. . gy e T spcl.inf.ethz.ch
ETH:zurich : = N W @spcl_eth

TIMO SCHNEIDER <TIMOS@INF.ETHZ.CH>

DPHPC: Scheduling / Balance

Recitation session s

Reference:
Guy E. Blelloch and Bruce M. Maggs. 2010. Parallel algorithms. In Algorithms and theory of computation handbook
(2 ed.), Mikhail J. Atallah and Marina Blanton (Eds.). Chapman & Hall/CRC 25-25.

. -y e spcl.inf.ethz.ch
ETH:zurich - /\ﬁ,&z W @spcl_eth

Algorithm Cost

Work and depth can be viewed as the running time of an algorithm at two
limits: one processor (work) and an unlimited number of processors (depth).

Brent’s theorem provides bounds to the running time:

W<T<W+D
Pp P

Richard P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the Association for Computing Machinery, 21(2):201-206, 1974. 2

- . . i .- spcl.inf.ethz.ch
ETHzlrich -E- - (Y 7 A7 @speleth

Systems @ ETH zircn

Defining a DAG

‘ Strand: chain of serially executed instructions.

H Strands are partially ordered with dependencies

Sync nodes are where

Spawn nodes have two
the control flow merges

SUCCEeSSOrs

- . . i .- spcl.inf.ethz.ch
ETHzlrich -E- - (Y 7 A7 @speleth

Systems @ ETH zircn

Defining a DAG

Given an input size n:
« The work W (n) is the total number of strands.
« W(n)=13
« The depth D(n) is the length of the critical path
(measured in number of strands).
» Defines the minimum execution time of the computation
« D(n)=8

The ratio % measures the average available parallelism

Systems @ ETH zircn

Yy @spcl_eth

THzrich -1! . - : e {ﬁ&z spcl.inf.ethz.ch
X7 >

Scheduling a DAG

The DAG unfolds dynamically:
int fib (int n) {
if (n<2) return
(n);
else {
int x,y;
X = spawn fib(n-
1);
y = fib(n-2);
Sync; 2
return (x+y);

} 1 5 threads

Node: Sequence of instructions without call, spawn, sync, return
Edge: Dependency

o5 o . .' -_ - spcl.inf.ethz.ch
ETH:irich S-i- -) T @spol eth

ystems @ ETH e

Scheduling a DAG

The DAG unfolds dynamically:

1 5 threads

Remember oblivious algorithms?

. . : I spcl.inf.ethz.ch
ETH:zurich S -E- - /&)‘)} W @spcl_eth

ystems @ ETH zu.

Greedy Scheduler

" Do as much as possible in
every ste
y P]] executed
- A node is ready if all
predecessors have been executed
ready

. -y e spcl.inf.ethz.ch
ETH:zurich -E- - /\ﬁ,&z W @spcl_eth

Systems @ ETH zircn

Greedy Scheduler
" Do as much as possible in
every step executed
- A node is ready if all

predecessors have been executed

" Complete step:
" > pnodes are ready ready

" runanyp ?

. . - G i o spcl.inf.ethz.ch
ETH:zurich -E- : s /&&J 3 @spcl_eth

Systems @ ETH zivicn 2 —

Greedy Scheduler

Do as much as possible in
every step

A node is ready if all
predecessors have been executed

Complete step:
" > pnodes are ready ready

S
N

executed

run any p

Incomplete step:
" < pnodes ready

run all

v . o ol _ spcl.inf.ethz.ch
ETH:zurich -E- : /@,- W @spcl_eth

Systems @ ETH zircn

Greedy Scheduler

Maintain thread pool of live threads, each is ready or not
" Initial: Root thread in thread pool, all processors idle
" At the beginning of each step each processor is idle or has a thread T to work on

" Ifidle
" Get ready thread from pool

" Ifhasthread T

" Case 0: T has another instruction to execute
execute it

" Case 1: thread T spawns thread S
return T to pool, continue with S

" Case 2: T stalls
return T to pool, then idle

" Case 3: T dies
if parent of T has no living children, continue with the parent, otherwise idle

10

. . : I spcl.inf.ethz.ch
ETH:zurich -E- - /&)‘)} W @spcl_eth

Systems @ ETH zircn

Work Stealing Scheduler

" Each processor maintains a “ready deque:” deque of threads ready for execution; bottom
IS manipulated as a stack

threads can be removed -

ready deque<

threads can be added
or removed
(stack discipline) thread being executed

11

spcl.inf.ethz.ch

-y @spcl_eth

Work Stealing Scheduler

12

spcl.inf.ethz.ch

-y @spcl_eth

Work Stealing Scheduler

13

spcl.inf.ethz.ch

-y @spcl_eth

Work Stealing Scheduler

14

spcl.inf.ethz.ch

-y @spcl_eth

Work Stealing Scheduler

15

o5 o . .' -_ - spcl.inf.ethz.ch
ETH:irich S-i- -) T @spol eth

ystems @ ETH e

Work Stealing Scheduler

&) &) O &)
s

" When a processor runs out of work, it steals a task from the top of a random victim’s
deque.

16

spcl.inf.ethz.ch

-y @spcl_eth

Work Stealing Scheduler

17

spcl.inf.ethz.ch

-y @spcl_eth

Work Stealing Scheduler

18

v . o ol _ spcl.inf.ethz.ch
ETH:zurich -E- : /@,- W @spcl_eth

Systems @ ETH zircn

Work Stealing Scheduler

Each processor maintains a ready deque, bottom treated as stack
“ Initial: Root thread in deque of a random processor
“ Deque not empty:
" Processor takes thread T from bottom and starts working
" T spawns S: Put T on stack, continue with S
" T stalls: Take next thread from stack
" T dies: Take next thread from stack
" If T enables a stalled thread S, S is put on the stack of T's processor
" Deque empty:
" Steal thread from the top of a random (uniformly) processor’s deque

19

ETH:zurich -E-

spcl.inf.ethz.ch
Yy @spcl_eth

Systems @ ETH zircn

Recap: Balance Principle

Goal when optimizing/building HPC machine:

Minimize time to solution,

time(10) = time(comp) (otherwise we could have built a cheaper machine)
Observation: Flops/second increase faster than Bytes/second read from memory

Solution: Use caches! Their size increases at a similar rate! — Good, but does this help? (Blackboard)

t=20 CPU
NVIDIA doubling

Fermi time 10-year
Parameter C2050 years projection
Peak flops, p - Co 1.03 Tflop/s 1.7 59 Tflop/s
Peak bandwidth, 5 144 GB/s 2.8 1.7 TB/s
Latency, o 347.8 ns 10.5% 179.7 ns
Transfer size, L 128 Bytes 10.2 256 Bytes
Fast memory, Z 2.7 MB 2.0 83 MB
Cores, p 448 1.87 18k
p-Co/B 72 — 34.9
VZ/p 38.6 — 33.5

20

. . : I spcl.inf.ethz.ch
ETH:zurich -E- - /\j{gﬁ&z W @spcl_eth
Systems @ ETH zircn —

Recap: Assighment

Assume you have a balanced machine to compute the following code on a single processing
element:

for (i=0..n)
for (j=0..n)
all,]] = (a[i+1,)]+a[i-1,]]+a[i,j+1]+ali,j-1]+a[i,]]) / 5

If we increase the floating-point performance by a factor of 2, how much does the cache size M have
to be increased to re-balance?

