
spcl.inf.ethz.ch
@spcl_eth

TIMO SCHNEIDER <TIMOS@INF.ETHZ.CH>

DPHPC: Sequential Consistency
Recitation session

spcl.inf.ethz.ch
@spcl_eth

 We have access to Euler (no GPUs) and Leonhard (has GPUs)

– https://scicomp.ethz.ch/wiki/Getting_started_with_clusters

– On Leonhard we have to play nice, this is a shared resource of some groups with paid access

– No jobs longer than 30 min, no more than 1 running and 1 queued job per team

Login to both is via ssh i.e., ssh sctimo@login.leonhard.ethz.ch

 Or ssh sctimo@euler.ethz.ch

6

Cluster Access

spcl.inf.ethz.ch
@spcl_eth

 Check if everything you need is there
 Module avail/list/load/unload/switch

 Compile your program
 Euler/Leonhard run the Load Sharing Facility (LSF) batch system

 Launch the job!
 bsub –n <num cores> <app command> <app arguments>
 Tip: use job script!

 Check job status:
 bjobs

 Cancel job:
 bkill

 Other userful commands
 bqueues

7

Running Jobs

spcl.inf.ethz.ch
@spcl_eth

 Writes to same location
 Coherence

a) Write Serialization: all processors see writes to the same location in the same order

b) Write Propagation: a write will eventually be seen by other processors

 Writes to different location
 Memory Model: defines the ordering of writes and reads to different memory locations – the hardware

guarantees a certain consistency model and the programmer attempts to write correct programs with those
assumptions

8

Consistency vs Coherence

spcl.inf.ethz.ch
@spcl_eth

 Multiprocessor with bus-based snooping cache-coherence and write buffer
 Initially A=B=0

9

Consistency: Example

T1:
A=1
if (B==0){
 <enter critical section>
}

T1:
A=1
if (B==0){
 <enter critical section>
}

T2:
B=1
if (A==0){
 <enter critical section>
}

T2:
B=1
if (A==0){
 <enter critical section>
}

Does it work (in x86)?

• This lock implementation is based on two different variables (i.e., memory location)
• The stores are intercepted by the write buffer => P1 and P2 can enter the critical section at the same time
• Cache coherence is not involved here

Is that always true?Is that always true?

spcl.inf.ethz.ch
@spcl_eth

 Memory model specifies:
 How threads interact through memory
 What value a read can return
 When does a value update become visible to other threads
 What assumptions are allowed to make about memory when writing a program or applying some program

optimization

11

Memory Models

“A formal specification of how the memory system will
appear to the programmer, eliminating the gap between

the behavior expected by the programmer and the actual
behavior supported by a system.” [Adve’ 1995]

https://scicomp.ethz.ch/wiki/Getting_started_with_clusters
mailto:sctimo@login.leonhard.ethz.ch
mailto:sctimo@euler.ethz.ch

spcl.inf.ethz.ch
@spcl_eth

 Method calls act as if they occurred in a sequential order consistent with program order
 Method calls should appear to happen in a one-at-time, sequential order

 Method calls should appear to take effect in program order

12

Sequential Consistency

Program Order: Per-processor order of memory
accesses, determined by program‘s control flow.

Visibility Order: Order of memory accesses
observed by one or more processors

Herlihy, Maurice, and Nir Shavit. The Art of Multiprocessor Programming, Revised Reprint. Elsevier, 2012.

spcl.inf.ethz.ch
@spcl_eth

 Method calls act as if they occurred in a sequential order consistent with program order
 Method calls should appear to happen in a one-at-time, sequential order
 Method calls should appear to take effect in program order

13

Sequential Consistency Illustrated

Processors issue in
program order

“Switch” selects arbitrary
next operation

spcl.inf.ethz.ch
@spcl_eth

 Programmer’s view:
 Prefer sequential consistency
 Easiest to reason about

 Compiler/hardware designer’s view:
 Sequential consistency disallows many optimizations!
 Substantial speed difference
 Most architectures and compilers don’t adhere to sequential consistency!

 Solution: synchronized programming
 Access to shared data (aka. “racing accesses”) are ordered by synchronization operations
 Synchronization operations guarantee memory ordering (aka. fence)
 More later!

14

Sequential Consistency - Discussion

Memory Fence: special instructions that require all
previous memory accesses to complete before
proceeding (sequential consistency)

Memory Fence: special instructions that require all
previous memory accesses to complete before
proceeding (sequential consistency)

spcl.inf.ethz.ch
@spcl_eth

 Ideal: intuitive programming model (i.e., sequential consistency) and high-performance
 Not that easy

 Idea: Relax some constraints, but allow the programmer to enforce them from specific
portions of the code

 Some possible relaxations (different memory locations):
 Relax W->R: Reads may be reordered with older writes to different locations but not

with older writes to the same location (x86)
 Relax W->W: Writes can be reordered with other writes
 Relax R->W: Writes can be reordered with older reads

 A consistency model is identified by a set of constraints

16

Relaxed Memory Models

spcl.inf.ethz.ch
@spcl_eth

 They can destroy the program order (as seen from other CPUs), hence invalidate SC
 Overtaking of messages is desirable and should not be prohibited in general.
 Solution: memory barriers!

 x86 CPUs provide the mfence instruction
 a write barrier after each write gives sequentially consistent CPU behavior (and is as slow as a CPU without

store buffer)
 Use memory barriers only when necessary

17

Write Buffers

http://www2.in.tum.de/hp/file?fid=1276

spcl.inf.ethz.ch
@spcl_eth

18

Exercise 1

spcl.inf.ethz.ch
@spcl_eth

19

Exercise 2

	Slide 5
	Consistency vs Coherence
	Running Jobs
	Slide 8
	Consistency: Example
	Memory Models
	Sequential Consistency
	Sequential Consistency Illustrated
	Sequential Consistency - Discussion
	Relaxed Memory Models
	Write Buffers
	Exercise 1
	Exercise 2

