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How the fourth variant works

A fourth variant of the data-leaking Meltdown-Spectre security flaws in  variant 4 is referred to as a speculative store bypass. It is yet another
modern processors has been found by Microsoft and Google “wait, why didn't | think of that?" design oversight in modern out-of-order-
researchers. execution engineering. And it was found by Google Project Zero's Jann
Horn, who helped uncover the earlier Spectre and Meltdown bugs, and
Ken Johnson of Microsoft.

It hinges on the fact that when faced with a bunch of software instructions
that store data to memory, the CPU will look far ahead to see if it can
execute any other instructions out of order while the stores complete.
Writing to memory is generally slow compared to other instructions. A
modern fast CPU won't want to be held up by store operations, so it looks
ahead to find other things to do in the meantime.

If the processor core, while looking ahead in a program, finds an
instruction that loads data from memory, it will predict whether or not this
load operation is affected by any of the preceding stores. For example, if
a store is writing to memory that a later load fetches back from memary,
you'll want the store to complete first. If a load is predicted ta be safe to
run ahead of the pending stores, the processor executes it speculatively
while other parts of the chip are busy with other code.
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Bank account (ScalaSTM)

class AccountSTM {
private final Integer id; // account 1id
private final Ref.View<Integer> balance;

AccountSTM(int id, int balance) {
this.id = new Integer(id);
this.balance = STM.newRef(balance);
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Ideal world: bank account using atomic keyword

void withdraw(final int amount) {
// assume that there are always sufficient funds...
atomic
int old val = balance.get();
balance.set(old val - amount);

¥

void deposit(final int amount) {
atomic {
int old val = balance.get();
balance.set(old val + amount);
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Real world: bank account in ScalaSTM

void withdraw(final int amount) {
// assume that there are always sufficient funds...
STM.atomic(new Runnable() { public void run() {
int old val = balance.get();
balance.set(old val - amount);

1)
}

void deposit(final int amount) {
STM.atomic(new Runnable() { public void run() ({
int old val = balance.get();
balance.set(old val + amount);

1)
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GetBalance (return a value)

public int getBalance() ({
int result = STM.atomic(
new Callable<Integer>() {
public Integer call() {
int result = balance.get();
return result;

"atomic"

}
1)

return result;
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Bank account transfer

static void transfer(final AccountSTM a,

final AccountSTM b,
final int amount) {

atomic {
a.withdraw(amount);
b.deposit(amount);
}

¥

What if account a does not have enough funds?

How can we wait until it does in order to retry the transfer?
locks & conditional variables

TM - retry
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Bank account transfer with retry

static void transfer retry(final AccountSTM a,
final AccountSTM b,
final int amount) {

atomic {
if (a.balance.get() < amount)
STM.retry();
a.withdraw(amount);
b.deposit(amount);

retry: abort the transaction and retry when conditions change
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How does retry work?

Implementations need to track what reads/writes a transaction performed
to detect conflicts

= Typically called read-/write-set of a transaction

= When retry is called, transaction aborts and will be retried when any of the variables
that were read, change

= |n our example, when a.balance is updated, the transaction will be retried
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Simplest STM Implementation

Ingredients

Threads that run transactions with thread states
= active
=" aborted
= committed

Objects representing state stored in memory (the variables affected by a transaction)

= offering methods like a constructor, read (get), write (set)
= and copy!
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Clock-based STM System

Transaction A Transaction B

birthdate Qrt read at start birthdate

global
clock

Transaction C increases

commits
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Atomic Objects

Each transaction uses a local read-set and a local write-set holding all locally
read and written objects. atomic memory object

Transaction calls read --
- check if the object is in the write set = return this (new) version

- otherwise check if object's time stamp < transaction's birthdate, if not throw
aborted exception, otherwise add new copy of the object to the read set

Transaction calls write
- if object is not in write set, create a copy of it in the write set
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Transaction life time

/!
read setof T

birthdate of T @ T reads X E

time

X.date Y.date Z.date

t / —

15
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Commit

= Lock all objects of read- and write-set (in some defined order to avoid
deadlocks)

= Check that all objects in the read set provide a time stamp < birthdate of the
transaction, otherwise return "abort"

" |ncrement and get the value T of current global clock
"= Copy each element of the write set back to global memory with timestamp T
= Release all locks and return "commit"
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Successful commit

~ read setof T \

birthdate of T TreadsY T reads X T commits

T writes X
(local copy!)

T writes Y

X.date Y.date Z.date
(local copy!)

f ~ write set of T

17
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Aborted commit

~ read setof T \

birthdate of T TreadsY T reads X T commits ;

T writes Z
(local copy!)

T writes Y

X.date Y.date Z.date
(local copy!)

f ”~ write setof T

18
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Dining philosophers

5 philosophers
5 forks
each philosopher requires 2 forks to eat

forks cannot be shared

image source: Wikipedia

19
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Solution that can lead to deadlock

Philosopher:

think

lock left
lock right
eat

unlock right
unlock left

P, takes F,, P, takes F,, P, takes F;, P, takes F,, P takes F.
—> Deadlock
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Dining Philosophers Using TM

private static class Fork {
public final Ref.View<Boolean> inUse = STM.newRef(false);
}

class PhilosopherThread extends Thread {
private final int meals;
private final Fork left;
private final Fork right;

public PhilosopherThread(Fork left, Fork right) {
this.left = left;
this.right = right;

}

public void run() { .. }
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Dining Philosophers Using TM

Fork[] forks = new Fork[tableSize];

for (int i = 0; 1 < tableSize; i++)
forks[i] = new Fork();

PhilosopherThread[] threads = new PhilosopherThread[tableSize];

for (int 1 = 0; 1 < tableSize; i++)
threads[i] = new PhilosopherThread(forks[i],
forks[(i + 1) % tableSize]);



Dining Philosophers Using TM
class PhilosopherThread extends Thread {

public void run() {
for (int m = 9; m < meals; m++) {
// THINK

pickUpBothForks();
// EAT

putDownForks();

spcl.inf.ethz.ch
YW @spcl_eth
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Dining Philosophers Using TM

class PhilosopherThread extends Thread {

private void pickUpBothForks() {
STM.atomic(new Runnable() { public void run() {

if (left.inUse.get() || right.inUse.get())
STM.retry();

left.inUse.set(true);
right.inUse.set(true);

1)
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Dining Philosophers Using TM

class PhilosopherThread extends Thread {

private void putDownForks() {
STM.atomic(new Runnable() { public void run() {

left.inUse.set(false);
right.inUse.set(false);

1)
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Issues with transactions

= |tis not clear what are the best semantics for transactions
" Getting good performance can be challenging

= |/O operations (e.g., print to screen)
Can we perform 1I/O operations in a transaction?
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Summary

Locks are too hard!

Transactional Memory tries to remove the burden from the programmer
STM / HTM

Remains to be seen whether it will be widely adopted in the future
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Additional Reading

Simon Peyton Jones,
Beautiful concurrency

http://research.microsoft.com/pubs/74063/beautiful.pdf

Dan Grossman,
The Transactional Memory / Garbage Collection Analogy
https://homes.cs.washington.edu/~djg/papers/analogy oopslaQ7.pdf



http://research.microsoft.com/pubs/74063/beautiful.pdf
https://homes.cs.washington.edu/~djg/papers/analogy_oopsla07.pdf
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Distributed Memory
& Message Passing
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So far

Considered
= Parallel / Concurrent
® Fork-Join / Threads
"= OOP on Shared Memory
= Locking / Lock Free / Transactional
= Semaphores / Monitors
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Sharing State

Many of the problems of parallel/concurrent programming come from sharing
state | ‘

= Complexity of locks, race conditions, .... _mﬁ*

|

What if we avoid sharing state?

I
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Alternatives

Functional Programming

= |[mmutable state =2 no synchronization required

Message Passing: Isolated mutable state

= State is mutable, but not shared: Each thread/task has its private state
= Tasks cooperate via message passing
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Concurrent Message Passing

Programming Models
= CSP: Communicating Sequential Processes
= Actor programming model

Framework/library
= MPI (Message Passing Interface)

YW @spcl_eth

ETH:zurich
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Shared vs Distributed memory

ENEIED

Mem
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‘CPU‘ ‘CPU‘ ‘CPU‘

Mem

Mem

Mem

ETH:zurich
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Isolated mutable state

Mutable (private) state
Tasks exchange messages
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Example: Shared state counting

)

.inc()  “.inc() .inc() .inc()
.get() .get()/.get()/.get()
Y
counter

— shared state must be protected (lock/atomic counter)
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Isolated mutability: counting
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Isolated mutability: accessing count

n >
L]
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Rethinking managing state

Bank account
— Sequential programming

. Single balance

— Parallel programming: sharing state
. Single balance + protection

— Parallel programming: distributing state
. Each thread has a local balance (a budget)
. Threads exchange amounts at coarse granularity
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Distributed Bank account

Total balance: 100 + 300 + 150 = 550
= Each task can operate independently

= And communicate with other tasks only when needed
" This lecture: via messaging

100 300 150
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Synchronous vs Asynchronous messages

Synchronous:
— sender blocks until message is received

© Can Stock Photo

Asynchronous:
— sender does not block (fire-and-forget)

— placed into a buffer for receiver to get
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The Actor Model*

Actor = Computational agent that maps B0
communication to

= 3 finite set of communications sent to other actors |
(messages) o

= a2 new behavior (state)

= afinite set of new actors created (dynamic
reconfigurability)

* Undefined global ordering

= Asynchronous Message Passing
" |nvented by Carl Hewitt 1973**

*Gul Agha (1986). Actors: A Model of Concurrent Computation in Distributed Systems. Doctoral Dissertation. MIT Press
**Carl Hewitt; Peter Bishop and Richard Steiger (1973). A Universal Modular Actor Formalism for Artificial Intelligence. 1JCAI.
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The Actor Model

Actor model provides a dynamic interconnection topology

= dynamically configure the graph during runtime (add channels)
= dynamically allocate resources

An actor sends messages to other actors using "direct naming", without
indirection via port / channel / queue / socket (etc.)

Implemented in various languages such as Erlang, Scala, Ruby and in
frameworks such as Akka (for Scala and Java)
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Event-driven programming model

Typically actors react to messages
= Event-driven model

A program is written as a set of event handlers for events
(events can be seen as received messages)

Example: Graphical User Interface
= user presses OK button - ...
= user presses Cancel button - ...
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-module(pingpong). A
Example: Erlang export([stor/s, ping/2, pong/o]). [ l

ping(@, Pong_Node) ->
. . {pong, Pong Node} ! finished, ERLANG
Functional Programming Language lo:format("ping finished~n", [1);

ping(N, Pong_Node) ->
{pong, Pong Node} ! {ping, self()},
receive

Developed by Ericsson for distributed fault- pong ->

tolerant app|icati0ns io:format("Ping received pong~n", [])
end,
ping(N - 1, Pong_Node).

= code might look unconventional at first

= if no state is shared, recovering from pong() ->
errors becomes much easier i

finished ->
io:format("Pong finished~n", []);
{ping, Ping PID} ->
io:format("Pong received ping~n", []),
Open source Ping_PID ! pong,
pong()

Concurrent, follows the actor model end.

start(Ping_Node) ->

register(pong, spawn(pingpong, pong, [])),
spawn(Ping_Node, pingpong, ping, [3, node()]).
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Erlang example

new task (actor) that will execute the hello function

start() -> spawn returns address (Pid) of new task

Pid = spawn(fun() -> hello() end),

Pid ! hello, Address (Pid) can be used to send messages to
Pid ! bye. task
hello() -»>
receive |
hello -> Messages sent to a task are putin a
io:fwrite("Hello world\n"), mailbox
hello();

bye -> Receive reads the first message in the

io:fwrite("Bye cruel world\n"), rnaﬂbon\yh@h|snunch§dagawmt
ok patterns (similar to a switch statement)

end. _ _
Event-driven programming:

code is structured as reactions to events
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Actor example: distributor

. Forward received messages to a set of nodes in a round-robin fashion

OOOO— ¢2,
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Actor example: distributor

State:
— an array of actors

— the array index of the next actor to forward a message

Receive:
— messages —» forward message and increase index (mod)

— control commands (e.g., add/remove actors)
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Actor example: serializer

ordered
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Actor example: serializer

State:
— a sorted list of items we have received

— the last item we forwarded

last item sorted list of pending items

(2 [ | 26 ] 7 |
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Actor example: serializer

Receive: If we receive an item that is larger than the last item plus one:
— add it to the sorted list

old state: ‘ 12 ‘ 14 ‘ 16 ‘ 17 ‘

Example: receive 13 l

new state: ‘ 12 ‘ 13 ‘ 14 ‘ 16 ‘ 17 ‘
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Actor example: serializer

. Receive: If we receive an item that is equal to the last item plus one:
— send the received item plus all consecutive items from the list

— reset the last item

old state: ‘ 12 ‘ 13 ‘ 14 ‘ 16 ‘ 17 ‘

Example: receive 11 l 580 ‘ 14 ‘ 13 ‘ 12 ‘ 11 ‘

new state: ‘ 16 ‘ 17 ‘
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Communicating Sequential Processes (1978, 1985)

Sir Charles Antony Richard Hoare (aka C.A.R./ Tony Hoare)
Formal language defining a process algebra for concurrent systems.

Operators seq (sequential) and par (parallel) for the hierarchical composition of
processes.

Synchronisation and Communication between parallel processes with Message
Passing.

= Symbolic channels between sender and receiver

= Read and write requires a rendezvouz (synchronous!)
CSP was first implemented in Occam.
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CSP: Indirect Naming

" Many message passing architectures (such as CSP) include an intermediary
entity (port / channel) to address send destination

" Process issuing send() specifies the port to which the message is sent

" Process issuing receive() specifies a port number and waits for the first
message that arrives at the port

e

process
/
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CSP Example (from Hoare's seminal Paper)

Conway's Problem

" Write a program that transforms a series of cards with 80-character columns

in a series of printing lines with 125 characters each. Replace each "**" by
TNL

= Separation into processes (Threads)
R par C par P
= R: Reading process reading 80-character records

= C: Converting process converting "**" into "A"
= P: Printing process: write records with 125 characters

X Channelc Channel d
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CSP Example (from Hoare's seminal Paper)

[west :: DISASSEMBLE] | | X :: SQUASH | | east :: ASSEMBLE]

Repetition of guarded

SQUASH command
X::
*[c:character; west?c = CUREEE BB

[c # asterisk = east!c Blocking send
|c = asterisk 2 west?c;
[c # asterisk = east!lasterisk; east!c
|c = asterisk =2 east!upward arrow

]

Guarded alternatives

] west SQUASH east
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OCCAM

First programming language to implement CSP (1983)

ALT
countl <100 & cl1 ? data

SEQ
countl :=countl +1
merged ! data
count2 <100 & c2 ? data
SEQ
count2 :=count2 +1
merged ! data
status ? request
SEQ
out ! countl
out ! count2
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Go programming language

Concurrent programming language from Google

Language support for:

— Lightweight tasks (called goroutines)

— Typed channels for task communications
. channels are synchronous (or unbuffered) by default

. support for asynchronous (buffered) channels

Inspired by CSP
Language roots in Algol Family: Pascal, Modula, Oberon [Prof. Niklaus Wirth, ETH]
[One of the inventors, Robert Griesemer: PhD from ETH]
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Go example
func main() { func hello(msgs chan string,
done chan bool) {
msgs := make(chan string)
done := make(chan bool) for {
msg := <-msgs
go hello(msgs, done); fmt.Println("Got:", msg)
msgs <- "Hello" if msg == "bye" {
msgs <- "bye" break
}
ok := <-done }
fmt.Println("Done:", ok); done <- true;
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Go example
func main() { func hello(msgs chan string,
done chan bool) {
msgs := make(chan string)
done := make(chan bool) for {
msg := <-msgs
go hello(msgs, done); fmt.Println("Got:", msg)
. i} Create two channels: ) o
msgs <- "Hello .msgs: for strings if msg == "bye" {
msgs <- "bye .done: for boolean values y break
ok := <-done }
fmt.Println("Done:", ok); done <- true;
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Go example
func main() { func hello(msgs chan string,
done chan bool) {
msgs := make(chan string)
done := make(chan bool) for {
msg := <-msgs
go hello(msgs, done); fmt.Println("Got:", msg)
Create a new task (goroutine),
msgs <- "Hello"” that will execute function if msg == "bye" {
msgs <- "bye” hello with the given break
arguments }
ok := <-done }
fmt.Println("Done:", ok); done <- true;
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Hello takes two channels as

Go examp|e arguments for communication
func main() { func hello(msgs chan string,
done chan bool) {
msgs := make(chan string)
done := make(chan bool) for {
msg := <-msgs
go hello(msgs, done); fmt.Println("Got:", msg)
msgs <- "Hello" if msg == "bye" {
msgs <- "bye" break
}
ok := <-done }
fmt.Println("Done:", ok); done <- true;
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Go example
func main() { func hello(msgs chan string,
done chan bool) {
msgs := make(chan string)
done := make(chan bool) for {
msg := <-msgs
go hello(msgs, done); \yrite arguments to msgs fmt.Println("Got:", msg)
channel
msgs <- "Hello" if msg == "bye" {
msgs <- "bye" break
Read result via done channel }
ok := <-done }
fmt.Println("Done:", ok); done <- true;



spcl.inf.ethz.ch 5o o
v enien ETHZUrich

Q: what will happen in this program?

func t(in chan string, done chan bool) {

m := <-in // receive from in channel
fmt.Println("Got message:", m); // print received message
done <- true // send true to done channel
}
func main() {
C := make(chan string) // create a string channel
done := make(chan bool) // create a boolean channel

go t(c,done) // spawn goroutine

ok := <-done // receive from done channel ézt 1 .
fmt.Println("Got ok:", ok); // print ok ata t§rror. a
C <- "Hello” // send hello to channel c goroutines are

} asleep - deadlock!
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Example: Concurrent prime sieve

Each station removes multiples of the first element received and passes on the
remaining elements to the next station

...98765432 ....9753 .75 o 7
G > F, > F; > F >
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Concurrent prime sieve

func Generate(ch chan<- int) { func Filter(in <-chan int, out chan<- int, prime int) {

. . for
for i := 2; ; i++ { F . . .
h . i := <-in // Receive value from 'in'.
ch <=1 if i%prime != 0 {
} out <- i // Send 'i' to 'out'.

} G )

prime
func main() {
ch := make(chan int)
go Generate(ch)
for i :=0; 1 < 10; i++ { G .. 765432 3 753 F, SRS . F .7 g

prime := <-ch
fmt.Println(prime)

chl := make(chan int)

go Filter(ch, chl, prime)
ch = chl

source code from golang.org
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Message Passing Interface (MPI)
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ABSTRACT

Petascale parallel computers with more than a million processing cores are expected to
be available in a couple of years. Although MPI is the dominant programming inter-
face today for large-scale systems that at the highest end already have close to 300,000
processors, a challenging question to both researchers and users is whether MPI will
scale to processor and core counts in the millions. In this paper, we examine the issue Torsten Hoefler
of scalability of MPI to very large systems. We first examine the MPI specification itself
and discuss areas with scalability concerns and how they can be overcome. We then .
investigate issues that an MPI implementation must address in order to be scalable. To HH/E’E’V Thakur
illustrate the issues, we ran a number of simple experiments to measure MPI memory
consumption at scale up to 131,072 processes, or S0%, of the IBM Blue Gene/P system
at Argonne National Laboratory. Based on the results, we identified nonscalable aspects
of the MPIl implementation and found ways to tune it to reduce its memory footprint.
We also briefly discuss issues in application scalability to large process counts and fea-

William Grop 0

Ewing Lusk
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Message Passing Interface (MPI)

Message passing libraries:
= PVM (Parallel Virtual Machines) 1980s
= MPI (Message Passing Interface) 1990s

MPI = Standard API

e Hides Software/Hardware details
* Portable, flexible

* Implemented as a library

YW @spcl_eth

Program
MPI library
Specialized | Standard
Driver TCP/IP
Custom Standard
Network Network
HW HW
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Process Identification

= MPI processes can be collected into groups
= Each group can have multiple colors (some times called context)
= Group + color == communicator (it is like a name for the group)

= When an MPI application starts, the group of all processes is initially given a predefined
name called MPI COMM WORLD

=  The same group can have many names, but simple programs do not have to worry about multiple names
= A process is identified by a unigue number within each communicator, called

rank

= For two different communicators, the same process can have two different ranks: so the
meaning of a “rank” is only defined when you specify the communicator
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MPI Communicators

= Defines the communication domain of a communication operation: set of
processes that are allowed to communicate with each other.

OO D

cl c2 c3
" |nitially all processes are in the communicator MPI_COMM_WORLD.

_ >

MPI_COMM_WORLD _ o
= The rank of processes are associated with (and unique within) a

communicator, numbered from O to n-1
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Communicators
mpiexec -np 16 ./test

When you start an MPI
Communicators do not @ @ program, there is one
need to contain all predefined communicator
processes in the system @ @ @ @ MPI_COMM WORLD
Every process in a @ @ @ ‘ Can make copies of this
communicator has an ID communicator (same group of
called as “rank” @ . processes, but different

“aliases”)

The same process might have different
ranks in different communicators

Communicators can be created “by hand” or using tools

Simple programs typically only use the predefined communicator MPT _COMM WORLD
(which is sometimes considered bad practice)
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Process Ranks

Processes are identified by nonnegative integers, called ranks

p processes are numbered O, 1, 2, .. p-1

public static void main(String args []) throws Exception {
MPI.Init(args);
// Get total number of processes (p)
int size = MPI.COMM WORLD.Size();
// Get rank of current process (in [0..p-1])
int rank = MPI.COMM WORLD.Rank();
MPI.Finalize();



SPMD

Single Program

Multiple Data
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we compile
one program

( the if-else
: makes it
SPMD

if (rank == 0)
do this
else
do that

if (rank == 0)
do this
else
do that

if (rank == 0)
do this
else
do that

if (rank == 0)
do this
else
do that
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Communication
void Comm.Send( communicator
Object buf, pointer to data to be sent
. from MPJ Spec
int offset,
int count, number of items to be sent

Datatype datatype, datatype of items, must be explicitely specified
int dest, destination process id
int tag data id tag

count * sizeof(int)
buf array A

int int int

offset
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Parallel Sort using MPI Send/Recv

Rank 0 !

8 |23 |19|67 |45 |35|{ 1 (24|13 |30| 3 | 5

Rank 0 ! \Se”d inO(N)  Rank 1
prnsoatel | 81912335 |45 | 1]3]s ][]
O(N log N)

Rank 0 | M/in O(N)

8119123354567y 1 |3 |5 |13 |24 |30

merge in O(N)
Rank 0

1 (3|58 (131923 (2430|3545 |67
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Message Tags

= Communicating processes may need to send several messages between each

other.

= Message tag: differentiate between different messages being sent.

msg 1

mﬂgz

msg 3

network
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Message matching

sender
Send _ sender tag dest =r
communicator
A A A
\ 4 v \ 4
: receiver :
Receive receiver tag source =q

communicator
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Receiving messages

void Comm.Recv( communicator
Object buf, pointer to the buffer to receive to
int offset,
int count, number of items to be received

Datatype datatype, datatype of items, must be explicitely specified
int src, source process id or MPI_ANY_SOURCE
int tag data id tag or MPI_ANY_TAG

)

| £

A receiver can get a message without knowing:
= the amount of data in the message,

* the sender of the message,
= or the tag of the message. w
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Synchronous Message Passing

Synchronous send (Ssend)
* waits until complete message can be accepted by receiving process before

completing the send
u send 6

ready

Synchronous receive (Recv)

* waits until expected message arrives
Synchronous routines can perform two actions
* transfer data

* synchronize processes
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Asynchronous Message Passing

Send does not wait for actions to complete before returning

* requires local storage for messages
sometimes explicit (programmer needs to care)
sometimes implicit (transparent to the programmer)

L

In general
* no synchronisation
* allows local progress
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Blocking / Nonblocking

Blocking: return after local actions are complete, though the message transfer
may not have been completed

Non-blocking: return immediately

* sometimes assumes that data storage to be used for transfer is not modified
by subsequent statements until transfer complete

* sometimes implementation dependent local buffers are or have to be
provided
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A Non-Blocking communication example

o T
l Blocking
Communication
P1
o T
Non-blocking
v Vv Communication

P1
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Synchronous / Asynchronous vs Blocking / Nonblocking

Synchronous / Asynchronous
= agbout communication between sender and receiver

Blocking / Nonblocking
= about local handling of data to be sent / received
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MPI Send and Receive Defaults

Send

* blocking, Danger of Deadlocks.

. . ’ : |
» synchrony implementation dependent Don’t make any assumptions!

= depends on existence of buffering, performance considerations etc

Recv
* blocking

There are a lot of
different variations of
this in MPI.
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Sources of Deadlocks

= Send a large message from process O to process 1

= |f there is insufficient storage at the destination, the send must wait for the user to provide the memory space
(through a receive)

= What happens with this code?

Process O Process 1
Send (1) Send (0)
Recv (1) Recv (0)

e Thisis called “unsafe” because it depends on the availability of
system buffers in which to store the data sent until it can be received
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Some Solutions to the “unsafe” Problem

= QOrder the operations more carefully:

Process O Process 1
Send (1) Recv (0)
Recv (1) Send (0)

e Supply receive buffer at same time as send:

Process O Process 1

Sendrecv (1) Sendrecv (0)
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More Solutions to the “unsafe” Problem

= Supply own space as buffer for send

Process O Process 1
Bsend (1) Bsend (0)
Recv (1) Recv (0)

e Use non-blocking operations:

Process O Process 1
Isend (1) Isend (0)
Irecv(1l) Irecv (0)

Waitall Waitall



MPI is Simple
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= Many parallel programs can be written using just these six functions, only two of which are non-trivial:
MPI INIT — initialize the MPI library (must be the first routine called)

MPI COMM SIZE - get the size
MPI COMM RANK — get the rank
MPI SEND — send a message to
MPI RECV — send a message to

of a communicator

of the calling process in the communicator
another process

another process

MPI FINALIZE — clean up all MPI state (must be the last MPI function called by

a process)

= For performance, however, you need to use other MPI features
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Pi record smashed as team finds two-
quadrillionth digit

By Jason Palmer
Science and technology reporter, BEC News

Example: compute Pi

* The irrational number Pi has many digits
= And it’s not clear if they're randomly distributed!

(O 16 September 2010 Technology f L J [ ] E « Share

A researcher has calculated the

] 2,000,000,000,000,000th digit of the
B Ut t h ey Ca n be CO m p Ute d mathematical constant pi- and a
N-=1 few digits either side of it.
4 > A+ Y B
= h Z : T\\2 Nicholas Sze, of tech firm Yahoo, said 0<k< 3= nde <k
i=0) 1+ (h(I + U] )) that when pi is expressed in binary, the

two quadrillionth "bit" is 0.

Mr Sze used Yahoo's Hadoop cloud
computing technology to more than
double the previous record.

It took 23 days on 1,000 of Yahoo's computers - on a standard PC, the calculation

'FOP(int i=@; i<numsteps; i++) { would have taken 500 years.
double x=(i + ©.5) * h;
sum += 4.0/(1.0 + Xx*x);

¥

double pi=h * sum ;
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Pi’s parallel version MPI.Init(args);

.. // declare and initialize variables (sum=0 etc.)
int size = MPI.COMM_WORLD.Size();
int rank = MPI.COMM_WORLD.Rank();

for(int i=rank; i<numSteps; i=i+size) {
double x=(i + ©.5) * h;
sum += 4.0/(1.0 + x*x);

}

if (rank != 0) {
double [] sendBuf = new double []{sum};
// l-element array containing sum
MPI.COMM WORLD.Send(sendBuf, ©, 1, MPI.DOUBLE, 0, 10);
}
else { // rank ==
double [] recvBuf = new double [1] ;
for (int src=1 ; src<P; src++) {
MPI.COMM WORLD.Recv(recvBuf, ©, 1, MPI.DOUBLE, src, 10);
sum += recvBuf[0];

}
}
double pi = h * sum; // output pi at rank © only!
MPI.Finalize();
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COLLECTIVE COMMUNICATION
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Group Communication

Up to here: point-to-point communication

MPI also supports communications among groups of processors
* not absolutely necessary for programming (but very nice!)

* but essential for performance
Examples: broadcast, gather, scatter, reduce, barrier, ...
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Collective Computation - Reduce public void Reduce(java.lang.Object sendbuf,

int sendoffset,
java.lang.Object recvbuf,
int recvoffset,

int count,

Datatype datatype,

Op op,

int root)

PO
P1

P2
P3

Reduce

PO
P1

P2
P3

Scan
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Reduce implementation: a tree-structured global sum

Processes

In the first phase:

(a) Process 1 sends to 0, 3 sends to
2, 5 sends to 4, and 7 sends to 6.
(b) Processes 0, 2, 4, and 6 add in
the received values.

Second phase:

(c) Processes 2 and 6 send their new
values to processes 0 and 4,
respectively.

(d) Processes 0 and 4 add the
received values into their new
values.

Finally:

(a) Process 4 sends its newest value
to process 0.

(b) Process 0 adds the received
value to its newest value.
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Collective Data Movement - Broadcast

Broadcast

0 1 2 3 4 5 6 7
Processes
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Collective Computation - Allreduce public void Allreduce(java.lang.Object sendbuf,

int sendoffset,
java.lang.Object recvbuf,
int recvoffset,

int count,

Datatype datatype,

Op op)

Allreduce

Useful in a situation in which all of the processes need the result of a global sum in order to
complete some larger computation.
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Allreduce = Reduce + Broadcast?

Processes

A global sum followed
by distribution of the

Q: What is the number result.

of steps needed?

Processes



v o ETHZzirich
Allreduce # Reduce + Broadcast

Q: What is the number

Processes of steps needed?

0 1 2 3 4 5

(o))
~

A butterfly-structured global sum.
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Collective Data Movement — Scatter/Gather

PO Scatter ‘
P1
P2
Gather
P3 «

= Scatter can be used in a function that reads in an entire vector on process 0 but only
sends the needed components to each of the other processes.

= Gather collects all of the components of the vector onto destination process, then
destination process can process all of the components.
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More Collective Data Movement — some more (16 functions total!)

PO
P1

P2
P3

Allgather

PO
P1

P2
P3

Alltoall
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Matrix-Vector-Multiply

1 2 3 10 Aq - x
Computey=A-x, eg, A=14 5 6‘ xz[ZO‘ y =145 x
7 8 9 30 Az - x

1. Broadcast x

PO 10120130 PO 1OIZOI30

P1 10120130

P2 1oIzoI3o
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Matrix-Vector-Multiply

1 2 3 10 Aq - x
Computey=A-x, eg A=14 5 6‘ xz[ZO‘ y =145 x
7 8 9 30 Az - x

2. Scatter A

1 2

[y

L]
° A E
p2|7]=]>

: PO

(<)}

PO

7 8

H
e == pmmmm
n

|
|
|
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Matrix-Vector-Multiply

1 2 3 10 Aq - x
Computey=A-x, eg A=14 5 6‘ xz[ZO‘ y =145 x
7 8 9 30 Az - x

3. Compute locally

o ()]

w

10120130 = | 140
IsIs . 10120130 = | 320
P2 71819 . 10120130 = | 500

D

P1
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Matrix-Vector-Multiply

1 2 3 10 A - x
Computey=A-x, eg A=14 5 6‘ xz[ZO‘ y =145 x
7 8 9 30 Az - x
4. Gather result y
PO | 140
P1 | 320 PO 140[3201500

P2 | 500
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Iterations

Assume we want to apply the matrix-vector product iteratively

Yn = AYn_q

Example Application:
Eigenvalue Problem for Probability Matrix, as used in Google's Pagerank algorithm.

Then each process needs the results of other processes after one step.
- Need for Gather + Broadcast in one go.
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MPI conclusion

* The de-facto interface for distributed parallel computing (nearly 100%
market share in HPC)

= Elegant and simple interface

= Definitely simpler than shared memory (no races, limited conflicts, avoid deadlocks
with nonblocking communication)

= We only covered the basics here, MPI-3.1 (2015) has 600+ functions

= More concepts:
Derived Datatypes
Process Topologies
Nonblocking and neighborhood collectives

One-sided accesses (getting the fun of shared memory back ...)
Profiling interfaces



