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class AccountSTM {
private final Integer id; // account id
private final Ref.View<Integer> balance;

AccountSTM(int id, int balance) {
this.id = new Integer(id);
this.balance = STM.newRef(balance);

}

}

Bank account (ScalaSTM)
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void withdraw(final int amount) {
// assume that there are always sufficient funds...
atomic {

int old_val = balance.get();
balance.set(old_val – amount);

}
}

void deposit(final int amount) {
atomic { 

int old_val = balance.get();
balance.set(old_val + amount);

}
}

Ideal world: bank account using atomic keyword

3
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void withdraw(final int amount) {
// assume that there are always sufficient funds...
STM.atomic(new Runnable() { public void run() {

int old_val = balance.get();
balance.set(old_val – amount);

}});
}

void deposit(final int amount) {
STM.atomic(new Runnable() { public void run() { 

int old_val = balance.get();
balance.set(old_val + amount);

}});
}

4

Real world: bank account  in ScalaSTM
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public int getBalance() {

int result = STM.atomic(

new Callable<Integer>() {

public Integer call() {

int result = balance.get();

return result;

}

});

return result;

}

GetBalance (return a value)
"a

to
m

ic
"
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What if account a does not have enough funds?

How can we wait until it does in order to retry the transfer?

locks  →  conditional variables

TM → retry

static void transfer(final AccountSTM a,
final AccountSTM b,
final int amount) {

atomic {
a.withdraw(amount);
b.deposit(amount);

}
}

Bank account transfer
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static void transfer_retry(final AccountSTM a,
final AccountSTM b,
final int amount) {

atomic {
if (a.balance.get() < amount)

STM.retry();
a.withdraw(amount);
b.deposit(amount);

}
}

retry: abort the transaction and retry when conditions change

Bank account transfer with retry
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static void transfer_retry(final AccountSTM a,
final AccountSTM b,
final int amount) {

atomic {
if (a.balance.get() < amount)

STM.retry();
a.withdraw(amount);
b.deposit(amount);

}
}
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Implementations need to track what reads/writes a transaction performed 
to detect conflicts

 Typically called read-/write-set of a transaction

 When retry is called, transaction aborts and will be retried when any of the variables 
that were read, change

 In our example, when a.balance is updated, the transaction will be retried

How does retry work?

8
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Ingredients

Threads that run transactions with thread states
 active

 aborted

 committed

Objects representing state stored in memory (the variables affected by a transaction)

 offering methods like a constructor, read (get), write (set)

 and copy!

Simplest STM Implementation

12
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Clock-based STM System

global
clock

Transaction A
birthdate

Transaction B
birthdate

Transaction C
commits

increases

read at start read at start

13
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Each transaction uses a local read-set and a local write-set holding all locally 
read and written objects.

Transaction calls read

- check if the object is in the write set  return this (new) version

- otherwise check if object's time stamp ≤ transaction's birthdate, if not throw 
aborted exception, otherwise add new copy of the object to the read set

Transaction calls write

- if object is not in write set, create a copy of it in the write set

Atomic Objects

atomic memory object

version
reference

time
stamp

14
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Transaction life time

time

birthdate of T

X.date Y.date Z.date

T reads Y T reads X T reads Z

read set of T

15
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 Lock all objects of read- and write-set (in some defined order to avoid 
deadlocks)

 Check that all objects in the read set provide a time stamp ≤ birthdate of the 
transaction, otherwise return "abort"

 Increment and get the value T of current global clock

 Copy each element of the write set back to global memory with timestamp T

 Release all locks and return "commit"

Commit

16
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Successful commit

time

birthdate of T

X.date Y.date Z.date

T reads Y T reads X

T writes Y
(local copy!)

T writes X
(local copy!)

T commits

read set of T

write set of T

17
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Aborted commit

time

birthdate of T

X.date Y.date Z.date

T reads Y T reads X

T writes Y
(local copy!)

T writes Z
(local copy!)

T commits

read set of T

18

write set of T
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● 5 philosophers

● 5 forks

● each philosopher requires 2 forks to eat

● forks cannot be shared

Dining philosophers

image source: Wikipedia
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Philosopher:

● think

● lock left

● lock right

● eat

● unlock right

● unlock left

Solution that can lead to deadlock

P1 takes F1, P2 takes F2, P3 takes F3, P4 takes F4, P5 takes F5

→ Deadlock

20
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private static class Fork {
public final Ref.View<Boolean> inUse = STM.newRef(false);

}

class PhilosopherThread extends Thread {
private final int meals;
private final Fork left;
private final Fork right;

public PhilosopherThread(Fork left, Fork right) {
this.left = left;
this.right = right;

}

public void run() { … }
}

21

Dining Philosophers Using TM
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Fork[] forks = new Fork[tableSize];

for (int i = 0; i < tableSize; i++)
forks[i] = new Fork();

PhilosopherThread[] threads = new PhilosopherThread[tableSize];

for (int i = 0; i < tableSize; i++)
threads[i] = new PhilosopherThread(forks[i], 

forks[(i + 1) % tableSize]);

Dining Philosophers Using TM

22
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class PhilosopherThread extends Thread {
… 

public void run() {
for (int m = 0; m < meals; m++) {

// THINK
pickUpBothForks();
// EAT
putDownForks();

}
}

… 
}       

Dining Philosophers Using TM
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class PhilosopherThread extends Thread {
… 

private void pickUpBothForks() {
STM.atomic(new Runnable() { public void run() {

if (left.inUse.get() || right.inUse.get())
STM.retry();

left.inUse.set(true);
right.inUse.set(true);

}});
}

… 
}       

Dining Philosophers Using TM
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class PhilosopherThread extends Thread {
… 

private void putDownForks() {
STM.atomic(new Runnable() { public void run() {

left.inUse.set(false);
right.inUse.set(false);

}});

}
… 

}

Dining Philosophers Using TM

25
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 It is not clear what are the best semantics for transactions

 Getting good performance can be challenging

 I/O operations (e.g., print to screen)
Can we perform I/O operations in a transaction?

Issues with transactions

26
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● Locks are too hard!

● Transactional Memory tries to remove the burden from the programmer

● STM / HTM

● Remains to be seen whether it will be widely adopted in the future

Summary

27
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Simon Peyton Jones, 
Beautiful concurrency
http://research.microsoft.com/pubs/74063/beautiful.pdf

Dan Grossman,
The Transactional Memory / Garbage Collection Analogy
https://homes.cs.washington.edu/~djg/papers/analogy_oopsla07.pdf

Additional Reading

28

http://research.microsoft.com/pubs/74063/beautiful.pdf
https://homes.cs.washington.edu/~djg/papers/analogy_oopsla07.pdf
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Distributed Memory
& Message Passing

29
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Considered

 Parallel / Concurrent

 Fork-Join / Threads

 OOP on Shared Memory

 Locking / Lock Free / Transactional

 Semaphores / Monitors

30

So far
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Many of the problems of parallel/concurrent programming come from sharing 
state

 Complexity of locks, race conditions, ….

What if we avoid sharing state?

31

Sharing State
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Functional Programming

 Immutable state  no synchronization required 

Message Passing: Isolated mutable state

 State is mutable, but not shared: Each thread/task has its private state

 Tasks cooperate via message passing

32

Alternatives
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Programming Models

 CSP: Communicating Sequential Processes

 Actor programming model

Framework/library

 MPI (Message Passing Interface)

33

Concurrent Message Passing
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Shared vs Distributed memory

CPU CPU CPU

Mem

CPU CPU CPU

Mem Mem Mem

Interconnect Network
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Isolated mutable state

state state

state

Mutable (private) state
Tasks exchange messages
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Example: Shared state counting

counter

.inc()

.get()
.inc()
.get()

.inc()

.get()

.inc()

.get()

→ shared state must be protected (lock/atomic counter)
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Isolated mutability: counting

.inc()

Local cnt

.inc()

Local cnt

.inc()

Local cnt

.inc()

Local cnt
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Isolated mutability: accessing count

Local cnt Local cnt Local cnt

.get()

Local cnt
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Bank account
– Sequential programming

● Single balance

– Parallel programming: sharing state

● Single balance + protection

– Parallel programming: distributing state

● Each thread has a local balance (a budget)

● Threads exchange amounts at coarse granularity

39

Rethinking managing state
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Total  balance: 100 + 300 + 150 = 550

 Each task can operate independently

 And communicate with other tasks only when needed
 This lecture: via messaging

40

Distributed Bank account

100 300 150
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Synchronous:
– sender blocks until message is received

Asynchronous:
– sender does not block (fire-and-forget)

– placed into a buffer for receiver to get

41

Synchronous vs Asynchronous messages



spcl.inf.ethz.ch

@spcl_eth

Actor = Computational agent that maps

communication to
 a finite set of communications sent to other actors 

(messages)

 a new behavior (state)

 a finite set of new actors created (dynamic 
reconfigurability)

 Undefined global ordering

 Asynchronous Message Passing

 Invented by Carl Hewitt 1973**

42

The Actor Model*

*Gul Agha (1986). Actors: A Model of Concurrent Computation in Distributed Systems. Doctoral Dissertation. MIT Press
**Carl Hewitt; Peter Bishop and Richard Steiger (1973). A Universal Modular Actor Formalism for Artificial Intelligence. IJCAI.

Actor

Thread

State

Mailbox
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Actor model provides a dynamic interconnection topology

 dynamically configure the graph during runtime (add channels)

 dynamically allocate resources

An actor sends messages to other actors using "direct naming", without 
indirection via port / channel / queue / socket (etc.)

Implemented in various languages such as Erlang, Scala, Ruby and in 
frameworks such as Akka (for Scala and Java)

43

The Actor Model
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Typically actors react to messages

 Event-driven model

A program is written as a set of event handlers for events
(events can be seen as received messages)

Example: Graphical User Interface

 user presses OK button → …

 user presses Cancel button → …

 …

44

Event-driven programming model
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Functional Programming Language

 code might look unconventional at first

Developed by Ericsson for distributed fault-
tolerant applications

 if no state is shared, recovering from 
errors becomes much easier

Open source

Concurrent, follows the actor model

45

Example: Erlang
-module(pingpong).
-export([start/1,  ping/2, pong/0]).

ping(0, Pong_Node) ->
{pong, Pong_Node} ! finished,
io:format("ping finished~n", []);

ping(N, Pong_Node) ->
{pong, Pong_Node} ! {ping, self()},
receive

pong ->
io:format("Ping received pong~n", [])

end,
ping(N - 1, Pong_Node).

pong() ->
receive

finished ->
io:format("Pong finished~n", []);

{ping, Ping_PID} ->
io:format("Pong received ping~n", []),
Ping_PID ! pong,
pong()

end.

start(Ping_Node) ->
register(pong, spawn(pingpong, pong, [])),
spawn(Ping_Node, pingpong, ping, [3, node()]).
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start() ->
Pid = spawn(fun() -> hello() end),

Pid ! hello,
Pid ! bye.

hello() ->
receive

hello ->
io:fwrite("Hello world\n"),

hello();
bye ->

io:fwrite("Bye cruel world\n"),
ok

end.

46

Erlang example

Messages sent to a task are put in a 
mailbox

Receive reads the first message in the 
mailbox, which is matched against 
patterns (similar to a switch statement)

Event-driven programming:
code is structured as reactions to events

new task (actor)  that will execute the hello function 
spawn returns address (Pid) of new task

Address (Pid) can be used to send messages to 
task
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● Forward received messages to a set of nodes in a round-robin fashion

47

Actor example: distributor

1

1

223

3

4

4
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State:
– an array of actors

– the array index of the next actor to forward a message

Receive:
– messages → forward message and increase index (mod)

– control commands (e.g., add/remove actors)

48

Actor example: distributor
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Actor example: serializer

1

1

2 2 3

3

4

4

serializer 1234

unordered

ordered
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State:
– a sorted list of items we have received

– the last item we forwarded

50

Actor example: serializer

10 12 14 16 17

last item sorted list of pending items
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Receive: If we receive an item that is larger than the last item plus one:
– add it to the sorted list

51

Actor example: serializer

10 12 14 16 17

10 12 13 14 16 17

Example: receive 13

old state:

new state:
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● Receive: If we receive an item that is equal to the last item plus one:
– send the received item plus all consecutive items from the list

– reset the last item

52

Actor example: serializer

10

14 16 17

Example: receive 11
send

1112

12 13 14 16 17

14 13

old state:

new state:
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Sir Charles Antony Richard Hoare  (aka C.A.R. / Tony Hoare) 

Formal language defining a process algebra for concurrent systems.

Operators seq (sequential) and par (parallel) for the hierarchical composition of 
processes.

Synchronisation and Communication between parallel processes with Message 
Passing.

 Symbolic channels between sender and receiver

 Read and write requires a rendezvouz (synchronous!)

CSP was first implemented in Occam.

55

Communicating Sequential Processes (1978, 1985)
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 Many message passing architectures (such as CSP) include an intermediary 
entity (port / channel) to address send destination

 Process issuing send() specifies the port to which the message is sent

 Process issuing receive() specifies a port number and waits for the first 
message that arrives at the port 

56

CSP: Indirect Naming

process
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Conway's Problem

 Write a program that transforms a series of cards with 80-character columns 
in a series of printing lines with 125 characters each. Replace each "**" by 
"^"

 Separation into processes (Threads)
R par C par P
 R: Reading process reading 80-character records

 C: Converting process converting "**" into "^"

 P: Printing process: write records with 125 characters

57

CSP Example (from Hoare's seminal Paper)

C PR

Channel c Channel d
c!x c?x d!x d?x
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[west :: DISASSEMBLE] || X :: SQUASH || east :: ASSEMBLE]

SQUASH
X :: 
*[c:character; west?c 

[c # asterisk  east!c
|c = asterisk  west?c;

[c # asterisk  east!asterisk; east!c
|c = asterisk  east!upward arrow
]

]
]

58

CSP Example (from Hoare's seminal Paper)

Repetition of guarded 
command

Guarded receive

Blocking send

Guarded alternatives

SQUASHwest east
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First programming language to implement CSP (1983)

ALT
count1 < 100 & c1 ? data

SEQ
count1 := count1 + 1
merged ! data

count2 < 100 & c2 ? data
SEQ
count2 := count2 + 1
merged ! data

status ? request
SEQ
out ! count1
out ! count2

59

OCCAM
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Concurrent programming language from Google

Language support for:

– Lightweight tasks (called goroutines)

– Typed channels for task communications

● channels are synchronous (or unbuffered) by default

● support for asynchronous (buffered) channels

Inspired by CSP
Language roots in Algol Family: Pascal, Modula, Oberon [Prof. Niklaus Wirth, ETH]
[One of the inventors, Robert Griesemer: PhD from ETH]

60

Go programming language
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func main() {

msgs := make(chan string)
done := make(chan bool)

go hello(msgs, done);

msgs <- "Hello"
msgs <- "bye"

ok := <-done

fmt.Println("Done:", ok);
}

func hello(msgs chan string,
done chan bool) {

for {
msg := <-msgs
fmt.Println("Got:", msg)

if msg == "bye" {
break

}
}

done <- true;
}

61

Go example
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func main() {

msgs := make(chan string)
done := make(chan bool)

go hello(msgs, done);

msgs <- "Hello"
msgs <- "bye"

ok := <-done

fmt.Println("Done:", ok);
}

func hello(msgs chan string,
done chan bool) {

for {
msg := <-msgs
fmt.Println("Got:", msg)

if msg == "bye" {
break

}
}

done <- true;
}

62

Go example

Create two channels:
●msgs: for strings
●done: for boolean values
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func main() {

msgs := make(chan string)
done := make(chan bool)

go hello(msgs, done);

msgs <- "Hello"
msgs <- "bye"

ok := <-done

fmt.Println("Done:", ok);
}

func hello(msgs chan string,
done chan bool) {

for {
msg := <-msgs
fmt.Println("Got:", msg)

if msg == "bye" {
break

}
}

done <- true;
}

63

Go example

Create a new task (goroutine), 
that will execute function 
hello with the given 
arguments
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func main() {

msgs := make(chan string)
done := make(chan bool)

go hello(msgs, done);

msgs <- "Hello"
msgs <- "bye"

ok := <-done

fmt.Println("Done:", ok);
}

func hello(msgs chan string,
done chan bool) {

for {
msg := <-msgs
fmt.Println("Got:", msg)

if msg == "bye" {
break

}
}

done <- true;
}

64

Go example
Hello takes two channels as 
arguments for communication
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func main() {

msgs := make(chan string)
done := make(chan bool)

go hello(msgs, done);

msgs <- "Hello"
msgs <- "bye"

ok := <-done

fmt.Println("Done:", ok);
}

func hello(msgs chan string,
done chan bool) {

for {
msg := <-msgs
fmt.Println("Got:", msg)

if msg == "bye" {
break

}
}

done <- true;
}

65

Go example

Write arguments to msgs
channel

Read result via done channel
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func t(in chan string, done chan bool) {
m := <-in                       // receive from in channel
fmt.Println("Got message:", m); // print received message
done <- true // send true to done channel

}

func main() {
c    := make(chan string) // create a string channel
done := make(chan bool)   // create a boolean channel

go t(c,done) // spawn goroutine

ok := <-done                // receive from done channel
fmt.Println("Got ok:", ok); // print  ok
c <- "Hello" // send hello to channel c

}

66

Q: what will happen in this program?

A: 
fatal error: all 
goroutines are 
asleep - deadlock!
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Each station removes multiples of the first element received and passes on the 
remaining elements to the next station

67

Example: Concurrent prime sieve

G F2 F3 F5

... 9 8 7 6 5 4 3 2 .... 9 7 5 3 ... 7 5 ... 7
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func main() {

ch := make(chan int)

go Generate(ch)

for i := 0; i < 10; i++ {

prime := <-ch

fmt.Println(prime)

ch1 := make(chan int)

go Filter(ch, ch1, prime)

ch = ch1

}

}

68

Concurrent prime sieve

source code from golang.org

func Generate(ch chan<- int) {

for i := 2; ; i++ {

ch <- i 

}

}

func Filter(in <-chan int, out chan<- int, prime int) {

for {

i := <-in // Receive value from 'in'.

if i%prime != 0 {

out <- i // Send 'i' to 'out'.

}

}

}

G F2 F3 F5

... 7 6 5 4 3 2 .... 7 5 3 ... 7 5 ... 7

G
Fprime
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Message Passing Interface (MPI)

71
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Message passing libraries:

 PVM (Parallel Virtual Machines) 1980s

 MPI (Message Passing Interface) 1990s

MPI = Standard API

• Hides Software/Hardware details

• Portable, flexible

• Implemented as a library

72

Message Passing Interface (MPI)

Program

MPI library

Standard 
TCP/IP

Standard 
Network 

HW

Specialized 
Driver

Custom 
Network 

HW
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 MPI processes can be collected into groups
 Each group can have multiple colors (some times called context)

 Group + color == communicator (it is like a name for the group)

 When an MPI application starts, the group of all processes is initially given a predefined 
name called  MPI_COMM_WORLD

 The same group can have many names, but simple programs do not have to worry about multiple names

 A process is identified by a unique number within each communicator, called 
rank
 For two different communicators, the same process can have two different ranks: so the 

meaning of a “rank” is only defined when you specify the communicator

Process Identification
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 Defines the communication domain of a communication operation: set of 
processes that are allowed to communicate with each other.

 Initially all processes are in the communicator MPI_COMM_WORLD.

 The rank of processes are associated with (and unique within) a 
communicator, numbered from 0 to n-1

74

MPI Communicators

P1 P2 P3 P4

P1 P2 P3 P4

c1 c2 c3

MPI_COMM_WORLD
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Communicators

When you start an MPI 
program, there is one 

predefined communicator 
MPI_COMM_WORLD

Can make copies of this 
communicator (same group of 

processes, but different 
“aliases”)

Communicators do not 
need to contain all 

processes in the system

Every process in a 
communicator has an ID 

called as “rank”

1 2 3 4

5 6 7 8

3 4

5 6

1 2

7 8

The same process might have different 
ranks in different communicators

Communicators can be created “by hand” or using tools

Simple programs typically only use the predefined communicator MPI_COMM_WORLD 

(which is sometimes considered bad practice)

mpiexec -np 16  ./test
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Processes are identified by nonnegative integers, called ranks

p processes are numbered 0, 1, 2, .. p-1

76

Process Ranks

public static void main(String args []) throws Exception {
MPI.Init(args);
// Get total number of processes (p)
int size = MPI.COMM_WORLD.Size();
// Get rank of current process (in [0..p-1])
int rank = MPI.COMM_WORLD.Rank();
MPI.Finalize();

}
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Single Program

Multiple Data 
(Multiple Instances)

77

SPMD

if (rank == 0)
do this

else
do that

if (rank == 0)
do this

else
do that

P0

if (rank == 0)
do this

else
do that

P1

if (rank == 0)
do this

else
do that

P2

if (rank == 0)
do this

else
do that

P3

we compile 
one program

the if-else 
makes it 

SPMD



spcl.inf.ethz.ch

@spcl_eth

void Comm.Send( communicator

Object buf, pointer to data to be sent

int offset, 

int count, number of items to be sent

Datatype datatype, data type of items, must be explicitely specified

int dest, destination process id

int tag data id tag

)

78

Communication

int int int int int int

offset

count * sizeof(int)
buf array

from MPJ Spec



spcl.inf.ethz.ch

@spcl_eth

Parallel Sort using MPI Send/Recv

8 23 19 67 45 35 1 24 13 30 3 5

8 19 23 35 45 67 1 3 5 13 24 30

Rank 0 Rank 1

8 19 23 35 3045 67 1 3 5 13 24

sort in parallel 
O(N log N)

1 3 5 8 6713 19 23 24 30 35 45

Rank 0

Rank 0

Rank 0
merge in O(N)

send in O(N)

send in O(N)
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network

 Communicating processes may need to send several messages between each 
other.

 Message tag: differentiate between different messages being sent.

80

Message Tags

P1 P2

msg 1

msg 2

msg 3
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Message matching

q r

sender 
communicator

sender tag dest = rSend

receiver 
communicator

receiver tag source = qReceive
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A receiver can get a message without knowing:
 the amount of data in the message,

 the sender of the message,

 or the tag of the message.

82

Receiving messages

MPI_ANY_TAG

MPI_ANY_SOURCE

void Comm.Recv( communicator

Object buf, pointer to the buffer to receive to

int offset, 

int count, number of items to be received

Datatype datatype, data type of items, must be explicitely specified

int src, source process id or MPI_ANY_SOURCE

int tag data id tag or MPI_ANY_TAG

)
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Synchronous send (Ssend)

• waits until complete message can be accepted by receiving process before
completing the send

Synchronous receive (Recv)

• waits until expected message arrives

Synchronous routines can perform two actions

• transfer data

• synchronize processes

83

Synchronous Message Passing

P R

send

ready



spcl.inf.ethz.ch

@spcl_eth

Send does not wait for actions to complete before returning

• requires local storage for messages
sometimes explicit (programmer needs to care)

sometimes implicit (transparent to the programmer)

In general 

• no synchronisation 

• allows local progress

84

Asynchronous Message Passing

S R
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Blocking: return after local actions are complete, though the message transfer 
may not have been completed

Non-blocking: return immediately

• sometimes assumes that data storage to be used for transfer is not modified 
by subsequent statements until transfer complete

• sometimes implementation dependent local buffers are or have to be 
provided

85

Blocking / Nonblocking

S R
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A Non-Blocking communication example

P0

P1

Blocking 
Communication

P0

P1

Non-blocking 
Communication
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Synchronous / Asynchronous

 about communication between sender and receiver

Blocking / Nonblocking

 about local handling of data to be sent / received

87

Synchronous / Asynchronous vs Blocking / Nonblocking
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Send

• blocking, 

• synchrony implementation dependent 

 depends on existence of buffering, performance considerations etc

Recv

• blocking

88

MPI Send and Receive Defaults

Danger of Deadlocks.
Don’t make any assumptions!

There are a lot of 
different variations of 
this in MPI.
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 Send a large message from process 0 to process 1
 If there is insufficient storage at the destination, the send must wait for the user to provide the memory space 

(through a receive)

 What happens with this code?

89

Sources of Deadlocks

Process 0

Send(1)

Recv(1)

Process 1

Send(0)

Recv(0)

• This is called “unsafe” because it depends on the availability of 
system buffers in which to store the data sent until it can be received 
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 Order the operations more carefully:

90

Some Solutions to the “unsafe” Problem

• Supply receive buffer at same time as send:

Process 0

Send(1)

Recv(1)

Process 1

Recv(0)

Send(0)

Process 0

Sendrecv(1)

Process 1

Sendrecv(0)
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 Supply own space as buffer for send

91

More Solutions to the “unsafe” Problem

• Use non-blocking operations:

Process 0

Bsend(1)

Recv(1)

Process 1

Bsend(0)

Recv(0)

Process 0

Isend(1)

Irecv(1)

Waitall

Process 1

Isend(0)

Irecv(0)

Waitall
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 Many parallel programs can be written using just these six functions, only two of which are non-trivial:

 MPI_INIT – initialize the MPI library (must be the first routine called)

 MPI_COMM_SIZE - get the size of a communicator

 MPI_COMM_RANK – get the rank of the calling process in the communicator

 MPI_SEND – send a message to another process

 MPI_RECV – send a message to another process

 MPI_FINALIZE – clean up all MPI state (must be the last MPI function called by 

a process)

 For performance, however, you need to use other MPI features

MPI is Simple
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 The irrational number Pi has many digits
 And it’s not clear if they’re randomly distributed!

 But they can be computed

93

Example: compute Pi

for(int i=0; i<numSteps; i++) {
double x=(i + 0.5) * h;
sum += 4.0/(1.0 + x*x);

}
double pi=h * sum ;
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Pi’s parallel version MPI.Init(args);
… // declare and initialize variables (sum=0 etc.)
int size = MPI.COMM_WORLD.Size();
int rank = MPI.COMM_WORLD.Rank();

for(int i=rank; i<numSteps; i=i+size) {
double x=(i + 0.5) * h;
sum += 4.0/(1.0 + x*x);

}

if (rank != 0) {
double [] sendBuf = new double []{sum};
// 1-element array containing sum
MPI.COMM_WORLD.Send(sendBuf, 0, 1, MPI.DOUBLE, 0, 10);

}
else { // rank == 0

double [] recvBuf = new double [1] ;
for (int src=1 ; src<P; src++) {

MPI.COMM_WORLD.Recv(recvBuf, 0, 1, MPI.DOUBLE, src, 10);
sum += recvBuf[0];

}
}
double pi = h * sum; // output pi at rank 0 only!
MPI.Finalize();
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COLLECTIVE COMMUNICATION

95
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Up to here: point-to-point communication

MPI also supports communications among groups of processors

• not absolutely necessary for programming (but very nice!)

• but essential for performance

Examples: broadcast, gather, scatter, reduce, barrier, …

96

Group Communication
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Collective Computation - Reduce

P0

P1

P2

P3

P0

P1

P2

P3

A

B

D
C

A
B

D
C

A+B+C+D

A

A+B

A+B+C

A+B+C+D

Reduce

Scan

root = rank 0

public void Reduce(java.lang.Object sendbuf,
int sendoffset,
java.lang.Object recvbuf,
int recvoffset,
int count,
Datatype datatype,
Op op,
int root)
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Reduce implementation: a tree-structured global sum

1. In the first phase: 
(a) Process 1 sends to 0, 3 sends to 
2, 5 sends to 4, and 7 sends to 6. 
(b) Processes 0, 2, 4, and 6 add in 
the received values. 

2. Second phase:
(c) Processes 2 and 6 send their new 
values to processes 0 and 4, 
respectively.
(d) Processes 0 and 4 add the 
received values into their new 
values.

3. Finally:
(a) Process 4 sends its newest value 
to process 0.
(b) Process 0 adds the received 
value to its newest value.
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Collective Data Movement - Broadcast

A
A

A
A

Broadcast
AP0

P1

P2

P3
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Collective Computation - Allreduce

P0

P1

P2

P3

A
B

D
C

A+B+C+D

A+B+C+D

A+B+C+D

A+B+C+D

Allreduce

public void Allreduce(java.lang.Object sendbuf,
int sendoffset,
java.lang.Object recvbuf,
int recvoffset,
int count,
Datatype datatype,
Op op)

Useful in a situation in which all of the processes need the result of a global sum in order to 
complete some larger computation.
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Allreduce = Reduce + Broadcast?

A global sum followed
by distribution of the
result.Q: What is the number 

of steps needed?
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Allreduce ≠ Reduce + Broadcast

A butterfly-structured global sum.

Q: What is the number 
of steps needed?
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Collective Data Movement – Scatter/Gather

A
B

D
C

B C D Scatter

Gather

AP0

P1

P2

P3

 Scatter can be used in a function that reads in an entire vector on process 0 but only 
sends the needed components to each of the other processes.

 Gather collects all of the components of the vector onto destination process, then 
destination process can process all of the components.
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More Collective Data Movement – some more (16 functions total!)

A

B

D

C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

A B C D

A B C D

A B C D

A B C D

Allgather

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3
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Compute 𝒚 = 𝑨 ⋅ 𝒙 , e.g., 𝐴 =
1 2 3
4 5 6
7 8 9

𝑥 =
10
20
30

y =

𝐴1⋅ ⋅ 𝑥
𝐴2⋅ ⋅ 𝑥
𝐴3⋅ ⋅ 𝑥

105

Matrix-Vector-Multiply

P0 10 20 30 P0 10 20 30

P1 10 20 30

P2 10 20 30

1. Broadcast x
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Compute 𝒚 = 𝑨 ⋅ 𝒙 , e.g. 𝐴 =
1 2 3
4 5 6
7 8 9

𝑥 =
10
20
30

y =

𝐴1⋅ ⋅ 𝑥
𝐴2⋅ ⋅ 𝑥
𝐴3⋅ ⋅ 𝑥
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Matrix-Vector-Multiply

2. Scatter A

P0 

1 2 3 P0 1 2 3

P1 4 5 6

P2 7 8 9

4 5 6

7 8 9
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Compute 𝒚 = 𝑨 ⋅ 𝒙 , e.g. 𝐴 =
1 2 3
4 5 6
7 8 9

𝑥 =
10
20
30

y =

𝐴1⋅ ⋅ 𝑥
𝐴2⋅ ⋅ 𝑥
𝐴3⋅ ⋅ 𝑥
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Matrix-Vector-Multiply

3. Compute locally

P0 1 2 3

P1 4 5 6

P2 7 8 9

10 20 30

10 20 30

10 20 30

140

320

500

=

=

=
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Compute 𝒚 = 𝑨 ⋅ 𝒙 , e.g. 𝐴 =
1 2 3
4 5 6
7 8 9

𝑥 =
10
20
30

y =

𝐴1⋅ ⋅ 𝑥
𝐴2⋅ ⋅ 𝑥
𝐴3⋅ ⋅ 𝑥
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Matrix-Vector-Multiply

4. Gather result y

P0 140 320 500

P0 140

P1 320

P2 500



spcl.inf.ethz.ch

@spcl_eth

Assume we want to apply the matrix-vector product iteratively 

𝑦𝑛 = 𝐴 𝑦𝑛−1

Example Application: 
Eigenvalue Problem for Probability Matrix, as used in Google's Pagerank algorithm.

Then each process needs the results of other processes after one step.

 Need for Gather + Broadcast in one go.

109

Iterations
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Visualizing Program Behavior
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 The de-facto interface for distributed parallel computing (nearly 100% 
market share in HPC)

 Elegant and simple interface
 Definitely simpler than shared memory (no races, limited conflicts, avoid deadlocks 

with nonblocking communication)

 We only covered the basics here, MPI-3.1 (2015) has 600+ functions
 More concepts:

Derived Datatypes

Process Topologies

Nonblocking and neighborhood collectives

One-sided accesses (getting the fun of shared memory back …)

Profiling interfaces

…
111

MPI conclusion


