spcl.inf.ethz.ch

Yy @spcl_eth

TIMO SCHNEIDER <TIMOS@INF.ETHZ.CH>

DPHPC: Caches

Recitation session R—

v . o ol spcl.inf.ethz.ch
ETH:zurich -E- : /&&, W @spcl_eth

Systems @ ETH zircn

Typical Memory Hierarchy

LO: .
reg Ister CPU registers hold words retrieved from

c L1 cache

L1: on-chip L1

small er, cache (SRAM) t ; Egzgi holds cache lines retrieved from
faster,
costlier L2: on-chip L2
er byte
P y cache (SRAM) L2 cache holds cache lines retrieved
from main memory
L3:
Larger, main memory
slower (DRAM) Main memory holds disk blocks
’ retrieved from local disks
cheaper
per byte L4: local secondary storage , ,
| | disk) Local disks hold files retrieved
(ocal diSKs from disks on remote
network servers
L5 remote secondary storage
: (tapes, distributed file systems, Web servers)

- . . i .- spcl.inf.ethz.ch
ETH:irich -E- - (Y 7 A7 @speleth

Systems @ ETH zircn

In practice (hwloc-Is)

Machine (7511MB)

Package P#0 I, PCl 8086:5917
L3 (6144KB) renderD128 controlD64
L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) card0
L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) 0.2 _ 0.2
LI PCI 8086:24fd
L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB) wlp4s0
Core P#0 Core P#1 Core P#2 Core P#3 3.9 - 3.9
LI PCl 17aa:0003
PU P#0 PU P#1 PU P#2 PU P#3
nvmeOnl
PU P#4 PU P#5 PU P#6 PU P#7
PCI 8086:15d8
enp0s31f6
Host: dirac

Indexes: physical
Date: Thu 26 Sep 2019 11:37:08 AM CEST

. . - G i o spcl.inf.ethz.ch
ETH:zurich -E- : s /&&J 3 @spcl_eth

Z—

Systems @ ETH zircn

Why Caches Work: Locality

m Locality: Programs tend to use data and instructions with addresses near or equal to those they have
used recently, cf. “Denning: “The locality principle”, CACM’05

m Temporal locality:
Recently referenced items are likely O

to be referenced again in the near future memory
m Spatial locality:
ltems with nearby addresses tend
to be referenced close together in time
: ; memory

Yy @spcl_eth

ETHzurich -!- R ~ spcl.inf.ethz.ch

Cache

m Definition: Computer memory with short access time used for the storage of frequently or recently used
instructions or data

CPU - Cache Main
Memory

m Naturally supports temporal locality

m Spatial locality is supported by transferring data in blocks
m E.g., Intel’s Core family: one block = 64 B = 8 doubles

ETH:zurich -E-

/&5‘ '

spcl.inf.ethz.ch
Yy @spcl_eth

Systems @ ETH zircn

General Cache Organization (S, E, B)

E = 2° lines per set
E = associativity, E=1: direct mapped

A
I'd ™
g set
....... ine
S=2ssets< | | |......
(LB N N N ENNNNNNNNNNENNNENNN]
\.
Cache size:
S x E x B data bytes
v tag 0|1]2|eeee |B-1
valid bit —

B = 2° bytes per cache block (the data)

Z—

. . - G i o spcl.inf.ethz.ch
ETH:zurich -E- : s /&&J 3 @spcl_eth

Systems @ ETH zircn

Terminology

m Direct mapped cache:
m CachewithE=1
m Means every block from memory has a unique location in cache
m Fully associative cache
m Cache with S=1 (i.e., maximal E)
m Means every block from memory can be mapped to any location in cache
m In practice to expensive to build
m One can view the register file as a fully associative cache
m LRU (least recently used) replacement

m when selecting which block should be replaced (happens only for E > 1), the least recently used one is chosen

.. . o 4 spcl.inf.ethz.ch
ETH:zurich (Y T A7 o @spcl eth
Systems o ETH S

ziich

Types of Cache Misses (The 3 C’s)

m Compulsory (cold) miss
Occurs on first access to a block
m Capacity miss
Occurs when working set is larger than the cache
m Conflict miss
Conflict misses occur when the cache is large enough, but multiple data objects all map to the same slot

m Not a clean classification but still useful

ETHzurich -i- . o ~ spcl.inf.ethz.ch

Yy @spcl_eth

What about writes?

m What to do on a write-hit?

m Write-through: write immediately to memory

m Write-back: defer write to memory until replacement of line
m What to do on a write-miss?

m Write-allocate: load into cache, update line in cache

m No-write-allocate: writes immediately to memory

Write-back/write-allocate Write-through/no-write-allocate
mem menl merp mem .
) 1: load \2: update update
$ | 5 { s { 5
) update) 2: update) 1: update
cru () cPU cPU cru ()

Write-hit Write-miss Write-hit Write-miss

.. . e Gl spcl.inf.ethz.ch
ETH:zurich -E- : - /\’fﬁ&z W @spcl_eth

Systems @ ETH zircn

The actual topic: Cache Coherence in Multiprocessors

m Different caches may have a copy of the same memory location!

m Cache coherence (later / next lecture)
m Manages existence of multiple copies

m Cache architectures

Multi level caches

Shared vs. private (partitioned)
Inclusive vs. exclusive

Write back vs. write through

Victim cache to reduce conflict misses

ETH ziirich -E- e T :-:__;-; g ’ @2 spcl.inf.ethz.ch
uric ~

Systems @ ETH zircn

Yy @spcl_eth

Cache Coherence Protocol

m Programmer can hardly deal with unpredictable behavior!

m Cache controller maintains data integrity
m All writes to different locations are visible

Fundamental Mechanisms

m Snooping
m Shared bus or (broadcast) network
m Directory-based

m Record information necessary to maintain coherence:
E.g., owner and state of a line etc.

spcl.inf.ethz.ch

ETH:zurich ' (Y T A7 o @spcl eth
Systemse L —

Fundamental CC mechanisms

m Snooping]
m Shared bus or (broadcast) network E “:”3
m Cache controller “snoops” all transactions %g
m Monitors and changes the state of the cache’s data g £°
m Works at small scale, challenging at large-scale -—
E.g., Intel Broadwell
m Directory-based S

m Record information necessary to maintain coherence

E.g., owner and state of a line etc.
m Central/Distributed directory for cache line ownership
m Scalable but more complex/expensive
E.g., Intel Xeon Phi KNC/KNL

12

. . e Gl spcl.inf.ethz.ch
ETH:irich -E- - - _ " @spol_eth

Systems @ ETH zircn

Exam question (6 min to solve in exam, 10 min now, in pairs)

b) Assume a system with a 4KiB byte-addressable memory and a 2-way associative LRU cache with a total
size of 256B and cache blocks of 32B. The addresses are in the (tag, set, offset) format. A program makes
a sequence of accesses to an array of doubles starting at address 0x000. The size of a double is 8 bytes.
Table 1 reports the sequence of such accesses (one per row). (6pt)

Address Tag Set Offset Miss? Block 0 Block 1
0x050 0 2 16 Y
Set 0
0x028
0x158 Setl
0X0EO Set 2
0x040 Set 3
0x080

20

.. . e Gl spcl.inf.ethz.ch
ETH:irich -E- - - _ " @spol_eth

Systems @ ETH zircn

Solution

b) Assume a system with a 4KiB byte-addressable memory and a 2-way associative LRU cache with a total
size of 256B and cache blocks of 32B. The addresses are in the (tag, set, offset) format. A program makes
a sequence of accesses to an array of doubles starting at address 0x000. The size of a double is 8 bytes.
Table 1 reports the sequence of such accesses (one per row). (6pt)

How many bits wide are memory addresses?
4 KiB byte-addressable memory = 212 elements => 12 bit wide address.

How many bits for offset?
32B byte blocks of byte-addressabe memory= 275 => 5 offset bits

How many bits for set?
256B / 32B = 8 blocks, 8 / 2 = 4 sets (due to 2-way assoc.), 4=2"2 => 2 set bits.

How many bits for tag?
All remaining ones, 12 — (5+2) = 5 tag bits.

Now we decompose each address:

0x050 (hexadecimal) in binary = 0000 0101 0000 =>
rewrite as (tag(5b),set(2b),offset(5b)) 00000 10 10000,
convert to decimal => tag=0, set=2, offset=16

ETH:zurich -E-

~ spcl.inf.ethz.ch
/ Yy @spcl_eth

Systems @ ETH zircn

Solution

0x050 (hexadecimal) in binary = 0000 0101 0000 =>
rewrite as tag(5b) set(2b) offset(5b) 00000 10 10000,
convert to decimal => tag=0, set=2, offset=16

0x028 = 0000 0010 1000 =>tag=0, set=1, offset=8
0x158 = 0001 0101 1000 => tag=2, set=2, offset=24
OxOEO = 0000 1110 0000 => tag=1, set=3, offset=0
0x040 = 0000 0100 0000 => tag=0, set=2, offset=0
0x080 = 0000 1000 0000 => tag=1, set=0, offset=0

Now we can fill most of the first table.

Z—

Address Tag Set Offset Miss?
0x050 0 2 16 Y
0x028 0 1 8

0x158 2 2 24

0x0EO 1 3 0

0x040 0 2 0

0x080 1 0 0

ETH:zurich -E-

spcl.inf.ethz.ch
Yy @spcl_eth

Systems @ ETH zircn

Solution
Address Tag Set Offset Miss?
0x050 0 2 16 Y
0x028 0 1 8 Y
0x158 2 2 24 Y
0x0EO 1 3 0 Y
0x040 0 2 0 N
0x080 1 0 0 Y

Now we go through the
table and check for
misses/hits and update
the state of the cache.

The first number is the
tag, the one in brackets
the “timestep” / line in
the left table.

Block 0 Block 1
Set 0 1 (6)
Set 1 0(2)
Set 2 0 (1/hitin5) 2 (3)
Set 3 1(4)

. . - G i o spcl.inf.ethz.ch
ETH:zurich -E- : s /&&J 3 @spcl_eth

Systems @ ETH zircn

Example: Vector Add, Warm Data & Code

z =X +yon Corei7 (Nehalem, one core, no SSE), icc 12.0 /02 /fp:fast /Qipo

Percentage peak performance (peak = 1 add/cycle)

100
Lhi f f Guess the
20 AEEE e e read bandwidths
80
70
2 doubles/cycle
60
50
40
1 double/cycle
30
20
1/2 double/cycle
10
0 | | | | | | | | | |
| KB 4 KB 16 KB 64 KB 256 KB | MB 4 MB |6 MB

sum of vector lengths (working set)

o5 o .' -_ - spcl.inf.ethz.ch
ETHzlrich -E- =S (Y 7 A7 @speleth

Systems @ ETH zircn

Homework
Write a program which allows you to determine the sizes of the different caches in your

laptop / computer.

Do not query them, measure the time it takes to perform some operation.

	Slide 1
	Typical Memory Hierarchy
	Slide 3
	Why Caches Work: Locality
	Cache
	Slide 6
	Terminology
	Types of Cache Misses (The 3 C’s)
	What about writes?
	The actual topic: Cache Coherence in Multiprocessors
	Cache Coherence Protocol
	Fundamental CC mechanisms
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 25
	Slide 26

