
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

Parallel Programming

The ABA problem, a bit of
Concurrency Theory:
Linearizability, Sequential
Consistency, Consensus

spcl.inf.ethz.ch

@spcl_eth

 Repeat: CAS and atomics
 Basis for lock-free and wait-free algorithms

 Lock-free
 Stack - single update of head - simpler

 List - manage multiple pointers, importance of mark bits again

 Unbounded Queues
 More complex example for lock-free, how to design a more realistic datastructure

Last week

2

spcl.inf.ethz.ch

@spcl_eth

 Memory Reuse and the ABA Problem
 Understand one of the most complex pitfalls in shared memory parallel programming

 Various solutions

 Theoretical background (finally!)
 Linearizability

 Consistency

 Histories

 Composability

Learning goals today

3

Literature:
Herlihy: Chapter 10

spcl.inf.ethz.ch

@spcl_eth

REUSE AND THE ABA PROBLEM

4

spcl.inf.ethz.ch

@spcl_eth

public class ConcurrentStack {

AtomicReference<Node> top = new AtomicReference<Node>();

public void push(Long item) { … }

public Long pop() { … }

}

5

For the sake of simplicity: back to the stack

item
next

item
next

item
next

NULL

top

spcl.inf.ethz.ch

@spcl_eth

public Long pop() {

Node head, next;

do {

head = top.get();

if (head == null) return null;

next = head.next;

} while (!top.compareAndSet(head, next));

return head.item;

}

6

pop

A

B

C

NULL

top

head

next

Memorize "current
stack state" in local
variable head

Action is taken only
if "the stack state"
did not change

spcl.inf.ethz.ch

@spcl_eth

public void push(Long item) {

Node newi = new Node(item);

Node head;

do {

head = top.get();

newi.next = head;

} while (!top.compareAndSet(head, newi));

}

7

push

A

B

C

NULL

top

head

newi

Memorize "current
stack state" in local
variable head

Action is taken only
if "the stack state"
did not change

spcl.inf.ethz.ch

@spcl_eth

Assume we do not want to allocate for each push and maintain a node pool
instead. Does this work?

8

Node reuse

public class NodePool {

AtomicReference<Node> top new AtomicReference<Node>();

public void put(Node n) { … }

public Node get() { … }

}

public class ConcurrentStackP {
AtomicReference<Node> top = newAtomicReference<Node>();
NodePool pool = new NodePool();
...

}

spcl.inf.ethz.ch

@spcl_eth

public Node get(Long item) {
Node head, next;
do {

head = top.get();
if (head == null) return new Node(item);
next = head.next;

} while (!top.compareAndSet(head, next));
head.item = item;
return head;

}

public void put(Node n) {
Node head;
do {

head = top.get();
n.next = head;

} while (!top.compareAndSet(head, n));
}

9

NodePool put and get

Only difference to Stack
above: NodePool is in-place.

A node can be placed in one
and only one in-place data
structure. This is ok for a
global pool.

So far this works.

spcl.inf.ethz.ch

@spcl_eth

public void push(Long item) {
Node head;
Node new = pool.get(item);
do {

head = top.get();
new.next = head;

} while (!top.compareAndSet(head, new));
}

public Long pop() {
Node head, next;
do {

head = top.get();
if (head == null) return null;
next = head.next;

} while (!top.compareAndSet(head, next));
Long item = head.item;
pool.put(head);
return item;

}

10

Using the node pool

spcl.inf.ethz.ch

@spcl_eth

 run n consumer and producer threads

 each consumer / producer pushes / pops 10,000 elements and records sum of values

 if a pop returns an "empty" value, retry

 do this 10 times with / without node pool

 measure wall clock time (ms)

 check that sum of pushed values == sum of popped values

11

Experiment

spcl.inf.ethz.ch

@spcl_eth

nonblocking stack without reuse

n = 1, elapsed= 15, normalized= 15

n = 2, elapsed= 110, normalized= 55

n = 4, elapsed= 249, normalized= 62

n = 8, elapsed= 843, normalized= 105

n = 16, elapsed= 1653, normalized= 103

n = 32, elapsed= 3978, normalized= 124

n = 64, elapsed= 9953, normalized= 155

n = 128, elapsed= 24991, normalized= 195

nonblocking stack with reuse

n = 1, elapsed= 47, normalized= 47

n = 2, elapsed= 109, normalized= 54

n = 4, elapsed= 312, normalized= 78

n = 8, elapsed= 577, normalized= 72

n = 16, elapsed= 1747, normalized= 109

n = 32, elapsed= 2917, normalized= 91

n = 64, elapsed= 6599, normalized= 103

n = 128, elapsed= 12090, normalized= 94

12

Result (of one particular run)

yieppieh...

spcl.inf.ethz.ch

@spcl_eth

nonblocking stack with reuse

n = 1, elapsed= 62, normalized= 62

n = 2, elapsed= 78, normalized= 39

n = 4, elapsed= 250, normalized= 62

n = 8, elapsed= 515, normalized= 64

n = 16, elapsed= 1280, normalized= 80

n = 32, elapsed= 2629, normalized= 82

Exception in thread "main"
java.lang.RuntimeException:
sums of pushes and pops don't match

at stack.Measurement.main(Measurement.java:107)

nonblocking stack with reuse

n = 1, elapsed= 48, normalized= 48

n = 2, elapsed= 94, normalized= 47

n = 4, elapsed= 265, normalized= 66

n = 8, elapsed= 530, normalized= 66

n = 16, elapsed= 1248, normalized= 78

[and does not return]

13

But other runs ...

why?

spcl.inf.ethz.ch

@spcl_eth

14

ABA Problem

A

NULL

top

head

next

Thread X
in the middle
of pop: after read
but before CAS

Thread Y
pops A

A

NULL

top

Thread Z
pushes B

B

NULL

top

Thread Z'
pushes A

B

NULL

Thread X
completes pop

A

NULL

top

head

next

BA

time

Pool

Pool

top

public void push(Long item) {
Node head;
Node new = pool.get(item);
do {

head = top.get();
new.next = head;

} while (!top.compareAndSet(head, new));
}

public Long pop() {
Node head, next;
do {

head = top.get();
if (head == null) return null;
next = head.next;

} while (!top.compareAndSet(head, next));
Long item = head.item; pool.put(head); return item;

}

spcl.inf.ethz.ch

@spcl_eth

"The ABA problem ... occurs when one activity fails to recognize that a single
memory location was modified temporarily by another activity and therefore
erroneously assumes that the overall state has not been changed."

15

The ABA-Problem

A

X observes
Variable V as A

B

meanwhile V
changes to B ...

A

.. and back to A

A

X observes A again
and assumes the
state is unchanged

time

spcl.inf.ethz.ch

@spcl_eth

DCAS (double compare and swap)
not available on most platforms (we have used a variant for the lock-free list set)

Garbage Collection
relies on the existence of a GC

much too slow to use in the inner loop of a runtime kernel

can you implement a lock-free garbage collector relying on garbage collection?

Pointer Tagging
does not cure the problem, rather delay it

can be practical

Hazard Pointers

Transactional memory (later)

16

How to solve the ABA problem?

spcl.inf.ethz.ch

@spcl_eth

ABA problem usually occurs with CAS on pointers

Aligned addresses (values of pointers) make some bits available for pointer
tagging.

Example: pointer aligned modulo 32  5 bits available for tagging

Each time a pointer is stored in a data structure, the tag is increased by one.
Access to a data structure via address x – (x mod 32)

This makes the ABA problem very much less probable because now 32 versions
of each pointer exist.

17

Pointer Tagging

MSB 00000XXXXXXXX...

spcl.inf.ethz.ch

@spcl_eth

The ABA problem stems from reuse of a pointer P that has been read by some
thread X but not yet written with CAS by the same thread. Modification takes
place meanwhile by some other thread Y.

Idea to solve:

 before X reads P, it marks it hazarduous by entering it in one of the n (n=
number threads) slots of an array associated with the data structure (e.g.,
the stack)

 When finished (after the CAS), process X removes P from the array

 Before a process Y tries to reuse P, it checks all entries of the hazard array

18

Hazard Pointers

spcl.inf.ethz.ch

@spcl_eth

public class NonBlockingStackPooledHazardGlobal extends Stack {

AtomicReference<Node> top = new AtomicReference<Node>();

NodePoolHazard pool;

AtomicReferenceArray<Node> hazarduous;

public NonBlockingStackPooledHazardGlobal(int nThreads) {

hazarduous = new AtomicReferenceArray<Node>(nThreads);

pool = new NodePoolHazard(nThreads);

}

}

19

Hazard Pointers

null null null null null null null null null null null null

0 nThreads-1

spcl.inf.ethz.ch

@spcl_eth

boolean isHazarduous(Node node) {

for (int i = 0; i < hazarduous.length(); ++i)

if (hazarduous.get(i) == node)

return true;

return false;

}

void setHazardous(Node node) {

hazarduous.set(id, node); // id is current thread id

}

20

Hazard Pointers null null null null null null y null x null null

0 nThreads-1id

hd

spcl.inf.ethz.ch

@spcl_eth

public int pop(int id) {
Node head, next = null;
do {

do {
head = top.get();
setHazarduous(head);

} while (head == null || top.get() != head);
next = head.next;

} while (!top.compareAndSet(head, next));
setHazarduous(null);
int item = head.item;
if (!isHazardous(head))

pool.put(id, head);
return item;

}

21

Hazard Pointers

public void push(int id, Long item) {

Node head;

Node newi = pool.get(id, item);

do{

head = top.get();

newi.next = head;

} while (!top.compareAndSet(head, newi));

}

This ensures that no other thread
is already past the CAS and has
not seen our hazard pointer

null null null null null null y null x null null

0 nThreads-1id

hd

spcl.inf.ethz.ch

@spcl_eth

The ABA problem also occurs on the node pool.
Two solutions:

Thread-local node pools
 No protection necessary

 Does not help when push/pop operations are not well balanced

Hazard pointers on the global node pool
 Expensive operation for node reuse

 Equivalent to code above: node pool returns a node only when it is not
hazarduous

22

How to protect the Node Pool?

spcl.inf.ethz.ch

@spcl_eth

The Java code above does not really improve performance in comparison to
memory allocation plus garbage collection.

But it demonstrates how to solve the ABA problem principally.

The hazard pointers are placed in thread-local storage.

When thread-local storage can be replaced by processor-local storage, it scales
better*.

23

Remarks

* e.g., in Florian Negele, Combining Lock-Free Programming with Cooperative Multitasking
for a Portable Multiprocessor Runtime System, PhD Thesis, ETH Zürich 2014

spcl.inf.ethz.ch

@spcl_eth

Lock-free programming: new kind of problems in comparison to lock-based
programming:

 Atomic update of several pointers / values impossible, leading to new kind of
problems and solutions, such as threads that help each other in order to
guarantee global progress

 ABA problem (which disappears with a garbage collector)

24

Lessons Learned

spcl.inf.ethz.ch

@spcl_eth

• algorithms to implement critical sections and locks

• hardware support for implementing critical sections and locks

• how to reason about concurrent algorithms using state diagrams

• high-level constructs such as semaphores and monitors that raise the level
of abstraction

• lock-free implementations that require Read-Modify-Write operations

Recap: we have seen …

Literature:
Herlihy: Chapter 3.1 - 3.6

25

spcl.inf.ethz.ch

@spcl_eth

developed a clear overview of the theoretical concepts and notions behind
such as

• consistency

• linearizability

• consensus

• a language to talk formally about concurrency
I have been very hand-wavy when answering some tricky questions

• now that you appreciate the complexity
Let us introduce some non-trivial formalism to capture it

But: we have not (yet) …

26

spcl.inf.ethz.ch

@spcl_eth

class WaitFreeQueue {

volatile int head = 0, tail = 0;

AtomicReferenceArray<T>[] items =

new AtomicReferenceArray<T>(capacity);

public boolean enq(T x) {

if (tail – head == capacity) return false;

items.set((tail+1) % capacity, x);

tail++;

return true;

}

public T deq() {

if (tail - head == 0) return null;

int x = items.get((head+1) % capacity);

head++;

return x;

}

}

Example: Single-Enqueuer/Dequeuer bounded FIFO queue

e

a

b

c

d

tail

head % capacity

head

27

Given that there is only one
enqueuer and one
dequeuer process. Is the
implementation of the FIFO
queue from above correct?
Why/why not?

For a concurrent, locking
queue it is easier to argue.
Why/why not?

spcl.inf.ethz.ch

@spcl_eth

An object (e.g., in Java or C++) is a container for data and provides

• a set of methods to manipulate data

An object has a well defined

• state being modified during method invocations

Well-established as Floyd-Hoare logic to prove correctness

 Defining the objects behavior in terms of a set of pre- and postconditions
for each method is inherently sequential

Can we carry that forward to a parallel formulation?

Sequential Objects – Sequential Specifications (you know this)

28

spcl.inf.ethz.ch

@spcl_eth

A method call is the interval that starts with an invocation and ends with a
response.

A method call is called pending between invocation and response.

Method Calls

Thread

q.enq(7)

invocation response

29

spcl.inf.ethz.ch

@spcl_eth

Sequential vs. Concurrent

Sequential Concurrent

Meaningful state of objects only
between method calls.

Method calls can overlap. Object might
never be between method calls.
Exception: periods of quiescence.

Methods described in isolation. All possible interactions with concurrent
calls must be taken into account.

Can add new methods without
affecting older methods.

Must take into account that everything
can interact with everything else.

"Global clock" "Object clock"

30

spcl.inf.ethz.ch

@spcl_eth

time

Blocking Queue Behavior

Thread A

q.deq()

lock unlockdeq

Thread B

q.enq(…)

lock unlockenq

enq deq

With locking it becomes
simple to argue: things
become sequential. Can
we formalize this?

31

Which thread got the lock first?

spcl.inf.ethz.ch

@spcl_eth

Linearizability

32

“What's the difference between theory and practice?
Well, in theory there is none.” - folklore

spcl.inf.ethz.ch

@spcl_eth

Each method should appear to take effect instantaneously between

invocation and response events.

An object for which this is true for all possible executions is called

linearizable.

The object is correct if the associated sequential behavior is correct.

Linearizability

33

spcl.inf.ethz.ch

@spcl_eth

Is this particular execution linearizable?

A
q.enq(x)

B

q.deq() y

q.deq() x

time

34

q.eny(y)

spcl.inf.ethz.ch

@spcl_eth

Yes

A
q.enq(x)

B

q.eny(y)

q.deq() y

q.deq() x

time

35

spcl.inf.ethz.ch

@spcl_eth

Linearizable?

A
q.enq(x)

B
q.enq(y)

q.deq() y

time

36

spcl.inf.ethz.ch

@spcl_eth

37

No

A
q.enq(x)

B
q.enq(y)

q.deq() y

time

x is first in queue

spcl.inf.ethz.ch

@spcl_eth

38

Linearizable ?

A
q.enq(x)

B
q.eny(y)

q.deq() y

q.deq() x

time

spcl.inf.ethz.ch

@spcl_eth

39

Yes

A
q.enq(x)

B
q.eny(y)

q.deq() y

q.deq() x

time

spcl.inf.ethz.ch

@spcl_eth

40

And yes, another scenario.

A
q.enq(x)

B
q.eny(y)

q.deq() y

q.deq() x

time

spcl.inf.ethz.ch

@spcl_eth

41

Read/Write Register Example

A
write(0)

B

time

write(2)

write(1) read()1

spcl.inf.ethz.ch

@spcl_eth

42

Linearizable!

A
write(0)

B

write(1)

time

write(2)

read()1

spcl.inf.ethz.ch

@spcl_eth

43

Linearizable?

A
write(0)

B

time

write(2)read()1

write(1) read()1

spcl.inf.ethz.ch

@spcl_eth

44

No

A
write(0)

B

time

write(2)read()1

write(1) must
have happened

write(1) read()1

spcl.inf.ethz.ch

@spcl_eth

 We talk about executions in order to abstract away from actual method
content.
 A simplification you need to revert (mentally?) for analyzing codes

 The linearization points can often be specified, but they may depend on the
execution (not only the source code).

 Example: if the queue is empty,
a dequeue may fail,
while it does not fail with
a non-empty queue

Remark

public int deq() throws EmptyException {

if (tail == head)

throw new EmptyException();

int x = items.get(head++ % capacity);

return x;

}

45

spcl.inf.ethz.ch

@spcl_eth

Split method calls into two events. Notation:

Invocation Response

A q.enq(x) A q: void

More formal

thread

object method

arguments thread

object

result

46

spcl.inf.ethz.ch

@spcl_eth

History H = sequence of invocations and responses

A q.enq(3)

A q:void

A q.enq(5)

H B p.enq(4)

B p:void

B q.deq()

B q:3

Invocations and response match, if thread

names agree and object names agree

An invocation is pending if it has no matching

response.

A subhistory is complete when it has no

pending responses.

47

History

spcl.inf.ethz.ch

@spcl_eth

Object projections
A q.enq(3)

A q:void

A q.enq(5)

B p.enq(4)

B p:void

B q.deq()

B q:3

Thread projections
A q.enq(3)

A q:void

A q.enq(5)

B p.enq(4)

B p:void

B q.deq()

B q:3

Projections

H|q =

H|B =

48

spcl.inf.ethz.ch

@spcl_eth

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

Complete subhistory

History H without its

pending invocations.

Complete subhistories

complete (H) =

49

spcl.inf.ethz.ch

@spcl_eth

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

A q:enq(5)

Sequential history:

 Method calls of different threads do not
interleave.

 A final pending invocation is ok.

Sequential histories

50

spcl.inf.ethz.ch

@spcl_eth

H= A q.enq(3)

B p.enq(4)

B p:void

B q.deq()

A q:void

B q:3

Well formed histories
Well formed history:

Per thread projections sequential

H|A = A q.enq(3)

A q:void

H|B = B p.enq(4)

B p:void

B q.deq()

B q:3

51

spcl.inf.ethz.ch

@spcl_eth

H=

A q.enq(3)

B p.enq(4)

B p:void

B q.deq()

A q:void

B q:3

G =

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

Equivalent histories

H and G
equivalent:

H|A = G|A
H|B = G|B

52

spcl.inf.ethz.ch

@spcl_eth

Sequential specification tells if a

single-threaded, single object

history is legal

Example: pre- / post conditions

A sequential history H is legal, if

 for every object x

 H|x adheres to the sequential

specification of x

Legal histories

53

spcl.inf.ethz.ch

@spcl_eth

A method call precedes another method

call if the response event precedes the

invocation event

A q.enq(3)

B p.enq(4)

B p:void

A q:void

B q.deq()

B q:3

if no precedence then method calls

overlap

A q.enq(3)

B p.enq(4)

B p:void

B q.deq()

A q:void

B q:3

Precedence

54

spcl.inf.ethz.ch

@spcl_eth

Given: history𝐻 and method executions 𝑚0 and 𝑚1 on 𝐻

Definition: 𝒎𝟎 →𝑯 𝒎𝟏 means 𝒎𝟎 precedes 𝒎𝟏

→𝑯 is a relation and implies a partial order on H. The order is total when H is
sequential.

Notation

55

spcl.inf.ethz.ch

@spcl_eth

History 𝐻 is linearizable if it can be extended to a history 𝐺

 appending zero or more responses to pending invocations that took effect

 discarding zero or more pending invocations that did not take effect

such that G is equivalent to a legal sequential history 𝑆 with

→𝑮⊂→𝑺

Linearizability

56

spcl.inf.ethz.ch

@spcl_eth

57

Invocations that took effect … ?

A
q.enq(x)

B
q.deq() x

C
flag.read()  ?

cannot be removed
because B already took
effect into account

can be removed,
nobody relies on this

spcl.inf.ethz.ch

@spcl_eth

→𝑮= 𝒂 → 𝒄, 𝒃 → 𝒄

→𝑺= 𝒂 → 𝒃, 𝒂 → 𝒄, 𝒃 → 𝒄

→𝑮⊂→𝑺 ? What does this mean?

A
a

B
b

c

time

→𝑮

→𝑺 →𝑺

58

In other words: S respects
the real-time order of G

Linearizability: limitation on
the possible choice of S

spcl.inf.ethz.ch

@spcl_eth

Composability Theorem

History H is linearizable if and only if

for every object x

H|x is linearizable

Consequence:

Modularity

• Linearizability of objects can be proven in
isolation

• Independently implemented objects can
be composed

Composability

59

spcl.inf.ethz.ch

@spcl_eth

Memory location for values of primitive type (boolean, int, ...)

• operations read and write

Linearizable with a single linearization point, i.e.

• sequentially consistent, every read operation yields most recently written
value

• for non-overlapping operations, the realtime order is respected.

Recall: Atomic Registers

60

spcl.inf.ethz.ch

@spcl_eth

public T deq() throws EmptyException {

lock.lock();

try {

if (tail == head)

throw new EmptyException();

T x = items[head % items.length];

head++;

return x;

} finally {

lock.unlock();

}

}

Reasoning About Linearizability (Locking)

head

tail

Linearization points
are when locks are released

61

spcl.inf.ethz.ch

@spcl_eth

class WaitFreeQueue {

volatile int head = 0, tail=0;

AtomicReferenceArray<T>[] items =

new AtomicReferenceArray<T>(capacity);

public boolean enq (T x) {

if (tail – heap == capacity) return false;

items.set((tail+2) % capacity, x);

tail++;

return true;

}

public T deq() {

if (tail - head == 0) return null;

int x = items.get((head+1) % capacity);

head++;

return x;

}

}

Reasoning About Linearizability (Wait-free example)

Linearization point
for (only one)
enqueuer

Linearization point
for (only one)
dequeuer

head

tail

62

Linearization point

Linearization point

spcl.inf.ethz.ch

@spcl_eth

public T dequeue() {
while (true) {

Node first = head.get();
Node last = tail.get();
Node next = first.next.get();
if (first == last){

if (next == null) return null;
else tail.compareAndSet(last, next);

}
else {

T value = next.item;
if (head.compareAndSet(first, next))

return value;
}

}
}

Reasoning About Linearizability (Lock-free example)

Linearization point

Linearization point

Linearization point

63

spcl.inf.ethz.ch

@spcl_eth

64

Appendix (for next lecture)

spcl.inf.ethz.ch

@spcl_eth

Theorem: Atomic Registers have consensus number 1.

Proof strategy:

 Assume otherwise

 Reason about the properties of any such protocol

 Derive a contradiction

 Suffices to prove for binary consensus and n=2

Appendix: Atomic Registers have consensus number 1.

65

spcl.inf.ethz.ch

@spcl_eth

66

Wait-Free Computation

Either A or B “moves”

Moving means
Register read or

Register write

A moves B moves

spcl.inf.ethz.ch

@spcl_eth

67

The Two-Move Tree

Initial stateFinal states

spcl.inf.ethz.ch

@spcl_eth

68

Decision Values

1 0 0 1 1 1

spcl.inf.ethz.ch

@spcl_eth

69

Bivalent: Both Possible

1 1 1

bivalent

1 0 0

spcl.inf.ethz.ch

@spcl_eth

70

Univalent: Single Value Possible

1 1 1

univalent

1 0 0

spcl.inf.ethz.ch

@spcl_eth

71

x-valent: x Only Possible Decision

0 1 1 1

1-valent

01

spcl.inf.ethz.ch

@spcl_eth

Wait-free computation is a tree

Bivalent system states
 Outcome not fixed

Univalent states
 Outcome is fixed

 May not be “known” yet

1-Valent and 0-Valent states

Summary

72

spcl.inf.ethz.ch

@spcl_eth

Some initial state is bivalent

Outcome depends on
 Chance

Whim of the scheduler

Multiprocessor gods do play dice …

Lets prove this claim

Claim

73

spcl.inf.ethz.ch

@spcl_eth

74

Both Inputs 0

Univalent: all executions must decide 0

00

spcl.inf.ethz.ch

@spcl_eth

75

Both Inputs 0

Including this solo execution by A

0

spcl.inf.ethz.ch

@spcl_eth

76

Both Inputs 1

All executions must decide 1

11

spcl.inf.ethz.ch

@spcl_eth

77

Both Inputs 1

Including this solo execution by B

1

spcl.inf.ethz.ch

@spcl_eth

78

What if inputs differ?

10

By Way of contradiction: If univalent
all executions must decide on same value

spcl.inf.ethz.ch

@spcl_eth

79

The Possible Executions

Include the solo execution by A

that decides 0

0 1

spcl.inf.ethz.ch

@spcl_eth

80

The Possible Executions

Also include the solo execution by B

which we know decides 1

0 1

spcl.inf.ethz.ch

@spcl_eth

81

Possible Executions Include

Solo execution by A must decide 0 Solo execution by B must decide 1

0 1

How univalent is that?
(QED)

spcl.inf.ethz.ch

@spcl_eth

82

Critical States

0-valent 1-valent

critical

spcl.inf.ethz.ch

@spcl_eth

83

From a Critical State

c

If A goes first, protocol decides 0 If B goes first, protocol decides 1

0-valent 1-valent

spcl.inf.ethz.ch

@spcl_eth

84

Reaching Critical State

CA

CA

CB

c

CB
univalent

univalent

univalent

univalent

0-valent 1-valent

initially bivalent

spcl.inf.ethz.ch

@spcl_eth

Starting from a bivalent initial state

The protocol can reach a critical state
Otherwise we could stay bivalent forever

And the protocol is not wait-free

85

Critical States

spcl.inf.ethz.ch

@spcl_eth

So far, memory-independent!

True for
 Registers

 Message-passing

 Carrier pigeons

 Any kind of asynchronous computation

Model Dependency

86

spcl.inf.ethz.ch

@spcl_eth

 Reads and/or writes

 To same/different registers

Read-Write Memory

87

spcl.inf.ethz.ch

@spcl_eth

 Lets look at executions that:
 Start from a critical state

 Threads cause state to become univalent by reading or writing to same/different
registers

 End within a finite number of steps deciding either 0 or 1

 Show this leads to a contradiction

Completing the Proof

88

spcl.inf.ethz.ch

@spcl_eth

x.read() y.read() x.write() y.write()

x.read() ? ? ? ?

y.read() ? ? ? ?

x.write() ? ? ? ?

y.write() ? ? ? ?

89

Possible Interactions
A reads x A reads y

A reads y, B writes y

spcl.inf.ethz.ch

@spcl_eth

90

Some Thread Reads

A runs solo, eventually decides 0
B reads x

1

0

A runs solo, eventually decides
1

c

States look the same to A

spcl.inf.ethz.ch

@spcl_eth

x.read() y.read() x.write() y.write()

x.read() no no no no

y.read() no no no no

x.write() no no ? ?

y.write() no no ? ?

91

Possible Interactions

spcl.inf.ethz.ch

@spcl_eth

92

Writing Distinct Registers

A writes y B writes x

10

c

The song is the same

A writes y
B writes x

spcl.inf.ethz.ch

@spcl_eth

x.read() y.read() x.write() y.write()

x.read() no no no no

y.read() no no no no

x.write() no no ? no

y.write() no no no ?

93

Possible Interactions

spcl.inf.ethz.ch

@spcl_eth

94

Writing Same Registers

States look the same to A

A writes x B writes x

1

A runs solo, eventually
decides 1

c

0

A runs solo, eventually
decides 0

A writes x

spcl.inf.ethz.ch

@spcl_eth

x.read() y.read() x.write() y.write()

x.read() no no no no

y.read() no no no no

x.write() no no no no

y.write() no no no no

95

Proof complete.

spcl.inf.ethz.ch

@spcl_eth

Parts of this work are licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

96

• You are free:

– to Share — to copy, distribute and transmit the work

– to Remix — to adapt the work

• Under the following conditions:

– Attribution. You must attribute the work to “The Art of Multiprocessor Programming” (but not in any way that suggests
that the authors endorse you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same,
similar or a compatible license.

• For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a
link to

– http://creativecommons.org/licenses/by-sa/3.0/.

• Any of the above conditions can be waived if you get permission from the copyright holder.

• Nothing in this license impairs or restricts the author's moral rights.

Parts of the Material on these slides is based on
Art of Multiprocessor Programming slides by Maurice Herlihy & Nir
Shavit. License cf. above.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

