
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

Parallel Programming

Parallel Sorting
(A taste of parallel
algorithms!)

spcl.inf.ethz.ch

@spcl_eth

Today: Parallel Sorting
(one of the most fun problems in CS)

2

spcl.inf.ethz.ch

@spcl_eth

 D.E. Knuth. The Art of Computer Programming, Volume 3: Sorting and
Searching, Third Edition. Addison-Wesley, 1997. ISBN 0-201-89685-0. Section
5.3.4: Networks for Sorting, pp. 219–247.

 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill,
1990. ISBN 0-262-03293-7. Chapter 27: Sorting Networks, pp.704–724.

3

Literature

google

"chapter 27 sorting networks"

spcl.inf.ethz.ch

@spcl_eth

Heapsort & Mergesort have O(n log n) worst-case run time

Quicksort has O(n log n) average-case run time

These bounds are all tight, actually (n log n)

So maybe we can dream up another algorithm with a lower asymptotic complexity,
such as O(n) or O(n log log n)

This is unfortunately IMPOSSIBLE!

But why?

4

How fast can we sort?

spcl.inf.ethz.ch

@spcl_eth

Assume we have n elements to sort

For simplicity, also assume none are equal (i.e., no duplicates)

How many permutations of the elements (possible orderings)?

Example, n=3

a[0]<a[1]<a[2] a[0]<a[2]<a[1] a[1]<a[0]<a[2]

a[1]<a[2]<a[0] a[2]<a[0]<a[1] a[2]<a[1]<a[0]

In general, n choices for first, n-1 for next, n-2 for next, etc.  n(n-1)(n-2)…(1) = n! possible orderings

5

Permutations

spcl.inf.ethz.ch

@spcl_eth

Algorithm must “find” the right answer among n! possible answers

Starts “knowing nothing” and gains information with each comparison

Intuition is that each comparison can, at best,
eliminate half of the remaining possibilities

Can represent this process as a decision tree

 Nodes contain “remaining possibilities”

 Edges are “answers from a comparison”

 This is not a data structure but what our proof uses to represent “the most any algorithm
could know”

6

Representing every comparison sort

spcl.inf.ethz.ch

@spcl_eth

7

Decision tree for n = 3
a < b < c, b < c < a,
a < c < b, c < a < b,
b < a < c, c < b < a

a < b < c
a < c < b
c < a < b

b < a < c
b < c < a
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < a < c
b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

a ? b

The leaves contain all possible orderings of a, b, c

possible
orders

actual
order

spcl.inf.ethz.ch

@spcl_eth

Binary tree because
 Each comparison has binary outcome

 Assumes algorithm does not ask redundant questions

Because any data is possible, any algorithm needs to ask enough questions to
decide among all n! answers

 Every answer is a leaf (no more questions to ask)

 So the tree must be big enough to have n! leaves

 Running any algorithm on any input will at best
correspond to one root-to-leaf path in the decision tree

So no algorithm can have worst-case running time better than the height of the decision tree

8

What the decision tree tells us

spcl.inf.ethz.ch

@spcl_eth

Proven: No comparison sort can have worst-case better than the height of a
binary tree with n! leaves

 Turns out average-case is same asymptotically

 So how tall is a binary tree with n! leaves?

Now: Show a binary tree with n! leaves has height Ω(n log n)

 n log n is the lower bound, the height must be at least this

 It could be more (in other words, a comparison sorting algorithm could take
longer but can not be faster)

Conclude that: (Comparison) Sorting is Ω(n log n)

9

Where are we

spcl.inf.ethz.ch

@spcl_eth

The height of a binary tree with L leaves is at least log2 L

So the height of our decision tree, h:

h  log2 (n!) property of binary trees

= log2 (n*(n-1)*(n-2)…(2)(1)) definition of factorial

= log2 n + log2 (n-1) + … + log2 1 property of logarithms

 log2 n + log2 (n-1) + … + log2 (n/2) keep first n/2 terms

 (n/2) log2 (n/2) each of the n/2 terms left is  log2 (n/2)

 (n/2)(log2 n - log2 2) property of logarithms

 (1/2)nlog2 n – (1/2)n arithmetic

“=“  (n log n)

10

Lower bound on height

spcl.inf.ethz.ch

@spcl_eth

11

Breaking the lower bound on sorting

Simple
algorithms:

O(n2)
Fancier

algorithms:
O(n log n)

Comparison
lower bound:
(n log n) Specialized

algorithms:
O(n)

Insertion sort
Selection sort
Bubble Sort

Shell sort
…

Heap sort
Merge sort

Quick sort (avg)
…

Radix sort

Horrible
algorithms:

Ω(n2)

Bogo Sort (n!)
Stooge Sort (n2.7)

Nothing is ever
straightforward
in computer
science…

Assume 32/64-bit Integer:

232 = 4294967296

13! = 6227020800

264 = 18446744073709551616
21! = 51090942171709440000

spcl.inf.ethz.ch

@spcl_eth

SORTING NETWORKS

12

spcl.inf.ethz.ch

@spcl_eth

13

Comparator – the basic building block for sorting networks

x

y

min(x,y)

max(x,y)
<

x

y

min(x,y)

max(x,y)

shorter notation:

spcl.inf.ethz.ch

@spcl_eth

void compare(int[] a, int i, int j, boolean dir) {

if (dir==(a[i]>a[j])){

int t=a[i];

a[i]=a[j];

a[j]=t;

}

}

14

a[i]

a[j]

a[i]

a[j]
<

spcl.inf.ethz.ch

@spcl_eth

15

Sorting networks

1

5

4

3

5

1

4

3

1

3

4

5

3

4

3

1

4

5

spcl.inf.ethz.ch

@spcl_eth

16

Sorting networks are data-oblivious (and redundant)

2:3 4:3 2:1 4:1 2:4 3:4 2:1 3:1 1:3 4:3 1:2 4:2 1:4 3:4 1:2 3:2

2:4 2:4 2:3 2:3 1:4 1:4 1:3 1:3

1:3 1:4 2:3 2:4

3:4 3:4

1:2

𝑥1 𝑥2 𝑥3 𝑥4
Data-oblivious comparison tree

redundant cases

no swap swap

spcl.inf.ethz.ch

@spcl_eth

17

Recursive construction : Insertion

𝑥1

𝑥2

𝑥3

𝑥𝑛−1

𝑥𝑛

𝑥𝑛+1

sorting
network

.

.

.

.

.

.

.

.

.

spcl.inf.ethz.ch

@spcl_eth

18

Recursive construction: Selection

𝑥1

𝑥2

𝑥3

𝑥𝑛−1

𝑥𝑛

𝑥𝑛+1

sorting
network

.

.

.

.

.

.

.

.

.

spcl.inf.ethz.ch

@spcl_eth

19

Applied recursively..

insertion sort bubble sort

with parallelism: insertion sort = bubble sort !

spcl.inf.ethz.ch

@spcl_eth

How many steps does a computer with infinite number of processors
(comparators) require in order to sort using parallel bubble sort (depth)?

Answer: 2n – 3
Can this be improved ?

How many comparisons ?

Answer: (n-1) n/2

How many comparators are required (at a time)?

Answer: n/2
Reusable comparators: n-1

20

Question

spcl.inf.ethz.ch

@spcl_eth

Odd-Even Transposition Sort:

0 9 8 2 7 3 1 5 6 4

1 8 9 2 7 1 3 5 6 4

2 8 2 9 1 7 3 5 4 6

3 2 8 1 9 3 7 4 5 6

4 2 1 8 3 9 4 7 5 6

5 1 2 3 8 4 9 5 7 6

6 1 2 3 4 8 5 9 6 7

7 1 2 3 4 5 8 6 9 7

8 1 2 3 4 5 6 8 7 9

1 2 3 4 5 6 7 8 9

21

Improving parallel Bubble Sort

spcl.inf.ethz.ch

@spcl_eth

void oddEvenTranspositionSort(int[] a, boolean dir) {

int n = a.length;

for (int i = 0; i<n; ++i) {

for (int j = i % 2; j+1<n; j+=2)

compare(a,j,j+1,dir);

}

}

22

spcl.inf.ethz.ch

@spcl_eth

Same number of comparators (at a time)

Same number of comparisons

But less parallel steps (depth): n

23

Improvement?

In a massively parallel
setup, bubble sort is
thus not too bad.

But it can go better...

spcl.inf.ethz.ch

@spcl_eth

 It’s complicated 
 In fact, some structures are clear but there is a lot still to be discovered!

 For example:
 What is the minimum number of comparators?

 What is the minimum depth?

 Tradeoffs between these two?

24

How to get to a sorting network?

Source: wikipedia

spcl.inf.ethz.ch

@spcl_eth

25

Parallel sorting

Prove that the two networks above sort four numbers. Easy?

depth = 4 depth = 3

spcl.inf.ethz.ch

@spcl_eth

Theorem: If a network with 𝑛 input lines sorts all 2𝑛 sequences of 0s and 1s
into non-decreasing order, it will sort any arbitrary sequence of 𝑛
numbers in non-decreasing order.

26

Zero-one-principle

spcl.inf.ethz.ch

@spcl_eth

Assume a monotonic function 𝑓(𝑥) with 𝑓 𝑥 ≤ 𝑓(𝑦) whenever 𝑥 ≤ 𝑦 and a
network 𝑁 that sorts. Let N transform (𝑥1, 𝑥2, … , 𝑥𝑛) into (𝑦1, 𝑦2, … , 𝑦𝑛), then
it also transforms (𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑛)) into (𝑓(𝑦1), 𝑓(𝑦2),… , 𝑓(𝑦𝑛)).

Assume 𝑦𝑖 > 𝑦𝑖+1for some 𝑖, then consider the monotonic function

𝑓(𝑥) = ቊ
0, 𝑖𝑓 𝑥 < 𝑦𝑖
1, 𝑖𝑓 𝑥 ≥ 𝑦𝑖

N converts

(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑛)) into 𝑓 𝑦1 , 𝑓(𝑦2 , … 𝑓 𝑦𝑖 , 𝑓 𝑦𝑖+1 , … , 𝑓(𝑦𝑛))

27

Proof

𝑥 not sorted by 𝑁 ⇒ there is an 𝑓 𝑥 ∈ 0,1 𝑛 not sorted by N
⇔

𝑓 sorted by N for all 𝑓 ∈ 0,1 𝑛 ⇒ 𝑥 sorted by N for all x

Argue: If x is sorted by a network N
then also any monotonic function of x.

2081 30 5 9 851 9 20 30

1040 15 2 4 420 4 10 15

Show: If x is not sorted by network N, then there is a
monotonic function f that maps x to 0s and 1s and f(x)
is not sorted by the network

2081 30 5 9 951 8 20 30

100 1 0 1 100 0 1 1

e.g., floor(x/2)

spcl.inf.ethz.ch

@spcl_eth

Assume a monotonic function 𝑓(𝑥) with 𝑓 𝑥 ≤ 𝑓(𝑦) whenever 𝑥 ≤ 𝑦 and a
network 𝑁 that sorts. Let N transform (𝑥1, 𝑥2, … , 𝑥𝑛) into (𝑦1, 𝑦2, … , 𝑦𝑛), then
it also transforms (𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑛)) into (𝑓(𝑦1), 𝑓(𝑦2),… , 𝑓(𝑦𝑛)).

Assume 𝑦𝑖 > 𝑦𝑖+1for some 𝑖, then consider the monotonic function

𝑓(𝑥) = ቊ
0, 𝑖𝑓 𝑥 < 𝑦𝑖
1, 𝑖𝑓 𝑥 ≥ 𝑦𝑖

N converts

(𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑛)) into 𝑓 𝑦1 , 𝑓(𝑦2 , … 𝑓 𝑦𝑖 , 𝑓 𝑦𝑖+1 , … , 𝑓(𝑦𝑛))

28

Proof

1 0

All comparators must act in the same way for
the 𝑓(𝑥𝑖) as they do for the 𝑥𝑖

spcl.inf.ethz.ch

@spcl_eth

Bitonic (Merge) Sort is a parallel algorithm for sorting

If enough processors are available, bitonic sort breaks the lower bound on
sorting for comparison sort algorithm

Time complexity of 𝑂 𝑛 log2 𝑛 (sequential execution)

Time complexity of 𝑂 log2 𝑛 (parallel time)

Worst = Average = Best case

29

Bitonic sort

spcl.inf.ethz.ch

@spcl_eth

What is a Bitonic sequence?

30

Monotonic ascending sequence Monotonic descending sequence

spcl.inf.ethz.ch

@spcl_eth

Bitonic Sequences Allow Wraparound

A bitonic sequence is defined as a list with no more than one Local
maximum and no more than one Local minimum.

32

spcl.inf.ethz.ch

@spcl_eth

Bitonic (again)

Sequence (𝑥1, 𝑥2, … , 𝑥𝑛) is bitonic, if it can be circularly shifted such that
it is first monotonically increasing and then monontonically decreasing.

(1, 2, 3, 4, 5, 3, 1, 0) (4, 3, 2, 1, 2, 4, 6, 5)

34

spcl.inf.ethz.ch

@spcl_eth

Bitonic 0-1 Sequences

0𝑖1𝑗0𝑘

1𝑖0𝑗1𝑘

35

spcl.inf.ethz.ch

@spcl_eth

Properties

If (𝑥1, 𝑥2, … , 𝑥𝑛) is monotonically increasing (decreasing) and then
monotonically decreasing (increasing), then it is bitonic

If (𝑥1, 𝑥2, … , 𝑥𝑛) is bitonic, then 𝑥1, 𝑥2, … , 𝑥𝑛
𝑅 ≔ 𝑥𝑛, 𝑥𝑛−1, … , 𝑥1 is

also bitonic

36

spcl.inf.ethz.ch

@spcl_eth

37

The Half-Cleaner

bitonic

0

0

1

1

1

1

1

0

0

0

1

0

1

1

1

1

bitonic

bitonic clean

spcl.inf.ethz.ch

@spcl_eth

38

The Half-Cleaner

bitonic

0

0

1

1

1

0

0

0

0

0

0

0

1

0

1

1

bitonic clean

bitonic

spcl.inf.ethz.ch

@spcl_eth

void halfClean(int[] a, int lo, int m, boolean dir)

{

for (int i=lo; i<lo+m; i++)

compare(a, i, i+m, dir);

}

39

0

0

1

1

1

0

0

0

0

0

0

0

1

0

1

1

m

spcl.inf.ethz.ch

@spcl_eth

1. Divide the bitonic list into two equal halves.

2. Compare-Exchange each item on the first half with the corresponding
item in the second half.

40

Binary Split: Application of the Half-Cleaner

spcl.inf.ethz.ch

@spcl_eth

Two bitonic sequences where the numbers in one sequence are all less than
the numbers in the other sequence.

Because the original sequence was bitonic, every element in the lower half of
new sequence is less than or equal to the elements in its upper half.

41

Binary Splits - Result

spcl.inf.ethz.ch

@spcl_eth

42

Bitonic Split Example

+

bitonic bitonic bitonic

spcl.inf.ethz.ch

@spcl_eth

Input bitonic sequence of 0s and 1s, then for the output of the half-cleaner it
holds that

 Upper and lower half is bitonic

 One of the two halfs is bitonic clean

 Every number in upper half ≤ every number in the lower half

43

Lemma

spcl.inf.ethz.ch

@spcl_eth

44

Proof: All cases

0

1

0

bitonic 0

1

1

0
0

1

0

1

0

1

0

1

bitonic

bitonic clean
top

bottom

top

bottom

spcl.inf.ethz.ch

@spcl_eth

45

0

1

0

bitonic

0

1

1

0

0

0

1
1

bitonic clean

bitonictop

bottom

top

bottom

0

0

1

1

spcl.inf.ethz.ch

@spcl_eth

46

0

1

0

bitonic
0 1

0

0

bitonic

bitonic cleantop

bottom

top

bottom

0 1

0

0
0

1

0

0

spcl.inf.ethz.ch

@spcl_eth

47

0

1

0

bitonic
01

0

0

bitonic

bitonic cleantop

bottom

top

bottom

0 1

0

0
0

1

0

0

spcl.inf.ethz.ch

@spcl_eth

48

The four remaining cases (010  101)

1

0

1

bitonic
1

0

0

1
1

0

1

0

bitonic clean

bitonic

top

bottom

top

bottom

0

1

0

1

1

0

1

bitonic

1

0

0

1

1

1

00

bitonic

bitonic clean
top

bottom

top

bottom

0

1

1

0

1

0

1

bitonic 1 0

1

1

bitonic clean

bitonic
top

bottom

top

bottom

10

1

1

1

0

1

1

1

0

1

bitonic 10

1

1

bitonic clean

bitonic
top

bottom

top

bottom

10

1

1

1

0

1

1

spcl.inf.ethz.ch

@spcl_eth

49

Construction of a Bitonic Sorting Network

0

0

1

1

1

0

0

0

0

0

0

0

1

0

1

1

half
cleaner

half
cleaner

half
cleaner

0

0

0

0

1

0

1

1

half
cleaner

half
cleaner

half
cleaner

half
cleaner

0

0

0

0

0

1

1

1

bitonic sorted

spcl.inf.ethz.ch

@spcl_eth

50

Recursive Construction

half
cleaner

bitonic
sorter (n/2)

bitonic
sorter (n/2)

bitonic sorter (n) ≝

spcl.inf.ethz.ch

@spcl_eth

void bitonicMerge(int[] a, int lo, int n, boolean dir)

{

if (n>1) {

int m=n/2;

halfClean(a, lo, m, dir);

bitonicMerge(a, lo, m, dir);

bitonicMerge(a, lo+m, m, dir);

}

}

51

half
cleaner

bitonic
sorter (n/2)

bitonic
sorter (n/2)

spcl.inf.ethz.ch

@spcl_eth

 Compare-and-exchange moves smaller numbers of each pair to left and
larger numbers of pair to right.

 Given a bitonic sequence, recursively performing ‘binary split’ will sort the
list.

52

Bitonic Merge

spcl.inf.ethz.ch

@spcl_eth

53

Bi-Merger

0

0

1

1

0

0

0

1

0

0

0

0

1

1

0

1

bitonic

bitonic

sorted

sorted

0

0

1

1

1

0

0

0

0

0

0

0

1

0

1

1

bitonic

bitonic

sorted

reverse
sorted

≜ bitonic

Bi-Merger on two sorted sequences acts like a half-cleaner on a bitonic sequence (when one of the sequences is reversed)

bi-merger half-cleaner

spcl.inf.ethz.ch

@spcl_eth

Merger

54

Merger

0

0

1

1

0

0

0

1

0

0

0

0

1

0

1

1

bi merger

half
cleaner

half
cleaner

0

0

0

0

1

0

1

1

half
cleaner

half
cleaner

half
cleaner

half
cleaner

0

0

0

0

0

1

1

1

sorted

sorted

sorted

spcl.inf.ethz.ch

@spcl_eth

55

Recursive Construction of a Sorter

Sorter(n/2)

Merger (n)Sorter (n) ≝
Sorter(n/2)

spcl.inf.ethz.ch

@spcl_eth

private void bitonicSort(int a[], int lo, int n, boolean dir) {

if (n>1){

int m=n/2;

bitonicSort(a, lo, m, ASCENDING);

bitonicSort(a, lo+m, n, DESCENDING);

bitonicMerge(a, lo, n, dir);

}

}

56

Sorter(n/2)

Merger (n)

Sorter(n/2)

spcl.inf.ethz.ch

@spcl_eth

Merger (8)

57

Example

Merger(4)Merger (2)

bi-merger

half
cleaner

half
cleaner

half
cleaner

half
cleaner

half
cleaner

half
cleaner

bi-merger

half
cleaner

half
cleaner

bi-merger

half
cleaner

half
cleaner

half
cleaner

half
cleaner

half
cleaner

half
cleaner

spcl.inf.ethz.ch

@spcl_eth

58

Example

Merger (8)Merger(4)Merger (2)

bi-merger

half
cleaner

half
cleaner

half
cleaner

half
cleaner

half
cleaner

half
cleaner

bi-merger

half
cleaner

half
cleaner

bi-merger

half
cleaner

half
cleaner

half
cleaner

half
cleaner

half
cleaner

half
cleaner

spcl.inf.ethz.ch

@spcl_eth

How many steps?

෍

𝑖=1

log 𝑛

log 2𝑖 = ෍

𝑖=1

log 𝑛

𝑖 log 2 =
log 𝑛 ⋅ (log 𝑛 + 1)

2
= 𝑂(log2 𝑛)

59

Bitonic Merge Sort

#mergers

#steps /
merger

spcl.inf.ethz.ch

@spcl_eth

RAM : Random Access Machine

 Unbounded local memory

 Each memory has unbounded capacity

 Simple operations: data, comparison, branches

 All operations take unit time

Time complexity: number of steps executed

Space complexity: (maximum) number of memory cells used

60

Interlude: Machine Models

Memory

Processor

spcl.inf.ethz.ch

@spcl_eth

PRAM : Parallel Random Access Machine

 Abstract machine for designing algorithms applicable for parallel computers

 Unbounded collection of RAM processors 𝑃0, 𝑃1, …

 Each processor has unbounded registers

 Unbounded shared memory

 All processors can access all memory in unit time

 All communication via shared memory

61

Machine Models

P0

shared
memory

P1 P2 P3 P4 P5 P6

spcl.inf.ethz.ch

@spcl_eth

ER: processors can simultaneously read from distinct memory locations

EW: processors can simultaneously write to distinct memory locations

CR: processors can simultanously read from any memory location

CW: processors can simultaneously write to any memory location

Specification of the machine model as one of EREW, CREW, CRCW

62

Shared Memory Access Model

spcl.inf.ethz.ch

@spcl_eth

Find maximum of n elements in an array A

Assume 𝑂(𝑛2) processors and the CRCW model

For all 𝑖 ∈ 0,1,… , 𝑛 − 1 in parallel do
𝑃𝑖0:𝑚𝑖 ← 𝑡𝑟𝑢𝑒

For all 𝑖, 𝑗 ∈ 0,1,… , 𝑛 − 1 , 𝑖 ≠ 𝑗 in parallel do
𝑃𝑖𝑗: 𝑖𝑓 𝐴𝑖 < 𝐴𝑗 𝑡ℎ𝑒𝑛 𝑚𝑖 ← 𝑓𝑎𝑙𝑠𝑒

For all 𝑖 ∈ 0,1,… , 𝑛 − 1 in parallel do
𝑃𝑖0: 𝑖𝑓 𝑚𝑖 = 𝑡𝑟𝑢𝑒 𝑡ℎ𝑒𝑛 𝑚𝑎𝑥 ← 𝐴𝑖

63

Example: Why the machine model can be important

O(1) time
complexity!

spcl.inf.ethz.ch

@spcl_eth

3. ExtractMax2. Compare

1. Init

64

Illustration

1 4 2 9

t t t t f f f t

𝑃00 𝑃10 𝑃20 𝑃30

𝑃01 𝑃03𝑃02

𝑃10 𝑃20 𝑃30

𝑃13𝑃12

𝑃21 𝑃31

𝑃23

𝑃32

max

𝑃00 𝑃10 𝑃20 𝑃30

concurrent writes!

spcl.inf.ethz.ch

@spcl_eth

Q: How many steps does max-find require with CREW?

Using CREW only two values can be merged into a single value by one
processor at a time step: number of values that need to be merged can be
halved at each step  Requires Ω(log 𝑛) steps

There is a lot of interesting theoretical results for PRAM machine models (e.g.,
CRCW simulatable with EREW) and for PRAM based algorithms (e.g., cost
optimality / time optimality proofs etc). We will not go into more details here.

In the following we assume a CREW PRAM model -- and receive in retrospect a
justification for the results stated above on parallel bubble sorting.

65

CREW

spcl.inf.ethz.ch

@spcl_eth

How to compute fast?

March 2015

66

spcl.inf.ethz.ch

@spcl_eth

 First of all, read all instructions
 Then, read the whole exam paper through
 Look at the number of points for each question
 This shows how long we think it will take to answer!

 Find one you know you can answer, and answer it
 This will make you feel better early on.

 Watch the clock!
 If you are taking too long on a question, consider dropping it and moving on to another one.

 Always show your working
 You should be able to explain most of the slides
 Tip: form learning groups and present the slides to each other
 If something is unclear:

Ask your friends
Read the book (Herlihy and Shavit for the second part)
Ask your TAs

Last lecture -- basic exam tips

67

spcl.inf.ethz.ch

@spcl_eth

 Computation is the third pillar
of science

Why computing fast?

68

spcl.inf.ethz.ch

@spcl_eth

69

But why do I care!!?? Maybe you like the weather forecast?

Tobias Gysi,
PhD Student @SPCL

spcl.inf.ethz.ch

@spcl_eth

70

Or you wonder about the future of the earth?

spcl.inf.ethz.ch

@spcl_eth

1 Teraflop in 1997

$67 Million 71

spcl.inf.ethz.ch

@spcl_eth

1 Teraflop 17 years later (2014)

1 TF

“Amazon.com by Intel even has the co-
processor selling for just $142 (plus $12
shipping) though they seem to be now
out of stock until early December.” (Nov.
11, 2014)

[Update 2018]
7.8 Tflop/s double precision
15.7 Tflop/s single precision

125 Tflop/s half precision

Want to play with any
of these?

72

spcl.inf.ethz.ch

@spcl_eth

1 Teraflop 20 years later (2017)

73

spcl.inf.ethz.ch

@spcl_eth

1 Teraflop 25 years later (2022)

74

spcl.inf.ethz.ch

@spcl_eth

1 Petaflop 35 years later (2032???)

75

Not so fast …
(or: performance became interesting again)

spcl.inf.ethz.ch

@spcl_eth

76

Changing hardware constraints and the physics of computing

[1]: Marc Horowitz, Computing’s Energy Problem (and what we can do about it), ISSC 2014, plenary
[2]: Moore: Landauer Limit Demonstrated, IEEE Spectrum 2012

130nm

90nm

65nm

45nm

32nm

22nm
14nm

10nm

0.9 V [1]

32-bit FP ADD: 0.9 pJ
32-bit FP MUL: 3.2 pJ

2x32 bit from L1 (8 kiB): 10 pJ
2x32 bit from L2 (1 MiB): 100 pJ
2x32 bit from DRAM: 1.3 nJ

…

Three Ls of modern computing:

How to address locality challenges on standard architectures and programming?

D. Unat et al.: “Trends in Data Locality Abstractions for HPC Systems”

IEEE Transactions on Parallel and Distributed Systems (TPDS). Vol 28, Nr. 10, IEEE, Oct. 2017

spcl.inf.ethz.ch

@spcl_eth

77

Load-store vs. Dataflow architectures

Memory

Cache

RegistersControl

x=a+b

ld a, r1

ALU

ald b, r2 badd r1, r2

ba

x

bast r1, x Memory

+

c d y

y=(a+b)*(c+d)

a b

+

x

a b c d

a+b c+d

y

Turing Award 1977 (Backus): "Surely there must be a less primitive
way of making big changes in the store than pushing vast numbers

of words back and forth through the von Neumann bottleneck."

Load-store (“von Neumann”)

Energy per instruction: 70pJ

Source: Mark Horowitz, ISSC’14

Energy per operation: 1-3pJ

Static Dataflow (“non von Neumann”)

spcl.inf.ethz.ch

@spcl_eth

78

Single Instruction Multiple Data/Threads (SIMD - Vector CPU, SIMT - GPU)

Memory

Cache

RegistersControl

ALUALU

ALUALU

ALUALU

ALUALU

ALUALU
45nm, 0.9 V [1]

Random Access SRAM:

8 kiB: 10 pJ
32 kiB: 20 pJ
1 MiB: 100 pJ

Memory

+

c d ya b

+

x

a b c d

45nm, 0.9 V [1]

Single R/W registers:

32 bit: 0.1 pJ

[1]: Marc Horowitz, Computing’s Energy Problem (and what we can do about it), ISSC 2014, plenary

High Performance Computing really
became a data management challenge

spcl.inf.ethz.ch

@spcl_eth

High-performance Computing (Supercomputing)

Vectorization

Multicore/SMP

GPU/FPGA Computing

IEEE Floating Point

Datacenter Networking/RDMA

…. next: specialized & reconfigurable computing
79

spcl.inf.ethz.ch

@spcl_eth

 A benchmark, solve Ax=b
 As fast as possible!  as big as possible 

 Reflects some applications, not all, not even many

 Very good historic data!

 Speed comparison for
computing centers, states,
countries, nations,
continents 
 Politicized (sometimes good,

sometimes bad)

 Yet, fun to watch

Top 500

iPhone 7

My Laptop

My Xeon Phi

80

spcl.inf.ethz.ch

@spcl_eth

www.top500.org

The November 2018 List

81

Want to run on that
system?

x

DPHPC class of 2015

spcl.inf.ethz.ch

@spcl_eth

82

Computing Pi on a supercomputer!

int main(int argc, char *argv[]) {

// definitions …

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

double t = -MPI_Wtime();

for (j=0; j<n; ++j) {

h = 1.0 / (double) n;

sum = 0.0;

for (i = myid + 1; i <= n; i += numprocs) { x = h * ((double)i - 0.5); sum += (4.0 / (1.0 + x*x)); }

mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

}

t+=MPI_Wtime();

if (!myid) {

printf("pi is approximately %.16f, Error is %.16f\n", pi, fabs(pi - PI25DT));

printf("time: %f\n", t);

}

MPI_Finalize();

}

spcl.inf.ethz.ch

@spcl_eth

 6 undergrads, 1 advisor, 1 cluster, 2x13 amps
 20 teams, most continents @SC or @ISC
 48 hours, five applications, non-stop!
 top-class conference (>13,000 attendees)

 Lots of fun
 Even more experience!

 Introducing team Racklette
 https://racklette.ethz.ch/
 Search for “Student Cluster Challenge”
 HPC-CH/CSCS is helping

 Let me know, my assistants are
happy to help!
 If we have a full team

Student Cluster Competition Want to become an expert
in HPC?

https://racklette.ethz.ch/

spcl.inf.ethz.ch

@spcl_eth

 Thanks for being such fun to teach 
 Comments (also anonymous) are always appreciated!

 If you are interested in parallel computing research, talk to me or my assistants!
 Large-scale (datacenter) systems
 Next-generation parallel programming (e.g., FPGAs)
 Parallel computing (SMP and MPI)
 GPUs (CUDA), FPGAs, Manycore …
 … spcl-friends mailing list (subscribe on webpage)
 … on twitter: @spcl_eth 

 Hope to see you again!
Maybe in Design of Parallel
and High-Performance
Computing in the Masters 

 Or for theses/research projects:
http://spcl.inf.ethz.ch/SeMa/

Finito

84

