
spcl.inf.ethz.ch
@spcl_eth

TIMO SCHNEIDER <TIMOS@INF.ETHZ.CH>

DPHPC: Scheduling / Balance
Recitation session

Reference:
Guy E. Blelloch and Bruce M. Maggs. 2010. Parallel algorithms. In Algorithms and theory of computation handbook
(2 ed.), Mikhail J. Atallah and Marina Blanton (Eds.). Chapman & Hall/CRC 25-25.

spcl.inf.ethz.ch
@spcl_eth

2

Algorithm Cost

Work and depth can be viewed as the running time of an algorithm at two
limits: one processor (work) and an unlimited number of processors (depth).

Richard P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the Association for Computing Machinery, 21(2):201-206, 1974.

Brent’s theorem provides bounds to the running time:

spcl.inf.ethz.ch
@spcl_eth

3

Defining a DAG

Strand: chain of serially executed instructions.

Strands are partially ordered with dependencies

Spawn nodes have two
successors

Sync nodes are where
the control flow merges

spcl.inf.ethz.ch
@spcl_eth

4

Defining a DAG

spcl.inf.ethz.ch
@spcl_eth

5

Scheduling a DAG

int fib (int n) {
 if (n<2) return
(n);
 else {
 int x,y;
 x = spawn fib(n-
1);
 y = fib(n-2);
 sync;
 return (x+y);
 }
}

4

3

2

2

1 1 0

1 0

The DAG unfolds dynamically:

Node: Sequence of instructions without call, spawn, sync, return
Edge: Dependency

5 threads

spawn call

spcl.inf.ethz.ch
@spcl_eth

6

Scheduling a DAG

4

3

2

2

1 1 0

1 0

The DAG unfolds dynamically:

5 threads

spawn call

spawn

join
thread

Remember oblivious algorithms?

spcl.inf.ethz.ch
@spcl_eth

7

Greedy Scheduler

 Idea: Do as much as possible in
every step

 Definition: A node is ready if all
predecessors have been executed

executed

ready

p = 3

spcl.inf.ethz.ch
@spcl_eth

8

Greedy Scheduler

 Idea: Do as much as possible in
every step

 Definition: A node is ready if all
predecessors have been executed

 Complete step:
 ≥ p nodes are ready

 run any p

executed

ready

p = 3

spcl.inf.ethz.ch
@spcl_eth

9

Greedy Scheduler

 Idea: Do as much as possible in
every step

 Definition: A node is ready if all
predecessors have been executed

 Complete step:
 ≥ p nodes are ready

 run any p

 Incomplete step:
 < p nodes ready

 run all

executed

ready

p = 3

spcl.inf.ethz.ch
@spcl_eth

10

Greedy Scheduler

Maintain thread pool of live threads, each is ready or not
 Initial: Root thread in thread pool, all processors idle
 At the beginning of each step each processor is idle or has a thread T to work on
 If idle

 Get ready thread from pool

 If has thread T
 Case 0: T has another instruction to execute

execute it
 Case 1: thread T spawns thread S

return T to pool, continue with S
 Case 2: T stalls

return T to pool, then idle
 Case 3: T dies

if parent of T has no living children, continue with the parent, otherwise idle

spcl.inf.ethz.ch
@spcl_eth

11

Work Stealing Scheduler

 Each processor maintains a “ready deque:” deque of threads ready for execution; bottom
is manipulated as a stack

processor

ready deque

threads can be added
or removed

(stack discipline)

threads can be removed

thread being executed

spcl.inf.ethz.ch
@spcl_eth

12

Work Stealing Scheduler

PP PP PP PP

SpawnSpawn

spcl.inf.ethz.ch
@spcl_eth

13

Work Stealing Scheduler

PP PP PP PP

SpawnSpawn SpawnSpawn

spcl.inf.ethz.ch
@spcl_eth

14

Work Stealing Scheduler

PP PP PP PP

ReturnReturn

spcl.inf.ethz.ch
@spcl_eth

15

Work Stealing Scheduler

PP PP PP PP

ReturnReturn

spcl.inf.ethz.ch
@spcl_eth

16

Work Stealing Scheduler

PP PP PP PP

StealSteal

 When a processor runs out of work, it steals a task from the top of a random victim’s
deque.

spcl.inf.ethz.ch
@spcl_eth

17

Work Stealing Scheduler

PP PP PP PP

StealSteal

spcl.inf.ethz.ch
@spcl_eth

18

Work Stealing Scheduler

PP PP PP PP

spcl.inf.ethz.ch
@spcl_eth

19

Work Stealing Scheduler

Each processor maintains a ready deque, bottom treated as stack
 Initial: Root thread in deque of a random processor
 Deque not empty:

 Processor takes thread T from bottom and starts working
 T spawns S: Put T on stack, continue with S
 T stalls: Take next thread from stack
 T dies: Take next thread from stack
 If T enables a stalled thread S, S is put on the stack of T’s processor

 Deque empty:
 Steal thread from the top of a random (uniformly) processor’s deque

spcl.inf.ethz.ch
@spcl_eth

20

Recap: Balance Principle

Goal when optimizing/building HPC machine:
 Minimize time to solution,
 time(IO) = time(comp) (otherwise we could have built a cheaper machine)

Observation: Flops/second increase faster than Bytes/second read from memory

Solution: Use caches! Their size increases at a similar rate! – Good, but does this help? (Blackboard)

spcl.inf.ethz.ch
@spcl_eth

Recap: Assignment

Assume you have a balanced machine to compute the following code on a single processing
element:

for (i=0..n)
 for (j=0..n)
 a[i,j] = (a[i+1,j]+a[i-1,j]+a[i,j+1]+a[i,j-1]+a[i,j]) / 5

If we increase the floating-point performance by a factor of 2, how much does the cache size M have
to be increased to re-balance?

