
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

Parallel Programming

Sequential Consistency, Consensus
+ Transactional Memory

spcl.inf.ethz.ch

@spcl_eth

 Finish introduction of the concept of Linearizability
 how to make parallel software correct!

 (Re-)Introduce Sequential Consistency
 how to argue about memory values

 Consensus and wait-freedom
 The simplest parallel object that’s already too hard for many

 Begin discussion about transactional memory
 Optimistic approach

 Simplifies reasoning and programming

 Still somewhat in development

 Need to understand concepts

2

Learning goals for today

spcl.inf.ethz.ch

@spcl_eth

Split method calls into two events. Notation:

Invocation Response

A q.enq(x) A q: void

More formal

thread

object method

arguments thread

object

result

3

spcl.inf.ethz.ch

@spcl_eth

History H = sequence of invocations and responses

A q.enq(3)

A q:void

A q.enq(5)

H B p.enq(4)

B p:void

B q.deq()

B q:3

Invocations and response match, if thread

names agree and object names agree

An invocation is pending if it has no matching

response.

A subhistory is complete when it has no

pending responses.

4

History

spcl.inf.ethz.ch

@spcl_eth

Object projections
A q.enq(3)

A q:void

A q.enq(5)

B p.enq(4)

B p:void

B q.deq()

B q:3

Thread projections
A q.enq(3)

A q:void

A q.enq(5)

B p.enq(4)

B p:void

B q.deq()

B q:3

Projections

H|q =

H|B =

5

spcl.inf.ethz.ch

@spcl_eth

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

Complete subhistory

History H without its

pending invocations.

Complete subhistories

complete (H) =

6

spcl.inf.ethz.ch

@spcl_eth

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

A q:enq(5)

Sequential history:

 Method calls of different threads do not
interleave.

 A final pending invocation is ok.

Sequential histories

7

spcl.inf.ethz.ch

@spcl_eth

H= A q.enq(3)

B p.enq(4)

B p:void

B q.deq()

A q:void

B q:3

Well formed histories
Well formed history:

Per thread projections sequential

H|A = A q.enq(3)

A q:void

H|B = B p.enq(4)

B p:void

B q.deq()

B q:3

8

spcl.inf.ethz.ch

@spcl_eth

H=

A q.enq(3)

B p.enq(4)

B p:void

B q.deq()

A q:void

B q:3

G =

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

Equivalent histories

H and G
equivalent:

H|A = G|A
H|B = G|B

9

spcl.inf.ethz.ch

@spcl_eth

Sequential specification tells if a

single-threaded, single object

history is legal

Example: pre- / post conditions

A sequential history H is legal, if

 for every object x

 H|x adheres to the sequential

specification of x

Legal histories

10

spcl.inf.ethz.ch

@spcl_eth

A method call precedes another method

call if the response event precedes the

invocation event

A q.enq(3)

B p.enq(4)

B p:void

A q:void

B q.deq()

B q:3

if no precedence then method calls

overlap

A q.enq(3)

B p.enq(4)

B p:void

B q.deq()

A q:void

B q:3

Precedence

11

spcl.inf.ethz.ch

@spcl_eth

Given: history𝐻 and method executions𝑚0 and 𝑚1 on 𝐻

Definition: 𝒎𝟎 →𝑯 𝒎𝟏 means 𝒎𝟎 precedes𝒎𝟏

→𝑯 is a relation and implies a partial order on H. The order is total when H is
sequential.

Notation

12

spcl.inf.ethz.ch

@spcl_eth

History 𝐻 is linearizable if it can be extended to a history 𝐺

 appending zero or more responses to pending invocations that took effect

 discarding zero or more pending invocations that did not take effect

such that G is equivalent to a legal sequential history 𝑆 with

→𝑮⊂→𝑺

Linearizability

13

spcl.inf.ethz.ch

@spcl_eth

14

Invocations that took effect … ?

A
q.enq(x)

B
q.deq() x

C
flag.read()  ?

cannot be removed
because B already took
effect into account

can be removed,
nobody relies on this

spcl.inf.ethz.ch

@spcl_eth

→𝑮= 𝒂 → 𝒄, 𝒃 → 𝒄

→𝑺= 𝒂 → 𝒃, 𝒂 → 𝒄, 𝒃 → 𝒄

→𝑮⊂→𝑺 ? What does this mean?

A
a

B
b

c

time

→𝑮

→𝑺 →𝑺

15

In other words: S respects
the real-time order of G

Linearizability:
limitation on the

possible choice of S

spcl.inf.ethz.ch

@spcl_eth

Composability Theorem

History H is linearizable if and only if

for every object x

H|x is linearizable

Consequence:

Modularity

• Linearizability of objects can be proven in
isolation

• Independently implemented objects can
be composed

Composability

16

spcl.inf.ethz.ch

@spcl_eth

Memory location for values of primitive type (boolean, int, ...)

• operations read and write

Linearizable with a single linearization point, i.e.

• sequentially consistent, every read operation yields most recently written
value

• for non-overlapping operations, the realtime order is respected.

Recall: Atomic Registers

17

spcl.inf.ethz.ch

@spcl_eth

public T deq() throws EmptyException {

lock.lock();

try {

if (tail == head)

throw new EmptyException();

T x = items[head % items.length];

head++;

return x;

} finally {

lock.unlock();

}

}

Reasoning About Linearizability (Locking)

head

tail

Linearization points
are when locks are released

18

spcl.inf.ethz.ch

@spcl_eth

class WaitFreeQueue {

volatile int head = 0, tail=0;

AtomicReferenceArray<T>[] items =

new AtomicReferenceArray<T>(capacity);

public boolean enq (T x) {

if (tail – heap == capacity) return false;

items.set((tail+2) % capacity, x);

tail++;

return true;

}

public T deq() {

if (tail - head == 0) return null;

int x = items.get((head+1) % capacity);

head++;

return x;

}

}

Reasoning About Linearizability (Wait-free example)

Linearization point
for (only one)
enqueuer

Linearization point
for (only one)
dequeuer

head

tail

19

Linearization point

Linearization point

spcl.inf.ethz.ch

@spcl_eth

public T dequeue() {
while (true) {

Node first = head.get();
Node last = tail.get();
Node next = first.next.get();
if (first == last) {

if (next == null) return null;
else tail.compareAndSet(last, next);

}
else {

T value = next.item;
if (head.compareAndSet(first, next))

return value;
}

}
}

Reasoning About Linearizability (Lock-free example)

Linearization point

Linearization point

Linearization point

20

spcl.inf.ethz.ch

@spcl_eth

Identify one atomic step where the method “happens”
 Critical section

 Machine instruction

Does not always work
 Might need to define several different steps for a given method

 Linearizability summary:
 Powerful specification tool for shared objects

 Allows us to capture the notion of objects being “atomic”

Linearizability Strategy & Summary

21

spcl.inf.ethz.ch

@spcl_eth

Sequential Consistency

22

spcl.inf.ethz.ch

@spcl_eth

History 𝐻 is sequentially consistent if it can be extended to a history 𝐺

 appending zero or more responses to pending invocations that took effect

 discarding zero or more pending invocations that did not take effect

such that G is equivalent to a legal sequential history 𝑆.

(Note that →𝐺 ⊂→𝑆 is not required, i.e., no order across threads required)
(Sequential Consistency is weaker than Linearizability)

Alternative: Sequential Consistency

23

spcl.inf.ethz.ch

@spcl_eth

 Require that operations done by one thread respect program order

 No need to preserve real-time order
 Cannot re-order operations done by the same thread

 Can re-order non-overlapping operations done by different threads

 Often used to describe multiprocessor memory architectures

Alternative: Sequential Consistency

24

spcl.inf.ethz.ch

@spcl_eth

Example

A
q.enq(x)

B
q.enq(y)

q.deq() y

time

25

spcl.inf.ethz.ch

@spcl_eth

Not linearizable

A
q.enq(x)

B
q.enq(y)

q.deq() y

time

x is first in queue

26

spcl.inf.ethz.ch

@spcl_eth

Yet sequentially consistent!

A
q.enq(x)

B
q.enq(y)

q.deq() y

time

27

spcl.inf.ethz.ch

@spcl_eth

Sequential Consistency is not a local property

(and thus we lose composability…)

Theorem

Can somebody remind me what
“composability” meant?

28

spcl.inf.ethz.ch

@spcl_eth

Proof by Example: FIFO Queue

H = A p.enq(x)
B q.enq(y)
A p:void
A q.enq(x)
B q:void
B p.enq(y)
A q:void
A p.deq()
B p:void
B q.deq();
A p:y
B q:x

A
p.enq(x)

B
q.enq(y)

p.deq() y

p.enq(y)

time

q.enq(x)

q.deq() x

29

spcl.inf.ethz.ch

@spcl_eth

H|q sequentially consistent

H = A p.enq(x)
B q.enq(y)
A p:void
A q.enq(x)
B q:void
B p.enq(y)
A q:void
A p.deq()
B p:void
B q.deq();
A p:y
B q:x

A
p.enq(x)

B
q.enq(y)

p.deq() y

p.enq(y)

time

q.enq(x)

q.deq() x

30

spcl.inf.ethz.ch

@spcl_eth

H|p sequentially consistent

H = A p.enq(x)
B q.enq(y)
A p:void
A q.enq(x)
B q:void
B p.enq(y)
A q:void
A p.deq()
B p:void
B q.deq();
A p:y
B q:x

A
p.enq(x)

B
q.enq(y)

p.deq() y

p.enq(y)

time

q.enq(x)

q.deq() x

31

spcl.inf.ethz.ch

@spcl_eth

Ordering imposed by H|q and H|p

 H is not
sequentially
consistentA

p.enq(x)

B
q.enq(y)

p.deq() y

p.enq(y)

time

q.enq(x)

q.deq() x

32

spcl.inf.ethz.ch

@spcl_eth

Another example: Flags

Each object update (H|x and H|y) is sequentially consistent

Entire history is not sequentially consistent

A
x.write(1)

B
y.write(1)

y.read()0

x.read() 0

33

spcl.inf.ethz.ch

@spcl_eth

Reminder: Consequence for Peterson Lock (Flag Principle)

Sequential Consistency  At least one of the processes A and B read flag[1-id] = true.
If both processes read flag = true then both processes eventually read the same value
for victim().

A
flag[0].write(true)

B
flag[1].write(true)

flag[1].read() ?

flag[0].read()  ?

flag[id] = true;

victim = id;

while (flag[1-id] && victim == id);

victim.write(0)

victim.write(1)

victim.read()  ?

victim.read()  ?

34

spcl.inf.ethz.ch

@spcl_eth

Another idea: Programs should respect real-time order of algorithms separated by
periods of quiescence.

Side Remark: Quiescent Consistency

A
q.deq() X

B
q.size()  n

q.enq(X)

… quiescence…

35

In other words: quiescent consistency requires non-overlapping methods to take
effect in their real-time order!

spcl.inf.ethz.ch

@spcl_eth

Quiescent consistency is incomparable to Sequential Consistency

This example is sequentially consistent but not quiescently consistent

Side Remark: Quiescent Consistency

A

B

q.deq() Xq.enq(Y)

q.deq() Yq.enq(X)

36

spcl.inf.ethz.ch

@spcl_eth

Quiescent consistency is incomparable to Sequential Consistency

This example is quiescently consistent but not sequentially consistent
(note that initially the queue is empty)

Side Remark: Quiescent Consistency

A
q.deq() X

B
q.size()  1

q.enq(X)

37

spcl.inf.ethz.ch

@spcl_eth

This pattern
Write mine, read yours

is exactly the flag principle
Heart of mutual exclusion

 Peterson
 Bakery, etc.

Sequential Consistency seems non-
negotiable!

… but:

Many hardware architects think that
sequential consistency is too strong

Too expensive to implement in modern
hardware

Assume that flag principle
Violated by default

Honored by explicit request (e.g., volatile)

Discussion Recall our discussions
at the beginning!

Recall our short
discussion of caches

38

spcl.inf.ethz.ch

@spcl_eth

Memory hierarchy

 On modern multiprocessors, processors do not read and write directly to memory.

 Memory accesses are very slow compared to processor speeds.

 Instead, each processor reads and writes directly to a cache.

While writing to memory

 A processor can execute hundreds, or even thousands of instructions.

 Why delay on every memory write?

 Instead, write back in parallel with rest of the program.

Recall: Memories and caches

39

spcl.inf.ethz.ch

@spcl_eth

To read a memory location,
load data into cache.

To write a memory location
update cached copy,

lazily write cached data back to memory

“Flag-violating” history is actually OK
processors delay writing to memory

until after reads have been issued.

Otherwise unacceptable delay between read
and write instructions.

Writing to memory = mailing a letter

Vast majority of reads & writes
Not for synchronization

No need to idle waiting for post office

If you want to synchronize
Announce it explicitly

Pay for it only when you need it

Recall: Memory operations

40

spcl.inf.ethz.ch

@spcl_eth

Explicit

Memory barrier instruction
Flush unwritten caches

Bring caches up to date

Compilers often do this for you
Entering and leaving critical sections

Implicit

In Java, can ask compiler to keep a variable
up-to-date with volatile keyword

Also inhibits reordering, removing from
loops & other optimizations

Synchronization

41

spcl.inf.ethz.ch

@spcl_eth

Weaker than sequential consistency

But you can get sequential consistency at a price [1]

Concept of linearizability more appropriate for high-level software

Real-World Hardware Memory

[1]: H. Schweizer, M. Besta, T. Hoefler: Evaluating the Cost of Atomic Operations on Modern Architectures, ACM PACT’15 42

spcl.inf.ethz.ch

@spcl_eth

Linearizability
Operation takes effect instantaneously between invocation and response

Uses sequential specification, locality implies composablity

Good for high level objects

Sequential Consistency
Not composable

Harder to work with in software development

Good way to think about hardware models

Linearizability vs. Sequential Consistency

43

spcl.inf.ethz.ch

@spcl_eth

Consensus

Literature:
Herlihy: Chapter 5.1-5.4, 5.6-5.8

44

spcl.inf.ethz.ch

@spcl_eth

Consider an object c with the following interface

public interface Consensus<T> {

T decide (T value);

}

A number of threads call c.decide(v) with an input value v each.

Consensus

P

consensus
object

R

Q

45

spcl.inf.ethz.ch

@spcl_eth

Requirements on consensus protocol

• wait-free: consensus returns in finite time for each thread

• consistent: all threads decide the same value

• valid: the common decision value is some thread's input

 linearizability of consensus must be such that first thread's decision is
adopted for all threads.

Consensus protocol
P

consensus
object

R

Q

46

spcl.inf.ethz.ch

@spcl_eth

Consensus

A
c.decide(x)x

B
c.decide(y) x

C
c.decide(z)x

time

47

spcl.inf.ethz.ch

@spcl_eth

A class C solves n-thread consensus if there exists a consensus protocol using
any number of objects of class C and any number of atomic registers.

Consensus number of C: largest n such that C solves n-thread consensus.

Consensus number

48

spcl.inf.ethz.ch

@spcl_eth

Theorem: Atomic Registers have consensus number 1.

[Proof: Herlihy, Ch. 5, presented later if we have time!]

Corollary: There is no wait-free implementation of n-thread consensus, n>1,
from read-write registers

Atomic registers

49

spcl.inf.ethz.ch

@spcl_eth

Theorem: Compare-And-Swap has infinite consensus number.

How to prove this?

Compare and swap/set

50

spcl.inf.ethz.ch

@spcl_eth

class CASConsensus {
private final int FIRST = -1;
private AtomicInteger r = new AtomicInteger(FIRST); // supports CAS
private AtomicIntegerArray proposed; // suffices to be atomic register

… // constructor (allocate array proposed etc.)

public Object decide (Object value) {
int i = ThreadID.get();
proposed.set(i, value);
if (r.compareAndSet(FIRST, i)) // I won

return proposed.get(i); // = value
else

return proposed.get(r.get());
}

}

Proof by construction

51

spcl.inf.ethz.ch

@spcl_eth

Theorem: There is no wait-free implementation of a FIFO queue with atomic
registers

How to prove this now?

Proof follows.

How to use this? Wait-free FIFO queue

52

Hint: They have
consensus number 1!

spcl.inf.ethz.ch

@spcl_eth

Can a FIFO queue implement two-thread consensus?

proposed array

FIFO queue with red
and black balls8

red ball black ball

53

spcl.inf.ethz.ch

@spcl_eth

Protocol: Write value to array

0 1
0

54

spcl.inf.ethz.ch

@spcl_eth

Protocol: Take next item from queue

0

0 1

8

55

spcl.inf.ethz.ch

@spcl_eth

Protocol: Take next Item from Queue

0 1
I got the red ball, so I will decide my value I got the black ball, so I will decide the other’s

value from the array

8

56

spcl.inf.ethz.ch

@spcl_eth

If one thread gets the red ball

Then the other gets the black ball

Winner decides her own value

Loser can find winner’s value in array
Because threads write array

Before dequeueing from queue

Why does this work?

57

spcl.inf.ethz.ch

@spcl_eth

Given
A consensus protocol from queue and registers

Assume there exists
A queue implementation from atomic registers

Substitution yields:
A wait-free consensus protocol from atomic registers
However: atomic registers have consensus number 1

Wait-free queue implementation from atomic registers?

58

spcl.inf.ethz.ch

@spcl_eth

We know

• Wait-free FIFO queues have consensus number 2

• Test-And-Set, getAndSet, getAndIncrement have consensus number 2

• CAS has consensus number ∞

 wait-free FIFO queues, wait-free RMW operations and CAS cannot be
implemented with atomic registers!

Why consensus is important

59

spcl.inf.ethz.ch

@spcl_eth

1 Read/Write Registers

2 getAndSet, getAndIncrement, … FIFO Queue
LIFO Stack

.

.

∞ CompareAndSet, … Multiple Assignment

The Consensus Hierarchy

60

spcl.inf.ethz.ch

@spcl_eth

Squaring the circle
Geometric way to construct a square with the
same area as a given circle with compass and
straightedge using a finite number of steps.

There is an algebraic proof that no such
construction exists.

People tried it for hundreds of years, some
still try it today. Apparently they do not
believe the mathematical proof.

Let's not do the same mistake in our field...:
provably there is no way to construct certain
wait-free algorithms with atomic registers.
Don't even try.

Importance of Consensus by Analogy

r=1

𝜋

61

spcl.inf.ethz.ch

@spcl_eth

Motivation for

Transactional Memory

62

spcl.inf.ethz.ch

@spcl_eth

Motivation: programming with locks is too difficult

Lock-free programming is even more difficult...

Goal: remove the burden of synchronization from the programmer and place it
in the system (hardware / software)

Transactional Memory in a nutshell

Literature:
-Herlihy Chapter 18.1 – 18.2.
-Herlihy Chapter 18.3. interesting but too detailed for this course.

63

spcl.inf.ethz.ch

@spcl_eth

Deadlocks: threads attempt to take common locks in different orders

What is wrong with locking?

64

spcl.inf.ethz.ch

@spcl_eth

Convoying: thread holding a resource R is descheduled while other threads
queue up waiting for R

What is wrong with locking?

65

spcl.inf.ethz.ch

@spcl_eth

Priority Inversion: lower priority thread holds a resource R that a high priority
thread is waiting on

What is wrong with locking?

66

spcl.inf.ethz.ch

@spcl_eth

Association of locks and data established by convention.

The best you can do is reasonably document your code!

What is wrong with locking?

67

spcl.inf.ethz.ch

@spcl_eth

Example: Unbounded Queue (FIFO)

What is wrong with CAS?

sentinel node node node node node

head tail

value value value value value

public class LockFreeQueue<T> {

private AtomicReference<Node> head;

private AtomicReference<Node> tail;

public void enq(T item);

public T deq();

}

public class Node {

public T value;

public AtomicReference<Node> next;

public Node(T v) {

value = v;

next = new AtomicReference<Node>(null);

}

}

68

spcl.inf.ethz.ch

@spcl_eth

Enqueue

S node node node node node

head tail

new
①

②

CAS next

CAS tail

value value value value value value

Two CAS operations 
half finished enqueue
visible to other processes

69

spcl.inf.ethz.ch

@spcl_eth

Dequeue

S node node node node node

head tail

①

②

value value value value value
read
value

CAS
head

70

spcl.inf.ethz.ch

@spcl_eth

public class LockFreeQueue<T> {
..

public void enq(T item) {
Node node = new Node(item);
while(true){

Node last = tail.get();
Node next = last.next.get();
if (last == tail.get()) {

if (next == null)
if (last.next.compareAndSet(next, node)) {

tail.compareAndSet(last, node);
return;

}
else

tail.compareAndSet(last, next);
}

}
}

}

Code for enqueue

Half finished insert may happen!

Help other processes with finishing
operations ( lock-free)

71

spcl.inf.ethz.ch

@spcl_eth

public class LockFreeQueue<T> {

..

public void enq(T item) {

Node node = new Node(item);

while(true) {

Node last = tail.get();

Node next = last.next.get();

if (multiCompareAndSet({last.next, tail},{next, last},{node, node})

return;

}

}

}

Code with hypothetical DCAS

This code ensures consistency of both next and last:
operation either fails completely without effect or
the effect happens atomically

72

spcl.inf.ethz.ch

@spcl_eth

class Account {
private final Integer id; // account id
private Integer balance; // account balance

Account(int id, int balance) {
this.id = new Integer(id);
this.balance = new Integer(balance);

}

synchronized void withdraw(int amount) {
// assume that there are always sufficient funds...
this.balance = this.balance – amount;

}

synchronized void deposit(int amount) {
this.balance = this.balance + amount;

}
}

More problems: Bank account

73

spcl.inf.ethz.ch

@spcl_eth

void transfer_unsafe(Account a, Account b, int amount) {

a.withdraw(amount);
b.deposit(amount);

}

Bank account transfer (unsafe)

Transfer does not happen
atomically

A thread might observe the withdraw,
but not the deposit

74

spcl.inf.ethz.ch

@spcl_eth

void transfer_deadlock(Account a, Account b, int amount) {
synchronized (a) {

synchronized (b) {
a.withdraw(amount);
b.deposit(amount);

}
}

}

Bank account transfer (can cause a deadlock)

75

Concurrently executing:

 transfer_deadlock(a, b)

 transfer_deadlock(b, a)

Might lead to a deadlock

spcl.inf.ethz.ch

@spcl_eth

void transfer(Account a, Account b, int amount) {
if (a.id < b.id) {

synchronized (a) {
synchronized (b) {

a.withdraw(amount);
b.deposit(amount);

}
}

} else {
synchronized (b) {

synchronized (a) {
a.withdraw(amount);
b.deposit(amount);

}
}

}
}

Bank account transfer (lock ordering to avoid deadlock)

76

spcl.inf.ethz.ch

@spcl_eth

void transfer_elegant(Account a, Account b, int amount) {

Account first, second;
if (a.id < b.id) {

first = a;
second = b;

} else {
first = b;
second = a;

}

synchronized (first) {
synchronized (second) {

a.withdraw(amount);
b.deposit(amount);

}
}

}

Bank account transfer (slightly better ordering version)

Code for the actual operation

C
o

d
e fo

r syn
ch

ro
n

izatio
n

77

spcl.inf.ethz.ch

@spcl_eth

Ensuring ordering (and correctness) is really hard
(even for advanced programmers)

 rules are ad-hoc, and not part of the program

 (documented in comments at best-case scenario)

Locks are not composable
 how can you combine n thread-safe operations?

 internal details about locking are required

 big problem, especially for programming “in the large”

Lack of composability

78

spcl.inf.ethz.ch

@spcl_eth

Locks are pessimistic
● worst is assumed

● performance overhead paid every time

Locking mechanism is hard-wired to the program
● synchronization / rest of the program cannot be separated

● changing synchronization scheme → changing all of the program

Problems using locks (cont'd)

79

spcl.inf.ethz.ch

@spcl_eth

What the programmer actually meant to say is:

atomic {
a.withdraw(amount);
b.deposit(amount);

}

→ This is the idea behind transactional memory

also behind locks, isn’t it? The difference is the execution!

Solution: atomic blocks (or transactions)

I want these operations
to be performed atomically!

80

atomic {
a.withdraw(amount);
b.deposit(amount);

}

spcl.inf.ethz.ch

@spcl_eth

Programmer explicitly defines atomic code sections

Programmer is concerned with:
what: what operations should be atomic

but, not how: e.g., via locking
the how is left to the system (software, hardware or both)

(declarative approach)

Transactional Memory (TM)

81

spcl.inf.ethz.ch

@spcl_eth

 simpler and less error-prone code

 higher-level (declarative) semantics (what vs. how)

 composable

 analogy to garbage collection
(Dan Grossman. 2007. "The transactional memory / garbage collection analogy". SIGPLAN Not. 42,
10 (October 2007), 695-706.)

 optimistic by design
(does not require mutual exclusion)

TM benefits

82

spcl.inf.ethz.ch

@spcl_eth

changes made by a transaction are
made visible atomically

other threads preserve either the initial or the final state, but not any
intermediate states

Note: locks enforce atomicity via mutual exclusion, while transactions
do not require mutual exclusion

TM semantics: Atomicity

83

spcl.inf.ethz.ch

@spcl_eth

Transactions run in isolation

 while a transaction is running, effects from other transactions are not observed

● as if the transaction takes a snapshot of the global state when it begins and then
operates on that snapshot

TM semantics: Isolation

84

spcl.inf.ethz.ch

@spcl_eth

Serializability

TXA

Thread 0 Thread 1

TXB

TXA

TXB
as if:
Executed Sequentially

(transactions appear serialized)
85

spcl.inf.ethz.ch

@spcl_eth

Transactional Memory is heavily inspired by database transactions

ACID properties in database transactions:

● Atomicity

● Consistency (database remains in a consistent state)

● Isolation (no mutual corruption of data)

● Durability (e.g., transaction effects will survive power loss → stored in disk)

Transactions in databases

86

