
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

Parallel Programming

Transactional Memory &
Programming based on
Message Passing

…

spcl.inf.ethz.ch

@spcl_eth

1 Read/Write Registers

2 getAndSet, getAndIncrement, … FIFO Queue
LIFO Stack

.

.

∞ CompareAndSet, … Multiple Assignment

The Consensus Hierarchy

2

spcl.inf.ethz.ch

@spcl_eth

 Consensus is the simplest wait-free problem
 Easy to define and prove (will come later)

 Consensus number
 How many threads can objects of class C coordinate (wait-free)?

Wait-free FIFO queues have consensus number 2

Test-And-Set, getAndSet, getAndIncrement have consensus number 2

CAS has consensus number ∞

 Consensus itself is a powerful tool to prove impossibility!
 Saw it with the FIFO queue

 Here, we discuss only wait-free

Consensus - conclusion

3

spcl.inf.ethz.ch

@spcl_eth

Motivation for

Transactional Memory

4

spcl.inf.ethz.ch

@spcl_eth

Motivation: programming with locks is too difficult

Lock-free programming is even more difficult...

Goal: remove the burden of synchronization from the programmer and place it
in the system (hardware / software)

Transactional Memory in a nutshell

Literature:
-Herlihy Chapter 18.1 – 18.2.
-Herlihy Chapter 18.3. interesting but too detailed for this course.

5

spcl.inf.ethz.ch

@spcl_eth

Deadlocks: threads attempt to take common locks in different orders

What is wrong with locking?

6

spcl.inf.ethz.ch

@spcl_eth

Convoying: thread holding a resource R is descheduled while other threads
queue up waiting for R

What is wrong with locking?

7

spcl.inf.ethz.ch

@spcl_eth

Priority Inversion: lower priority thread holds a resource R that a high priority
thread is waiting on

What is wrong with locking?

8

spcl.inf.ethz.ch

@spcl_eth

Association of locks and data established by convention.

The best you can do is reasonably document your code!

What is wrong with locking?

9

spcl.inf.ethz.ch

@spcl_eth

Example: Unbounded Queue (FIFO)

What is wrong with CAS?

sentinel node node node node node

head tail

value value value value value

public class LockFreeQueue<T> {

private AtomicReference<Node>

head;

private AtomicReference<Node>

tail;

public void enq(T item);

public T deq();

}

public class Node {

public T value;

public AtomicReference<Node> next;

public Node(T v) {

value = v;

next = new

AtomicReference<Node>(null);

}

}
10

spcl.inf.ethz.ch

@spcl_eth

Enqueue

S node node node node node

head tail

new
①

②

CAS next

CAS tail

value value value value value value

Two CAS operations 
half finished enqueue
visible to other processes

11

spcl.inf.ethz.ch

@spcl_eth

Dequeue

S node node node node node

head tail

①

②

value value value value value
read
value

CAS
head

12

spcl.inf.ethz.ch

@spcl_eth

public class LockFreeQueue<T> {
..

public void enq(T item) {
Node node = new Node(item);
while(true){

Node last = tail.get();
Node next = last.next.get();
if (last == tail.get()) {

if (next == null)
if (last.next.compareAndSet(next, node)) {

tail.compareAndSet(last, node);
return;

}
else

tail.compareAndSet(last, next);
}

}
}

}

Code for Enqueue

Half finished insert may happen!

Help other processes with finishing
operations ( lock-free)

13

spcl.inf.ethz.ch

@spcl_eth

public class LockFreeQueue<T> {

..

public void enq(T item) {

Node node = new Node(item);

while(true) {

Node last = tail.get();

Node next = last.next.get();

if (multiCompareAndSet({last.next, tail},{next, last},{node, node})

return;

}

}

}

Code with hypothetical DCAS

This code ensures consistency of both next and last:
operation either fails completely without effect or
the effect happens atomically

14

spcl.inf.ethz.ch

@spcl_eth

class Account {
private final Integer id; // account id
private Integer balance; // account balance

Account(int id, int balance) {
this.id = new Integer(id);
this.balance = new Integer(balance);

}

synchronized void withdraw(int amount) {
// assume that there are always sufficient funds...
this.balance = this.balance – amount;

}

synchronized void deposit(int amount) {
this.balance = this.balance + amount;

}
}

More problems: Bank account

15

spcl.inf.ethz.ch

@spcl_eth

void transfer_unsafe(Account a, Account b, int amount) {

a.withdraw(amount);
b.deposit(amount);

}

Bank account transfer (unsafe)

Transfer does not happen
atomically

A thread might observe the withdraw,
but not the deposit

16

spcl.inf.ethz.ch

@spcl_eth

void transfer_deadlock(Account a, Account b, int amount) {
synchronized (a) {

synchronized (b) {
a.withdraw(amount);
b.deposit(amount);

}
}

}

Bank account transfer (can cause a deadlock)

17

Concurrently executing:

 transfer_deadlock(a, b)

 transfer_deadlock(b, a)

Might lead to a deadlock

spcl.inf.ethz.ch

@spcl_eth

void transfer(Account a, Account b, int amount) {
if (a.id < b.id) {

synchronized (a) {
synchronized (b) {

a.withdraw(amount);
b.deposit(amount);

}
}

} else {
synchronized (b) {

synchronized (a) {
a.withdraw(amount);
b.deposit(amount);

}
}

}
}

Bank account transfer (lock ordering to avoid deadlock)

18

spcl.inf.ethz.ch

@spcl_eth

void transfer_elegant(Account a, Account b, int amount) {

Account first, second;
if (a.id < b.id) {

first = a;
second = b;

} else {
first = b;
second = a;

}

synchronized (first) {
synchronized (second) {

a.withdraw(amount);
b.deposit(amount);

}
}

}

Bank account transfer (slightly better ordering version)

Code for the actual operation

C
o

d
e fo

r syn
ch

ro
n

izatio
n

19

spcl.inf.ethz.ch

@spcl_eth

Ensuring ordering (and correctness) is really hard
(even for advanced programmers)

 rules are ad-hoc, and not part of the program

 (documented in comments at best-case scenario)

Locks are not composable
 how can you combine n thread-safe operations?

 internal details about locking are required

 big problem, especially for programming “in the large”

Lack of composability

20

spcl.inf.ethz.ch

@spcl_eth

Locks are pessimistic
● worst is assumed

● performance overhead paid every time

Locking mechanism is hard-wired to the program
● synchronization / rest of the program cannot be separated

● changing synchronization scheme → changing all of the program

Problems using locks (cont'd)

21

spcl.inf.ethz.ch

@spcl_eth

What the programmer actually meant to say is:

atomic {
a.withdraw(amount);
b.deposit(amount);

}

→ This is the idea behind transactional memory

also behind locks, isn’t it? The difference is the execution!

Solution: atomic blocks (or transactions)

I want these operations
to be performed atomically!

22

atomic {
a.withdraw(amount);
b.deposit(amount);

}

spcl.inf.ethz.ch

@spcl_eth

Programmer explicitly defines atomic code sections

Programmer is concerned with:
what: what operations should be atomic

but, not how: e.g., via locking
the how is left to the system (software, hardware or both)

(declarative approach)

Transactional Memory (TM)

23

spcl.inf.ethz.ch

@spcl_eth

 simpler and less error-prone code

 higher-level (declarative) semantics (what vs. how)

 composable

 analogy to garbage collection
(Dan Grossman. 2007. "The transactional memory / garbage collection analogy". SIGPLAN Not.
42, 10 (October 2007), 695-706.)

 optimistic by design
(does not require mutual exclusion)

TM benefits

24

spcl.inf.ethz.ch

@spcl_eth

changes made by a transaction are
made visible atomically

other threads preserve either the initial or the final state, but not any
intermediate states

Note: locks enforce atomicity via mutual exclusion, while transactions
do not require mutual exclusion

TM semantics: Atomicity

25

spcl.inf.ethz.ch

@spcl_eth

Transactions run in isolation

 while a transaction is running, effects from other transactions are not observed

● as if the transaction takes a snapshot of the global state when it begins and then
operates on that snapshot

TM semantics: Isolation

26

spcl.inf.ethz.ch

@spcl_eth

Serializability

TXA

Thread 0 Thread 1

TXB

TXA

TXB
as if:
Executed Sequentially

(transactions appear serialized)
27

spcl.inf.ethz.ch

@spcl_eth

Transactional Memory is heavily inspired by database transactions

ACID properties in database transactions:

● Atomicity

● Consistency (database remains in a consistent state)

● Isolation (no mutual corruption of data)

● Durability (e.g., transaction effects will survive power loss → stored in disk)

Transactions in databases

28

spcl.inf.ethz.ch

@spcl_eth

Big lock around all atomic sections

 gives (nearly all) desired properties, but not scalable

 not done in practice for obvious reasons

Keep track of operations performed by each transaction

 concurrency control

 system ensures atomicity and isolation properties

How to implement TM?
Which are missing?

29

spcl.inf.ethz.ch

@spcl_eth

Conflict example: a transaction (not yet committed) has read a value that was
changed by a transaction that has committed

What happens when a conflict occurs?

TXA
atomic {

…
x = a // read a
if (x == 0) {

…
} else {

…
}

}

TXB
atomic {

…
a = 10 // write a
…

}

30

Initially: a = 0

spcl.inf.ethz.ch

@spcl_eth

Conflict example: a transaction (not yet committed) has read a value that was
changed by a transaction that has committed

What happens when a conflict occurs?

TXA
atomic {

…
x = a // read a
if (x == 0) {

…
} else {

…
}

}

TXB
atomic {

…
a = 10 // write a
…

}

Initially: a = 0

started not started

31

spcl.inf.ethz.ch

@spcl_eth

Conflict example: a transaction (not yet committed) has read a value that was
changed by a transaction that has committed

What happens when a conflict occurs?

TXA
atomic {

…
x = a // read a
if (x == 0) {

…
} else {

…
}

}

TXB
atomic {

…
a = 10 // write a
…

}

read value 0

not started

Initially: a = 0

32

spcl.inf.ethz.ch

@spcl_eth

Conflict example: a transaction (not yet committed) has read a value that was
changed by a transaction that has committed

What happens when a conflict occurs?

TXA
atomic {

…
x = a // read a
if (x == 0) {

…
} else {

…
}

}

TXB
atomic {

…
a = 10 // write a
…

}

read value 0

started

Initially: a = 0

33

spcl.inf.ethz.ch

@spcl_eth

Conflict example: a transaction (not yet committed) has read a value that was
changed by a transaction that has committed

What happens when a conflict occurs?

TXA
atomic {

…
x = a // read a
if (x == 0) {

…
} else {

…
}

}

TXB
atomic {

…
a = 10 // write a
…

}

read value 0
update a locally

not visible to
other

transactions

Initially: a = 0

34

spcl.inf.ethz.ch

@spcl_eth

Conflict example: a transaction (not yet committed) has read a value that was
changed by a transaction that has committed

What happens when a conflict occurs?

TXA
atomic {

…
x = a // read a
if (x == 0) {

…
} else {

…
}

}

TXB
atomic {

…
a = 10 // write a
…

}

read value 0

commited
changes visible

to other
transactions

Initially: a = 0

35

spcl.inf.ethz.ch

@spcl_eth

Conflict example: a transaction (not yet committed) has read a value that was
changed by a transaction that has committed

What happens when a conflict occurs?

TXA
atomic {

…
x = a // read a
if (x == 0) {

…
} else {

…
}

}

TXB
atomic {

…
a = 10 // write a
…

}

commited
can this transaction
now be placed after

TXB in the
serialization order?

commited
changes visible

to other
transactions

Initially: a = 0

36

spcl.inf.ethz.ch

@spcl_eth

Initially: a = 0

Serialized view

TXA
atomic {

…
x = a // read a
if (x == 0) {

…
} else {

…
}

}

TXB
atomic {

…
a = 10 // write a
…

}

Serial order of transactions.

Should have read a == 10
Executions that read a == 0 are

invalid!

37

spcl.inf.ethz.ch

@spcl_eth

Issues like this are handled by a Concurrency Control (CC) mechanism

When a transaction aborts, it can be retried automatically or the user is
notified

Transactions can be aborted

38

spcl.inf.ethz.ch

@spcl_eth

Bank account example

TXA
atomic {

Withdraw(a, 10);
Deposit(b, 10);

}

TXB
atomic {

Withdraw(b, 5);
Deposit(a, 5);

}

Initially a = 100; b = 100

39

spcl.inf.ethz.ch

@spcl_eth

Bank account example

TXA
atomic {

Withdraw(a, 10);
Deposit(b, 10);

}

TXB
atomic {

Withdraw(b, 5);
Deposit(a, 5);

}

Initially a = 100; b = 100

a reads 100,
now local a = 90

40

spcl.inf.ethz.ch

@spcl_eth

Bank account example

TXA
atomic {

Withdraw(a, 10);
Deposit(b, 10);

}

TXB
atomic {

Withdraw(b, 5);
Deposit(a, 5);

}

Initially a = 100; b = 100

a reads 100,
now local a = 90

b reads 100
now local b = 95

a reads 100
now local a = 105

41

spcl.inf.ethz.ch

@spcl_eth

Bank account example

TXA
atomic {

Withdraw(a, 10);
Deposit(b, 10);

}

TXB
atomic {

Withdraw(b, 5);
Deposit(a, 5);

}

Initially a = 100; b = 100

a reads 100,
now local a = 90

commit
a is now 105
b is now 95

42

spcl.inf.ethz.ch

@spcl_eth

Bank account example

TXA
atomic {

Withdraw(a, 10);
Deposit(b, 10);

}

TXB
atomic {

Withdraw(b, 5);
Deposit(a, 5);

}

Initially a = 100; b = 100

commit
a is now 105
b is now 95

What now?
May b read 95?

43

spcl.inf.ethz.ch

@spcl_eth

Zombies and Consistency

TXA
atomic {

a = a + 10;
b = b + 10;
c = 1 / (a-b);

}

TXB
atomic {

a = a - 10;
b = b + 10;
c = 1 / (a-b);

}

Initially a = 10; b = 0; c = 0

44

spcl.inf.ethz.ch

@spcl_eth

Zombies and Consistency

TXA
atomic {

a = a + 10;
b = b + 10;
c = 1 / (a-b);

}

TXB
atomic {

a = a - 10;
b = b + 10;
c = 1 / (a-b);

}

Initially a = 10; b = 0; c = 0

local a = 20

commit
a = 0
b = 10

45

spcl.inf.ethz.ch

@spcl_eth

Zombies and Consistency

TXA
atomic {

a = a + 10;
b = b + 10;
c = 1 / (a-b);

}

TXB
atomic {

a = a - 10;
b = b + 10;
c = 1 / (a-b);

}

Initially a = 10; b = 0; c = 0

if b read 10, we
would have a-b = 0
 catastrophic
inconsistency

commit
a = 0
b = 10

46

spcl.inf.ethz.ch

@spcl_eth

The transactional memory system guarantees that consistent data will always
be seen by a running transaction

Possibilities (conceptually):

 Snapshot at the beginning

 Early abort

Consistency Guarantee

47

spcl.inf.ethz.ch

@spcl_eth

Hardware TM (HTM):

 can be fast

 but, bounded resources

 can often not handle big transactions

Examples:
 Intel Haswell → first widely available implementation of TM

 Sun (now Oracle) Rock → was not released

 Supercomputers (IBM's Blue Gene/Q)

Where to implement TM?
Intel Haswell instructions
xbegin: transaction begin
xend: transaction end
xabort: abort transaction

Pattern:
xbegin L0

<transaction code>
xend

<commit was successful>
...

L0:
<transaction aborted>

48

spcl.inf.ethz.ch

@spcl_eth

Software (STM)

 in the (parallel) programming language

 greater flexibility

 achieving good performance might be challenging

 Examples: Haskell, Clojure, …

Hybrid TM (Hardware + Software)

Where to implement TM?

49

spcl.inf.ethz.ch

@spcl_eth

Implementations still immature

Many different approaches

The first HTM (RTM) implementation just became widely available (Intel
Haswell)

STM implementations are still being actively developed

TM is still work in progress!

50

spcl.inf.ethz.ch

@spcl_eth

Q: What happens when shared state accessed by a transaction, is also accessed
outside of a transaction?

Are the transactional guarantees still maintained?

Strong isolation: Yes

 easier for porting existing code

 difficult to implement, overhead

Weak isolation: No

Design choice: strong vs. weak isolation

51

spcl.inf.ethz.ch

@spcl_eth

Q: What are the semantics of nested transactions
(Note: nested transactions are important for composability)

 Flat nesting

 Closed nesting

 Other approaches (e.g., open nesting)

Design choice: Nesting

52

spcl.inf.ethz.ch

@spcl_eth

53

Flattened nesting

atomic {
atomic {
atomic {
...

}
}

}

atomic {

...

}

inner aborts → outer aborts

inner commits → changes visible only if outer commits

spcl.inf.ethz.ch

@spcl_eth

Similar to flattened, but:

 an abort of an inner transaction does not result in an abort for the outer transaction

Inner transaction commits

 changes visible to outer transaction

 but not to other transactions

Outer transaction commits

 changes of inner transactions become visible

Closed nesting

54

spcl.inf.ethz.ch

@spcl_eth

If all program variables are protected:

 easier to port existing code

but, difficult to implement

 need to check every memory operation

55

What is part of a transaction?

stmt1;
stmt2;
stmt3;

atomic {
stmt1;
stmt2;
stmt3;

}

spcl.inf.ethz.ch

@spcl_eth

Mutable state is put into special variables

These variables can only be modified inside a transaction

Everything else is immutable (or not shared)

This is the model that we will (briefly) discuss

56

Reference-based STMs

spcl.inf.ethz.ch

@spcl_eth

Java does not include STM support

 Scala-stm is an STM library built for scala

 Has a Java interface

 Follows the reference-based (Ref) approach

Other STMs for Java exist (e.g., Deuce), exhibiting a research character
[like also the scala-stm in Java]

We will use scala-stm

57

spcl.inf.ethz.ch

@spcl_eth

Java 7 does not have lambdas (Java 8 has!)
→ each transaction is defined as a Runnable Object

No compiler support for ensuring that Refs are only accessed inside a
transaction

Our goal is to get a first idea of how to use an STM

 a view of things to come (?)

 not an established programming technique yet

scala-stm (on Java) limitations

58

spcl.inf.ethz.ch

@spcl_eth

class AccountSTM {
private final Integer id; // account id
private final Ref.View<Integer> balance;

AccountSTM(int id, int balance) {
this.id = new Integer(id);
this.balance = STM.newRef(balance);

}

}

Bank account (scala-stm)

59

spcl.inf.ethz.ch

@spcl_eth

void withdraw(final int amount) {
// assume that there are always sufficient funds...
atomic {

int old_val = balance.get();
balance.set(old_val – amount);

}
}

void deposit(final int amount) {
atomic {

int old_val = balance.get();
balance.set(old_val + amount);

}
}

Ideal world: bank account using atomic keyword

60

spcl.inf.ethz.ch

@spcl_eth

void withdraw(final int amount) {
// assume that there are always sufficient funds...
STM.atomic(new Runnable() { public void run() {

int old_val = balance.get();
balance.set(old_val – amount);

}});
}

void deposit(final int amount) {
STM.atomic(new Runnable() { public void run() {

int old_val = balance.get();
balance.set(old_val + amount);

}});
}

61

Real world: bank account in scala-stm

spcl.inf.ethz.ch

@spcl_eth

public int getBalance() {

int result = STM.atomic(

new Callable<Integer>() {

public Integer call() {

int result = balance.get();

return result;

}

});

return result;

}

GetBalance
"a

to
m

ic
"

62

spcl.inf.ethz.ch

@spcl_eth

static void transfer(final AccountSTM a,
final AccountSTM b,
final int amount) {

atomic {
a.withdraw(amount);
b.deposit(amount);

}
}

What if account a does not have enough funds?

How can we wait until it does in order to retry the transfer?

locks → conditional variables

TM → retry

Bank account transfer

63

spcl.inf.ethz.ch

@spcl_eth

static void transfer_retry(final AccountSTM a,
final AccountSTM b,
final int amount) {

atomic {
if (a.balance.get() < amount)

STM.retry();
a.withdraw(amount);
b.deposit(amount);

}
}

retry: abort the transaction and retry when conditions change

Bank account transfer with retry

64

spcl.inf.ethz.ch

@spcl_eth

65

Continue here in the next lesson…

spcl.inf.ethz.ch

@spcl_eth

Implementations need to track what reads/writes a transaction performed
to detect conflicts

 Typically called read-/write-set of a transaction

 When retry is called, transaction aborts and will be retried when any of the variables
that were read, change

 In our example, when a.balance is updated, the transaction will be retried

How does retry work?

66

spcl.inf.ethz.ch

@spcl_eth

Does Transactional Memory make concurrent programming always simple?

67

Question

spcl.inf.ethz.ch

@spcl_eth

Initially x = y = 0

68

Dependencies can lead to application level deadlock

TXA
atomic {

x = 1;
}

TXA’
atomic {
if (y == 0)

retry;
}

TXB
atomic {

if (x == 0)
retry;

y = 1;
}

spcl.inf.ethz.ch

@spcl_eth

Ingredients

Threads that run transactions with thread states
 active

 aborted

 committed

Objects representing state stored in memory (the variables affected by a transaction)

 offering methods like a constructor, read, write

 and copy!

Simplest STM Implementation

70

spcl.inf.ethz.ch

@spcl_eth

Clock-based STM System

global
clock

Transaction A
birthdate

Transaction B
birthdate

Transaction C
commits

increases

read at start read at start

71

spcl.inf.ethz.ch

@spcl_eth

Each transaction uses a local read-set and a local write-set holding all locally
read and written objects.

Transaction calls read

- check if the object is in the write set  return this (new) version

- otherwise check if object's time stamp <= transaction's birthdate, if not
throw aborted exception, otherwise add new copy of the object to the read
set

Transaction calls write

- if object is not in write set, create a copy of it in the write set

Atomic Objects

atomic memory object

version
reference

time
stamp

72

spcl.inf.ethz.ch

@spcl_eth

Transaction life time

time

birthdate of T

X.date Y.date Z.date

T reads Y T reads X T reads Z

read set of T

73

spcl.inf.ethz.ch

@spcl_eth

 Lock all objects of read- and write-set (in some defined order to avoid
deadlocks)

 Check that all objects in the read set provide a time stamp <= birthdate of
the transaction, otherwise return "abort"

 Increment and get the value T of current global clock

 Copy each element of the write set back to global memory with timestamp T

 Release all locks and return "commit"

Commit

74

spcl.inf.ethz.ch

@spcl_eth

Successful commit

time

birthdate of T

X.date Y.date Z.date

T reads Y T reads X

T writes Y
(local copy!)

T writes X
(local copy!)

T commits

read set of T

write set of T

75

spcl.inf.ethz.ch

@spcl_eth

Aborted commit

time

birthdate of T

X.date Y.date Z.date

T reads Y T reads X

T writes Y
(local copy!)

T writes Z
(local copy!)

T commits

read set of T

76

write set of T

spcl.inf.ethz.ch

@spcl_eth

● 5 philosophers

● 5 forks

● each philosopher requires 2 forks to eat

● forks cannot be shared

Dining philosophers

image source: Wikipedia

77

spcl.inf.ethz.ch

@spcl_eth

Philosopher:

● think

● lock left

● lock right

● eat

● unlock right

● unlock left

Solution that can lead to deadlock

P1 takes F1, P2 takes F2, P3 takes F3, P4 takes F4, P5 takes F5

→ Deadlock

78

spcl.inf.ethz.ch

@spcl_eth

private static class Fork {
public final Ref.View<Boolean> inUse = STM.newRef(false);

}

class PhilosopherThread extends Thread {
private final int meals;
private final Fork left;
private final Fork right;

public PhilosopherThread(Fork left, Fork right) {
this.left = left;
this.right = right;

}

public void run() { … }
}

79

Dining Philosophers Using TM

spcl.inf.ethz.ch

@spcl_eth

Fork[] forks = new Fork[tableSize];

for (int i = 0; i < tableSize; i++)
forks[i] = new Fork();

PhilosopherThread[] threads =
new PhilosopherThread[tableSize];

for (int i = 0; i < tableSize; i++)
threads[i] = new PhilosopherThread(

forks[i],
forks[(i + 1) % tableSize]);

Dining Philosophers Using TM

80

spcl.inf.ethz.ch

@spcl_eth

class PhilosopherThread extends Thread {
…

public void run() {
for (int m = 0; m < meals; m++) {

// THINK
pickUpBothForks();
// EAT
putDownForks();

}
}

…
}

Dining Philosophers Using TM

81

spcl.inf.ethz.ch

@spcl_eth

class PhilosopherThread extends Thread {
…

private void pickUpBothForks() {
STM.atomic(new Runnable() { public void run() {

if (left.inUse.get() || right.inUse.get())
STM.retry();

left.inUse.set(true);
right.inUse.set(true);

}});
}

…
}

Dining Philosophers Using TM

82

spcl.inf.ethz.ch

@spcl_eth

class PhilosopherThread extends Thread {
…

private void putDownForks() {
STM.atomic(new Runnable() { public void run() {

left.inUse.set(false);
right.inUse.set(false);

}});

}
…

}

Dining Philosophers Using TM

83

spcl.inf.ethz.ch

@spcl_eth

 It is not clear what are the best semantics for transactions

 Getting good performance can be challenging

 I/O operations (e.g., print to screen)
Can we perform I/O operations in a transaction?

Issues with transactions

84

spcl.inf.ethz.ch

@spcl_eth

● Locks are too hard!

● Transactional Memory tries to remove the burden from the programmer

● STM / HTM

● Remains to be seen whether it will be widely adopted in the future

Summary

85

spcl.inf.ethz.ch

@spcl_eth

Simon Peyton Jones,
Beautiful concurrency
http://research.microsoft.com/pubs/74063/beautiful.pdf

Dan Grossman,
The Transactional Memory / Garbage Collection Analogy
https://homes.cs.washington.edu/~djg/papers/analogy_oopsla07.pdf

Additional Reading

86

spcl.inf.ethz.ch

@spcl_eth

Distributed Memory
& Message Passing

87

spcl.inf.ethz.ch

@spcl_eth

Considered

Parallel / Concurrent

Fork-Join / Threads

OOP on Shared Memory

Locking / Lock Free / Transactional

Semaphores / Monitors

88

So far

spcl.inf.ethz.ch

@spcl_eth

Many of the problems of parallel/concurrent programming come from sharing
state

 Complexity of locks, race conditions, ….

What if we avoid sharing state?

89

Sharing State

spcl.inf.ethz.ch

@spcl_eth

Functional Programming

 Immutable state  no synchronization required

Message Passing: Isolated mutable state

 State is mutable, but not shared: Each thread/task has its private state

 Tasks cooperate via message passing

90

Alternatives

spcl.inf.ethz.ch

@spcl_eth

Programming Models

 CSP: Communicating Sequential Processes

 Actor programming model

Framework

 MPI (Message Passing Interface)

91

Concurrent Message Passing

spcl.inf.ethz.ch

@spcl_eth

92

Shared vs Distributed memory

CPU CPU CPU

Mem

CPU CPU CPU

Mem Mem Mem

Interconnect Network

spcl.inf.ethz.ch

@spcl_eth

Shared memory architectures (e.g., multicores)

 Both message passing and sharing state is used

 Message passing in shared memory:
Can be slower than sharing data
Easy to implement
Arguably, easier to reason about

Distributed memory architectures (e.g., datacenters, supercomputers, clusters)
 Sharing state is challenging and often inefficient

 Almost exclusively use message passing (slowly changing though)

 Additional concerns: e.g., failures

93

Shared/Distributed memory programming models

