.ethz.ch

@spcl_eth

44

FPGAs are more energy efficient than GPUs

Claim

Compute throughput

Power draw

? GOp/s

30 W

(for now, accept these numbers for the sake of argument)

150 W

? GOp/sAt FFPGA = FGPU, we are looking at a
5x improvement in energy efficiency.

For a 10× slowdown, we lose a
factor 2× in energy efficiency

Might seem trivial... F matters!

Only if the performance is competitive

Verdict

spcl.inf.ethz.ch

@spcl_eth

45

Types on FPGA

+
(L = 8)

+
(L = 8)

(L = 5)
*

+
(L = 12)

+
(L = 12)

(L = 7)
*

+
(L = 1)

+
(L = 1)

(L = 1)
*

+
(L = 1)

+
(L = 1)

(L = 1)
*

float double int fixed_point

Same concepts, different latencies (some problems go away at L = 1).

