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Last week

* Transactional memory
= Motivation (locks are bad, wait-/lock-free is hard)
= Concepts (Atomicity, Consistency, Isolation — ACI(D))
=" Implementation options (keep track of read and write sets)
= Example: dining philosophers

= Distributed memory
= |solation of state — big simplification
= Event-driven messaging/Actors (example: Erlang)
= CSP-style (example: Go)
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Learning goals for today

= Finish Go

= Message Passing Interface
= Standard library for high-performance parallel programming
" Processes, communicators, collectives — concepts of distributed memory programming
= Matching, deadlocks — potential pitfalls

= A primer on parallel algorithms
= Parallel sorting
= Sorting with fixed structures — sorting networks
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Example: Concurrent prime sieve

Each station removes multiples of the first element received and passes on
the remaining elements to the next station

...98765432 ....9753 .75 o 7
G > F, > F; > F >
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Concurrent prime sieve

func Generate(ch chan<- int) { func Filter(in <-chan int, out chan<- int, prime int) {

. . for
for i := 2; ; i++ { F . . .
h . i := <-in // Receive value from 'in'.
ch <=1 if i%prime != 0 {
} out <- i // Send 'i' to 'out'.

} G )

func main() {
ch := make(chan int)
go Generate(ch)

for i := @; i < 10; i++ { G .. 765432 3 753 F, e 75 . F .7 g

prime := <-ch
fmt.Println(prime)

chl := make(chan int)

go Filter(ch, chl, prime)
ch = chl

source code from golang.org
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Message Passing Interface (MPI)
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ABSTRACT

Petascale parallel computers with more than a million processing cores are expected to
be available in a couple of years. Although MPI is the dominant programming inter-
face today for large-scale systems that at the highest end already have close to 300,000
processors, a challenging question to both researchers and users is whether MPI will
scale to processor and core counts in the millions. In this paper, we examine the issue Torsten Hoefler
of scalability of MPI to very large systems. We first examine the MPI specification itself
and discuss areas with scalability concerns and how they can be overcome. We then .
investigate issues that an MPI implementation must address in order to be scalable. To HH/E’E’V Thakur
illustrate the issues, we ran a number of simple experiments to measure MPI memory
consumption at scale up to 131,072 processes, or S0%, of the IBM Blue Gene/P system
at Argonne National Laboratory. Based on the results, we identified nonscalable aspects
of the MPIl implementation and found ways to tune it to reduce its memory footprint.
We also briefly discuss issues in application scalability to large process counts and fea-

William Grop 0

Ewing Lusk
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Message Passing Interface (MPI)

Message passing libraries:
= PVM (Parallel Virtual Machines) 1980s
= MPI (Message Passing Interface) 1990s

MPI = Standard API

* Hides Software/Hardware details
* Portable, flexible

* Implemented as a library

YW @spcl_eth

Program
MPI library
Specialized | Standard
Driver TCP/IP
Custom Standard
Network Network
HW HW

ETH:zurich
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Process Identification

= MPI processes can be collected into groups
= Each group can have multiple colors (some times called context)
= Group + color == communicator (it is like a name for the group)

= When an MPI application starts, the group of all processes is initially given a predefined
name called MPI COMM WORLD

= The same group can have many names, but simple programs do not have to worry about multiple names

= A process is identified by a unique number within each communicator,

called rank

= For two different communicators, the same process can have two different ranks: so the
meaning of a “rank” is only defined when you specify the communicator
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MPI Communicators

= Defines the communication domain of a communication operation: set of
processes that are allowed to communicate with each other.

Cro Cr) @2 D v

cl c2
= |nitially all processes are in the communlcator MPI_COMM_WORLD.

MPI_COMM_WORLD
= The rank of processes are associated with (and unique within) a

communicator, numbered from 0 to n-1
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Communicators
mpiexec -np 16 ./test

When you start an MPI
Communicators do not @ @ program, there is one
need to contain all predefined communicator
processes in the system @ @ @ @ MPI_COMM WORLD
Every process in a @ @ @ @ Can make copies of this
communicator has an ID communicator (same group of
called as “rank” @ @ processes, same ranks, but

different “aliases”)

The same process might have different
ranks in different communicators

Communicators can be created “by hand” or using tools

Simple programs typically only use the predefined communicator MPT _COMM WORLD
(which is sometimes considered bad practice because of modularity issues)
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Process Ranks

Processes are identified by nonnegative integers, called ranks

p processes are numbered 0, 1, 2, .. p-1

public static void main(String args []) throws Exception {
MPI.Init(args);
// Get total number of processes (p)
int size = MPI.COMM WORLD.Size();
// Get rank of current process (in [0..p-1])
int rank = MPI.COMM WORLD.Rank();
MPI.Finalize();
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S P M D (/ : ' Y

we compile
one program

Single Program if (rank==0) ' O
' dothis :
1 else l
| dothat :
| ! /, , N
Multiple Data | theif-else
makes it

(Multiple Instances) SPMD

if (rank == 0) if (rank == 0) if (rank == 0) if (rank == 0)
do this do this do this do this
else else else else
do that do that do that do that
PO P1 P2 P3




spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Communication
void Comm.Send( communicator

Object buf, pointer to data to be sent

from MPJ Spec

int offset,

int count, number of items to be sent

Datatype datatype, datatype of items, must be explicitely specified

int dest, destination process id

int tag data id tag
)

count * sizeof(int)
buf array A
int int int

offset
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Parallel Sort using MPI Send/Recv

Rank 0 |

8 1231967 (45|35} 1 (24,13 |30 3 | 5

Rank 0 ! \Se”d inON)  Rank 1

sort in parallel 8 |19 23|35 |45 | 67 1 3 5 13 24 30

~2* (N/2 log N/2)
Rank 0 \ M{ in O(N)

8119|123 |35|45|6711 | 3 |5 |13|24]|30

merge in O(N)
Rank 0

1 (3|58 (131923 (2430|3545 |67
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Message tags

= Communicating processes may need to send several messages between
each other.

= Message tag: differentiate between different messages being sent.

msg 1

mﬁgz

msg 3

network
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Message matching

cator

A

sender
Send _
communi
A
A
) receiver
Receive

communi

y

cator

sender tag

A

\ 4

receiver tag

dest=r

v

source =(q

YW @spcl_eth
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Receiving messages

void Comm.Recv( communicator
Object buf, pointer to the buffer to receive to
int offset,
int count, number of items to be received

Datatype datatype, datatype of items, must be explicitely specified
int src, source process id or MPI_ANY_SOURCE
int tag data id tag or MPI_ANY_TAG

)

| £

A receiver can get a message without knowing:
= the amount of data in the message,

* the sender of the message,
= or the tag of the message. w
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Synchronous Message Passing

Synchronous send (Ssend)
* waits until complete message can be accepted by the receiving process

before completing the send
u send G

ready

Synchronous receive (Recv)

* waits until expected message arrives
Synchronous routines can perform two actions
* transfer data

* synchronize processes
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Asynchronous Message Passing

Send does not wait for actions to complete before returning

* requires local storage for messages
sometimes explicit (programmer needs to care)
sometimes implicit (transparent to the programmer)

L

In general
* no synchronisation
* allows local progress
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Blocking / nonblocking

Blocking: return after local actions are complete, though the message transfer
may not have been completed

Non-blocking: return immediately

e assumes that data storage to be used for transfer is not modified by
subsequent statements until transfer complete
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A nonblocking communication example

Compute data

o
l (Full) Blocking
Communication

P1

Compute data

o LT T T T

(Streaming) Non-blocking
Communication

P1




spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Synchronous / asynchronous vs. blocking / nonblocking

Synchronous / Asynchronous
= about communication between sender and receiver

Blocking / Nonblocking
= about local handling of data to be sent / received
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MPI Send and receive defaults

Send

* blocking, Danger of Deadlocks.

. . ’ : |
» synchrony implementation dependent Don’t make any assumptions!

= depends on existence of buffering, performance considerations etc

Recv
* blocking

There are a lot of
different variations of
this in MPI.
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Sources of deadlocks

= Send a large message from process 0 to process 1

= |f there is insufficient storage at the destination, the send must wait for the user to provide the memory space
(through a receive)

= What happens with this code?

Process O Process 1
Send (1) Send (0)
Recv (1) Recv (0)

e Thisis called “unsafe” because it depends on the availability of
system buffers in which to store the data sent until it can be received
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Some Solutions to the “unsafe” Problem

= Order the operations more carefully:

Process O Process 1
Send (1) Recv (0)
Recv (1) Send (0)

e Supply receive buffer at same time as send:

Process O Process 1

Sendrecv (1) Sendrecv (0)
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More Solutions to the “unsafe” Problem

= Supply own space as buffer for send

Process O Process 1
Bsend (1) Bsend (0)
Recv (1) Recv (0)

e Use non-blocking operations:

Process O Process 1
Isend (1) Isend (0)
Irecv(1l) Irecv (0)

Waitall Waitall
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MPI is Simple

= Many parallel programs can be written using just these six functions, only two of which are non-trivial:
MPI INIT — initialize the MPI library (must be the first routine called)

MPI COMM SIZE - get the size
MPI COMM RANK — get the rank
MPI SEND — send a message to
MPI RECV — send a message to

of a communicator

of the calling process in the communicator
another process

another process

MPI FINALIZE — clean up all MPI state (must be the last MPI function called by

a process)

= For performance, however, you need to use other MPI features
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Pi record smashed as team finds two-
quadrillionth digit

By Jason Palmer
Science and technology reporter, BEC News

Example: compute Pi

* The irrational number Pi has many digits
= And it’s not clear if they're randomly distributed!

(O 16 September 2010 Technology f L J [ ] E « Share

A researcher has calculated the

H 2,000,000,000,000,000th digit of the
BUt t h ey ca n be co m p UtEd mathematical constant pi- and a
N-1 1 few digits either side of it. Z Ap + Z B;.
= h Z : T\\2 Nicholas Sze, of tech firm Yahoo, said 0<k<ZiE nde <k
i=0) 1+ (h(I + U] )) that when pi is expressed in binary, the

two quadrillionth "bit" is 0.

Mr Sze used Yahoo's Hadoop cloud managea
computing technology to more than
double the previous record.

It took 23 days on 1,000 of Yahoo's computers - on a standard PC, the calculation

'FOP(int i=@; i<numsteps; i++) { would have taken 500 years.
double x=(i + ©.5) * h;
sum += 4.0/(1.0 + Xx*x);

¥

double pi=h * sum ;
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Pi’s parallel version MPI.Init(args);

.. // declare and initialize variables (sum=0 etc.)
int size = MPI.COMM_WORLD.Size();
int rank = MPI.COMM_WORLD.Rank();

for(int i=rank; i<numSteps; i=i+size) {
double x=(i + ©.5) * h;
sum += 4.0/(1.0 + x*x);

}

if (rank != 0) {
double [] sendBuf = new double []{sum};
// l-element array containing sum
MPI.COMM WORLD.Send(sendBuf, ©, 1, MPI.DOUBLE, 0, 10);
}
else { // rank ==
double [] recvBuf = new double [1] ;
for (int src=1 ; src<P; src++) {
MPI.COMM WORLD.Recv(recvBuf, ©, 1, MPI.DOUBLE, src, 10);
sum += recvBuf[0];

}
}
double pi = h * sum; // output pi at rank © only!
MPI.Finalize();
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COLLECTIVE COMMUNICATION
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Group Communication

Up to here: point-to-point communication

MPI also supports communications among groups of processors
* not absolutely necessary for programming (but very nice!)

* but essential for performance

Examples: broadcast, gather, scatter, reduce, barrier, ...
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Collective Computation - Reduce public void Reduce(java.lang.Object sendbuf,

int sendoffset,
java.lang.Object recvbuf,
int recvoffset,

int count,

Datatype datatype,

Op op,

int root)

e
P1 E Reduce -
P2 [ ]
£ D [ ]
PO
::; E Scan

C |IHEHEElIII
s )
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Reduce implementation: a tree-structured global sum

Processes

In the first phase:

(a) Process 1 sends to 0, 3 sends to
2, 5 sends to 4, and 7 sends to 6.
(b) Processes 0, 2, 4, and 6 add in
the received values.

Second phase:

(c) Processes 2 and 6 send their new
values to processes 0 and 4,
respectively.

(d) Processes 0 and 4 add the
received values into their new
values.

Finally:

(a) Process 4 sends its newest value
to process 0.

(b) Process 0 adds the received
value to its newest value.
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Collective Data Movement - Broadcast

Broadcast

0 1 2 3 4 5 6 7
Processes
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Collective COmPUtatIOr\ - Allreduce public void Allreduce(java.lang.Object sendbuf,
int sendoffset,
java.lang.Object recvbuf,
int recvoffset,
int count,
Datatype datatype,

Op op)

A+B+C+D
Allreduce A+B+C+D

1,
:
olojo]>

Useful in a situation in which all of the processes need the result of a global sum in order
to complete some larger computation.
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Allreduce = Reduce + Broadcast?

Processes

A global sum followed
by distribution of the

Q: What is the number result.

of steps needed?

Processes
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Allreduce # Reduce + Broadcast

Q: What is the number

Processes of steps needed?

0 1 2 3 4 5

(o))
~

A butterfly-structured global sum.



Baidu's 'Ring Allreduce’ Library
Increases Machine Learning
Efficiency Across Many GPU Nodes

by Lucian Armasu February 21, 2017 at 9:10 AM

000000

GPUs arranged in a logical ring
(2] Baidu's ring alireduce algarithe

Baidu’s Silicon Valley AI Lab [SWAIL) announced an implermentation of the ring allreduce algorithm
for the deep learning community, which will enable significantly faster training of neural networks
across GRU models,

Need For Efficient Parallel Training

As neural networks have grown to include hundreds of millions or even over a billion parameters,
the number of GPU nodes needed to do the training has also increased. However, the higher the
number of nodes grows, the less efficient the system becomes in terms of how much computation is
done by each node. Therefore, the need for algorithms that maximize the performance across the
highty parzllel system has also increased.

Meet Horovod: Uber’'s Open

Source Distributed Deep Learning

Framew

in 13K Hv 6 ||@ 2 || G

Owver the past few years, advances in deep learning have driven tremendous
progress in image processing, speech recognition, and forecasting. At Uber, we
apply deep learning across our business; from self-driving research to trip
forecasting and fraud prevention, deep learning enables our engineers and data

scientists to create better experiences for our Users

spcl.inf.ethz.ch
YW @spcl_eth

Introducing Horovod

The realization that a ring-allreduce approach can improve both usability and
performance motivated us to work on our own implementation to address Uber's

L DI We adopted Baidu's draft implementation of the TensorFlow

ring-allreduce algorithm and built upon it KUER IR gslfe]d=-Re = s 1M

1. We converted the code into a stand-alone Python package called Horovod,
named after a traditional Russian folk dance in which performers dance with
inked arms in a circle, much like how distributed TensorFlow pracesses use
Horovod to communicate with each other. At any point in time, various teams at
Uber may be using different releases of TensorFlow. We wanted zll teams to be
able to leverage the ring-allreduce algorithm without needing to upgrade to the
ztest version of TensorFlow, apply patches to their versions, or even spend
time building aut the framework. Having a stand-zlone package zllowed us to
cut the time reguired to install Horovod from abaut an hour to a few minutes,

depending on the hardware.

2. We replaced the Baidu ring-allreduce implementation with NCCL. NCCL is
NVIDIA's library for collective communication that provides a highly aptimized
version of ring-allreduce. NCCL 2 introduced the ability to run ring-allreduce
across multiple machines, enabling us 1o take advantage of its many

performance boosting optimizations.

ETH:zurich

40
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Collective Data Movement — Scatter/Gather

JUB A B CD Scatter X
P1
P2
Gather
P3 «

= Scatter can be used in a function that reads in an entire vector on process 0 but only
sends the needed components to each of the other processes.

= @Gather collects all of the components of the vector onto destination process, then
destination process can process all of the components.
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More Collective Data Movement — some more (16 functions total!)

SO A ABCD
1 B Allgather YIRS
YA C ABCD
S D ABCD

PO AO Al A2 A3 AO BO CO DO

v

P1 BO B1 B2 B3 Alltoall Al B1 C1 D1

P2 CO C1 C2 C3 A2 B2 C2 D2

P3 DO D1 D2 D3

A3 B3 C3 D3
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Matrix-Vector-Multiply

1 2 3 10 Ap. - x
Computey=4-x, eg, A=|4 5 6‘ x=[20‘ y = |4, - x
7 8 9 30 Az - X

Assume A and x are available only at rank 0!

1. Broadcast x

PO 10120130 PO 1OIZOI30

P1 10120130

P2 1oIzoI3o
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Matrix-Vector-Multiply

1 2 3 10 Ap. - x
Computey=4-x, eg, A=|4 5 6‘ x=[20‘ y = |4, - x
7 8 9 30 Az - X

Assume A and x are available only at rank 0!

2. Scatter A

1 2

[y

L]
° paf-]s]-
p2(7]:]>

> PO

(<)}

PO

H
e == pmmmm
n

|
|
|

7 8
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Matrix-Vector-Multiply

Computey =4 -x, e.g.,Azéll é
7 8
3. Compute locally
o (=)o) =)=
Anonlonole
2 ()G =) =

Ay
A,
As.

- X
- X
- X

YW @spcl_eth

ETH:zurich
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Matrix-Vector-Multiply

1 2 3 10 A - x
ComputeyzA-x, eg, A=14 5 6‘ xz[ZO‘ y =145 x
7 8 9 30 As. - x
4. Gather result y
PO | 140
P1 | 320 PO 140[3201500

P2 | 500
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Iterations

Assume we want to apply the matrix-vector product iteratively

Yn = AYn_q

Example Application:
Eigenvalue Problem for Probability Matrix, as used in Google's Pagerank algorithm.

Then each process needs the results of other processes after one step.

- Need for Gather + Broadcast in one go.
= If you’re clever, you find out how to use reduce_scatter for this ©!
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MPI conclusion

* The de-facto interface for distributed parallel computing (nearly 100%
market share in HPC)

= Elegant and simple interface

= Definitely simpler than shared memory (no races, limited conflicts, avoid deadlocks
with nonblocking communication)

= We only covered the basics here, MPI-3.1 (2015) has 600+ functions

= More concepts:
Derived datatypes
Process topologies
Nonblocking and neighborhood collectives
One-sided accesses (getting the fun of shared memory back ...)
Profiling interfaces
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Sorting

(one of the most fun problems in CS)

Wf‘ ‘cﬁﬁi@}yg?*?‘{%’é' A ﬂ}‘@\ f@* ﬁ& Ay e ﬂﬁ

> » o) 002/654 ra > 1 0:18/4:03
Ld

Quick-sort with Hungarian (Kikillémenti legényes) folk dance Insert-sort with Romanian folk dance

1,318,280 views
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Literature

= D.E. Knuth. The Art of Computer Programming, Volume 3: Sorting and
Searching, Third Edition. Addison-Wesley, 1997. ISBN 0-201-89685-0. Section
5.3.4: Networks for Sorting, pp. 219-247.

= Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill,
1990. ISBN 0-262-03293-7. Chapter 27: Sorting Networks, pp.704—724.

google

"chapter 27 sorting networks"
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How Fast can we Sort?

Heapsort & Mergesort have O(n 1og n) worst-case run time
Quicksort has O(n 1og n) average-case run time

These bounds are all tight, actually ®(n 1og n)

So maybe we can dream up another algorithm with a lower asymptotic complexity,
such as O(n) or O(n 1log logn)

This is unfortunately IMPOSSIBLE!

But why?
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Permutations

Assume we have n elements to sort
For simplicity, also assume none are equal (i.e., no duplicates)

How many permutations of the elements (possible orderings)?

Example, n=3
a[0]<a[1]<a[2] a[0]<a[2]<al[1] a[1]<a[0]<a[2]
a[1]<a[2]<a[0] a[2]<a[0]<al[1] a[2]<a[1]<al0]

In general, n choices for first, n-1 for next, n-2 for next, etc. 2 n(n-1)(n-2)...(1) = n! possible orderings
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Representing Every Comparison Sort
Algorithm must “find” the right answer among n! possible answers

Starts “knowing nothing” and gains information with each comparison

Intuition is that each comparison can, at best,
eliminate half of the remaining possibilities

Can represent this process as a decision tree
= Nodes contain “remaining possibilities”
= Edges are “answers from a comparison”

= This is not a data structure but what our proof uses to represent “the most any algorithm
could know”
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Decision Tree forn =3

YW @spcl_eth

a<b<c b<c<a,
a<c<b,c<acx<b,
b<a<c,c<b<a

a<b a>b
a’b
a<b<c possible b<a<c
a<c<b Sl b<c<a
c<a<b c<b<a
a<c a>c b<c b>c
a<bc<c c<a<b b<a<c c<b<a
a<c<b b<c<a
b<c b>c actual c<a c>a
order
a<b<c a<c<b b<c<a b<a<c

The leaves contain all possible orderings of a, b, ¢

ETH:zurich
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What the decision tree tells us

Binary tree because
= Each comparison has binary outcome
= Assumes algorithm does not ask redundant questions

Because any data is possible, any algorithm needs to ask enough questions to
decide among all n! answers

= Every answer is a leaf (no more questions to ask)

=  So the tree must be big enough to have n! leaves

= Running any algorithm on any input will at best
correspond to one root-to-leaf path in the decision tree

So no algorithm can have worst-case running time better than the height of the decision tree
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Where are we

Proven: No comparison sort can have worst-case better than the height of a
binary tree with n! leaves

= Turns out average-case is same asymptotically

= So how tall is a binary tree with n! leaves?

Now: Show a binary tree with n! leaves has height Q(n log n)
= nlog nisthe lower bound, the height must be at least this

* |t could be more (in other words, a comparison sorting algorithm could take
longer but can not be faster)

Conclude that: (Comparison) Sorting is Q(n log n)
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Lower Bound on Height

The height of a binary tree with L leaves is at least 1og, L

So the height of our decision tree, h:

h > 1log, (n!) property of binary trees
= log, (n*(n-1)*(n-2)...(2)(1)) definition of factorial
=log, n+1log, (n-1)+..+1log, 1 property of logarithms
>1log, n+1log, (n-1) +... + 1og, (n/2) keep first n/2 terms
> (n/2) log, (n/2) each of the n/2 terms left is > 1og, (n/2)
>(n/2)(log, n - 1log, 2) property of logarithms
>(1/2)nlog,n = (1/2)n arithmetic

“=“Q (n logn)
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Breaking the lower bound on sorting

Bogo Sort (n!)
Stooge Sort (n%7)

Insertion sort
Selection sort
Bubble Sort
Shell sort

232 =4294967296
13! =6227020800

254 =18446744073709551616
21! =51090942171709440000

Assume 32/64-bit Integer:

Heap sort
Merge sort
Quick sort (avg)

YW @spcl_eth

ETH:zurich

Radix sort
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SORTING NETWORKS
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Comparator
X — > min(x,y)
y > — max(x,y)
X min(x,y)

shorter notation:

y max(x,y)
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void compare(int[] a, int i, int j, boolean dir) {
if (dir==(a[i]>a[j])){
int t=a[i];
a[i]=a[]];
a[jl=t;

ali] — > ali]

alj] — — alj]



spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Sorting Networks




spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Sorting networks are data-oblivious (and redundant)

Data-oblivious comparison tree | ‘

3:4 %
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Recursive Construction : Insertion

X1
X2
X3
sorting
network
Xn-1
xn
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Recursive Construction: Selection

X1
X2
X3
sorting
network
Xn-1
xn
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Applied recursively..

R

insertion sort bubble sort

with parallelism: insertion sort = bubble sort !
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Question

How many steps does a computer with infinite number of processors
(comparators) require in order to sort using parallel bubble sort?

Answer: 2n—3
Can this be improved ?

How many comparisons ?
Answer: (n-1) n/2

How many comparators are required (at a time)?

Answer: n/2
Reusable comparators: n-1
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Improving parallel Bubble Sort

Odd-Even Transposition Sort:

0 9 - 3§ 2 &> 7 3 & ] 5 &> 6 4
1 8 9 &= ) 7 > 1 3 &« 5§ 6 > 4
2 8 &> 2 9 &= 1] 7 <> 3 5 &> /4 6
3 2 8 = 1 9 3 7 > 4 5 € 6
4 2 &> ] 8 &> 3 9 > /4 ] <> 5 6
5 1 2 <« 3 8 = 4 9 «» 5 /] <> 6
6 1l & 2 3 & /4 8 > 5 9 > 6 7
7 1 2 <« 3 4 <> 5 8 > 6 9 = 7
8 1l «= 2 3 «— 4 5 < 6 > 9

1 2 3 4 5 6 7 8 9



void oddEvenTranspositionSort(int[] a, boolean dir) {
int n = a.length;
for (int i = @; i<n; ++i) {

for (int j = 1 % 2; j+1l<n; j+=2)

compare(a,j,j+1,dir);

spcl.inf.ethz.ch
YW @spcl_eth

ETH:zurich
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Improvement?

Same number of comparators (at a time)
Same number of comparisons
But less parallel steps (depth): n

In a massively parallel
setup, bubble sort is
thus not too bad.

But it can go better...



spcl.inf.ethz.ch 5o o
v enien ETHZUrich

How to get to a sorting network?

= |t’s complicated ©
= |n fact, some structures are clear but there is a lot still to be discovered!

" For example:

= what is the minimum number of comparators?
= \What is the minimum size? Optimal sorting networks [ edit] Source: wikipedia

For small, fixed numbers of inputs », optimal sorting networks can be constructed, with either minimal depth (for maximally

u Tra d e0ffs betwee Nt h ese two ? parallel execution) or minimal size (number of comparators). These networks can be used to increase the performance of larger

sorting networks resulting from the recursive constructions of, e.g., Batcher, by halting the recursion early and inserting optimal
nets as base cases.® The following table summarizes the known optimality results:

I 1 /2|3 |4 |5 |6 |7 |8|9|10(11|12|13|14|15|16 |17
Depth!] 0/1|3|3|5|5|6|6|7|7|8|8|9|9|9|9]/10
Size, upper bound(!!! 0 1|3 |5|9 1216|1925 29|35 |39 |45 |51 56|60 |71
Size, lower bound (if different)!**! 33 37|41 |45 49 |53 |58

The first sixteen depth-optimal networks are listed in Knuth's Art of Computer Programming,”! and have been since the 1973
edition; however, while the optimality of the first eight was established by Floyd and Knuth in the 1960s, this property wasn't
proven for the final six until 2014112 (the cases nine and ten having been decided in 1991[%]).

For one to ten inputs, minimal (i.e. size-optimal) sorting networks are known, and for higher values, lower bounds on their sizes
S(n) can be derived inductively using a lemma due to Van Voorhis: S(n + 1) = 5(n) + [log,(n)]. All ten optimal networks have

been known si ' ' ight again being known as optimal since the work of Floyd and Knuth, but optimality of the
cases n =9 affd n = 10 took until 2014 to pe resolved.[!]
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Interlude: Machine Models

RAM : Random Access Machine
* Unbounded local memory
= Each memory has unbounded capacity

Processor

= Simple operations: data, comparison, branches

= All operations take unit time —
Time complexity: number of steps executed W
Space complexity: (maximum) number of memory cells used
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Machine Models

PRAM : Parallel Random Access Machine
= Abstract machine for designing algorithms applicable for parallel computers
"= Unbounded collection of RAM processors Py, Py, ...

(Po] (P1] [P2] [P3] [P4] (P5] [P6]

= Each processor has unbounded registers
= Unbounded shared memory
= All processors can access all memory in unit time

shared

= All communication via shared memory memory
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Shared Memory Access Model

ER: processors can simultaneously read from distinct memory locations
EW: processors can simultaneously write to distinct memory locations
CR: processors can simultanously read from any memory location

CW: processors can simultaneously write to any memory location

Specification of the machine model as one of EREW, CREW, CRCW
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Example: Why the machine model can be important

Find maximum of n elements in an array A
Assume O (n?) processors and the CRCW model
Foralli € {0,1,...,n — 1} in parallel do

P;y:m; « true
Foralli,j € {0,1,...,n —1},i #j in parallel do

P;j:if A; < Aj thenm; « false
Foralli € {0,1,...,n — 1} in parallel do
Pyo:if m; = true then max <« A;

O(1) time
complexity!



spcl.inf.ethz.ch 5o o
v enien ETHZUrich

lllustration
1. Init
11412 9I \
Por Poa Py3 Poo P10 P20 Pso
P1 PZ P3
Poo P10 P20 Pso N
t t t t P12 P13 f f f t ax

\'/ concurrent writes!
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CREW

Q: How many steps does max-find require with CREW?

Using CREW only two values can be merged into a single value by one
processor at a time step: number of values that need to be merged can be
halved at each step = Requires Q(logn) steps

There are a lot of interesting theoretical results for PRAM machine models
(e.g., CRCW simulatable with EREW) and for PRAM based algorithms (e.g., cost
optimality / time optimality proofs etc). We will not go into more details here.

In the following we assume a CREW PRAM model -- and receive in retrospect a
justification for the results stated above on parallel bubble sorting.
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Parallel sorting

depth = 4 depth = 3

Prove that the two networks above sort four numbers. Easy?
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Zero-one-principle

Theorem: If a network with n input lines sorts all 2™ sequences of Os and 1s
into non-decreasing order, it will sort any arbitrary sequence of n
numbers in nondecreasing order.
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Proof

Argue: If x is sorted by a network N
then also any monotonic function of x.

e.g., floor(x/2) | 0|4 |10f15| 2|4 |mp{0|2]|4]4[10[15

Show: If x is not sorted by the network, then there is a
monotonic function f that maps x to Os and 1s and f(x)
is not sorted by the network OjO0|1]1}|0]|1 » Ojo0|1]0]1]1

x not sorted by N = thereisan f(x) € {0,1}" not sorted by N
=

f sorted by N for all f € {0,1}" = x sorted by N for all x
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Proof

Assume a monotonic function f(x) with f(x) < f(y) whenever x < y and a
network N that sorts. Let N transform (x4, x,, ..., x;,) into (y4, ¥, ..., V), then

it also transforms (f (x1), f (x2), ..., f (xn)) into (f (y1), f (¥2), -, f (V)

All comparators must act in the same way for
the f(x;) as they do for the x;

Assume y; > y;.,for some i, then consider the monotonic function

O,ifx<yi
(%) = {1,ifx2yi

=N converts
(f (1), f(x2), eoes [ () into (F (Y1), f (V2D oo f i)y fYiga)s voes f (O0))

1 0
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Bitonic Sort

Bitonic (Merge) Sort is a parallel algorithm for sorting

If enough processors are available, bitonic sort breaks the lower bound on
sorting for comparison sort algorithm

Time complexity of O(n log? n) (sequential execution)
Time complexity of O(log® n) (parallel time)
Worst = Average = Best case
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What is a Bitonic Sequence?

A 11

Sequence B 1§

|

Sequence A

Monotonic ascending sequence Monotonic descending sequence

84
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Bitonic Sets

il 1,

0 Sequence C 31

A bitonic set is defined as a set in which the sign of the gradient
changes once at most.

Sothatxy, < ---<x, =--=>x,_1,forsomek,0<k<n
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Bitonic sets - Wraparound

Value

P o
- -

9p, 8¢, 83,83, ... 8p3 854 dp. 89,82, 83, .. @p3 85

(a) Single maximum (b) Single maximum and single minimum

A bitonic sequence is defined as a list with no more than one Local
maximum and no more than one Local minimum.

86
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Bitonic (again)

Sequence (x4, X5, ..., X, ) is bitonic, if it can be circularly shifted such that
it is first monotonically increasing and then monontonically decreasing.

(1,2,3,4,5,3,1,0) (4,3,2,1,2,4,6,5)

88
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Bitonic 0-1 Sequences

0'1/0k

110/ 1k

89
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Properties

If (x1,X5,...,Xy,) is monotonically increasing (decreasing) and then
monotonically decreasing (increasing), then it is bitonic

If (xq, X5, ..., %X;,) is bitonic, then (xq, x5, ..., X)) == (X, Xy 1, on, X1) iS
also bitonic

90
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The Half-Cleaner

0 O 0
0 - 0
1 PA 1 bitonic
L 1 - 0
bitonic =~ 0 1 1 1 eemmmmmmm e e e e ===
1 @ 1
1 @
1 bitonic clean
1 - 1
0 - 1
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The Half-Cleaner

0 O 0
0 - 0
1 PA 0 bitonic clean
L 1 - 0
bitonic =~ 0 1 1 1 eemmmmmmm e e e e ===
1 @ 1
0 @
0 bitonic
0 - 1
0 - 1
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void halfClean(int[] a, int lo, int m, boolean dir)

{
for (int i=lo; i<lo+m; i++)
compare(a, i, i+m, dir);

o ©o ©o +r»r » +» O O
[
®
_ = O »r O O O O
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Binary Split: Application of the Half-Cleaner

1. Divide the bitonic list into two equal halves.

2. Compare-Exchange each item on the first half with the corresponding
item in the second half.

Bitonic sequence

-t -

3 5 8 9
Compare and N‘
exchange S e

3 4 2 1 /7 5 8 9

- -

Bitonic sequence Bitonic sequence
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Binary splits - Result

Two bitonic sequences where the numbers in one sequence are all less than
the numbers in the other sequence.

Because the original sequence was bitonic, every element in the lower half of
new sequence is less than or equal to the elements in its upper half.

Sequence D

& ’ F Y L

L == bl

l4— Bitonic Split —»}4— Bitonic Split —I-IF l# Split #}« Split #}« Split +}«& Split -br
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Bitonic Split Example

/ \f ) ( \‘[ )

bitonic bitonic Lbitonic
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Lemma

Input bitonic sequence of 0Os and 1s, then for the output of the half-cleaner it
holds that

= Upper and lower half is bitonic
" One of the two halfs is bitonic clean
= Every number in upper half < every number in the lower half
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Proof: All cases

bitonic 1

top
1
0
0
1
bottom

=

top
1
0 0
1
bottom

bitonic clean

bitonic



bitonic

top
Ol |1
L o

bottom

top
0
L 1
0
bottom
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bitonic

bitonic clean



bitonic

top
0
0 1
0

bottom

top
0
0 1
0
bottom
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bitonic clean

bitonic

100



bitonic

top

bottom

top
0
0 1
0
bottom
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bitonic clean

bitonic

101
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The four remaining cases (010 2 101)

0] m H
1 top top top top
. 0 0 ; bitonic 1 = > (1) bitonic
bitonic |© 1 » 1] |1 = bitonic 1|10 » ol41 -
0 0 1 1
1 o L bitonic clean
1 bottom bottom bitonic clean 1 bottom bottom
1 p— p—
t 1 1
o - O  bitonic clean top top ol ... .
1 1 0 bitonic
0 0 1 1 n
bitonic |0 o| Iy » ) T bitonic OF11 » 0] B K} il
of 1 1 1 .
1 bottom bottom 1 bitonic bottom bottom bitonic clean
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Construction of a Bitonic Sorting Network

bitonic

o ©oO O B = O O

half
cleaner

half
cleaner

half
cleaner

half
cleaner

half
cleaner

half
cleaner

half
cleaner

YW @spcl_eth

sorted

ETH:zurich
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Recursive Construction

104
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void bitonicMerge(int[] a, int lo, int n, boolean dir)

{
if (n>1){
int m=n/2;
halfClean(a, lo, m, dir);
bitonicMerge(a, lo, m, dir);
bitonicMerge(a, lo+m, m, dir);
}
}

bitonic
sorter (n/2)

half
cleaner

bitonic
sorter (n/2)
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Bitonic Merge

= Compare-and-exchange moves smaller numbers of each pair to left and
larger numbers of pair to right.

= Given a bitonic sequence, recursively performing ‘binary split’ will sort the

list. Bitonic sequence
3 5 8 9 7 4 2 1
Compare and \&M/‘
exchange =
3 412 1|7 5|8 9

2111347 5|89
A

VARVARVARVY

1 2 3 4 5 /7 8 9
Sorted list
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Bi-Merger
0= 0 — O—, 0
0 - 0 0 - 0
sorted 1 o 0 bitonic sorted 1 , 0 bitonic
1 I 0 A ron 1 O 0
————————— T N . - en en em e e e o e - — MONIC ™= = = e c e m e G e bk e = - - - - == == -
0 1 1—‘ 1
sorted 0 A 1 bitonic reverse 0 ‘ 0 bitonic
0 ® 0 sorted O 1
11— 1 — 0 o 1
bi-merger half-cleaner

Bi-Merger on two sorted sequences acts like a half-cleaner on a bitonic sequence (when one of the sequences is reversed)
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Merger

sorted

sorted

==

e

|

R O O O +» +» O O

|

|

bi merger

half
cleaner

half
cleaner

Merger

half
cleaner

half
cleaner

half
cleaner

half
cleaner

. sorted
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Recursive Construction of a Sorter

109
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private void bitonicSort(int a[], int lo, int n, boolean dir) {
if (n>1){
int m=n/2;
bitonicSort(a, lo, m, ASCENDING);
bitonicSort(a, lo+m, n, DESCENDING);
bitonicMerge(a, lo, n, dir);

Sorter(n/2)

Merger (n)

Sorter(n/2)
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Example

half half half
bi-merger I a
half half half
cleaner cleaner . — Cleaner
bi-merger
| N | I . ]
half half |half
cleaner
bi-merger
half half |
cleaner

Merger (2) Merger(4) Merger (8)
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Example

clegmer | - [
: z e ¢ half cer
bidmerder
n i (i
clegner — Clegmer ______ L _ Clagwer
Ri-rpergker
. ] | —— I I . ]
py 4t cl er
bi-inerger leane
f ] | —— ’ — e
h _
clegmer ale L] cledner
. ] | —— . [ | )

Merger (2) Merger(4) Merger (8)
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Bitonic Merge Sort

How many steps?

H#mergers
logn logn | (l N 1)
: ogn-(10gn
Z log 2t = z ilog2 = 5 Zg = 0(log?n)
=1 =1
#steps /

merger



