
spcl.inf.ethz.ch
@spcl_eth

TIMO SCHNEIDER <TIMOS@INF.ETHZ.CH>

DPHPC: Caches
Recitation session

spcl.inf.ethz.ch
@spcl_eth

2

Typical Memory Hierarchy

register
s

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files retrieved
from disks on remote
network servers

Main memory holds disk blocks
retrieved from local disks

on-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved from
L2 cache

CPU registers hold words retrieved from
 L1 cache

L2 cache holds cache lines retrieved
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

spcl.inf.ethz.ch
@spcl_eth

In practice (hwloc-ls)

spcl.inf.ethz.ch
@spcl_eth

▪ Locality: Programs tend to use data and instructions with addresses near or equal to those they have
used recently, cf. “Denning: “The locality principle”, CACM’05

▪ Temporal locality:

Recently referenced items are likely
to be referenced again in the near future

▪ Spatial locality:

Items with nearby addresses tend
to be referenced close together in time

4

Why Caches Work: Locality

memory

memory

spcl.inf.ethz.ch
@spcl_eth

▪ Definition: Computer memory with short access time used for the storage of frequently or recently used
instructions or data

▪ Naturally supports temporal locality

▪ Spatial locality is supported by transferring data in blocks

▪ E.g., Intel’s Core family: one block = 64 B = 8 doubles

5

Cache

Main
Memory

CPU Cache

spcl.inf.ethz.ch
@spcl_eth

spcl.inf.ethz.ch
@spcl_eth

▪ Direct mapped cache:

▪ Cache with E = 1

▪ Means every block from memory has a unique location in cache

▪ Fully associative cache

▪ Cache with S = 1 (i.e., maximal E)

▪ Means every block from memory can be mapped to any location in cache

▪ In practice to expensive to build

▪ One can view the register file as a fully associative cache

▪ LRU (least recently used) replacement

▪ when selecting which block should be replaced (happens only for E > 1), the least recently used one is chosen

7

Terminology

spcl.inf.ethz.ch
@spcl_eth

▪ Compulsory (cold) miss

Occurs on first access to a block

▪ Capacity miss

Occurs when working set is larger than the cache

▪ Conflict miss

Conflict misses occur when the cache is large enough, but multiple data objects all map to the same slot

▪ Not a clean classification but still useful

8

Types of Cache Misses (The 3 C’s)

spcl.inf.ethz.ch
@spcl_eth

▪ What to do on a write-hit?

▪ Write-through: write immediately to memory

▪ Write-back: defer write to memory until replacement of line

▪ What to do on a write-miss?

▪ Write-allocate: load into cache, update line in cache

▪ No-write-allocate: writes immediately to memory

9

What about writes?

Write-back/write-allocate

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

1: load

2: updateupdate

Write-through/no-write-allocate

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

1: update

2: update update

spcl.inf.ethz.ch
@spcl_eth

▪ Different caches may have a copy of the same memory location!

▪ Cache coherence (later / next lecture)

▪ Manages existence of multiple copies

▪ Cache architectures

▪ Multi level caches

▪ Shared vs. private (partitioned)

▪ Inclusive vs. exclusive

▪ Write back vs. write through

▪ Victim cache to reduce conflict misses

▪ …

10

The actual topic: Cache Coherence in Multiprocessors

spcl.inf.ethz.ch
@spcl_eth

▪ Programmer can hardly deal with unpredictable behavior!

▪ Cache controller maintains data integrity

▪ All writes to different locations are visible

11

Cache Coherence Protocol

▪ Snooping

▪ Shared bus or (broadcast) network

▪ Directory-based

▪ Record information necessary to maintain coherence:

E.g., owner and state of a line etc.

Fundamental Mechanisms

spcl.inf.ethz.ch
@spcl_eth

▪ Snooping

▪ Shared bus or (broadcast) network

▪ Cache controller “snoops” all transactions

▪ Monitors and changes the state of the cache’s data

▪ Works at small scale, challenging at large-scale

E.g., Intel Broadwell

▪ Directory-based

▪ Record information necessary to maintain coherence

E.g., owner and state of a line etc.

▪ Central/Distributed directory for cache line ownership

▪ Scalable but more complex/expensive

E.g., Intel Xeon Phi KNC/KNL

12

Fundamental CC mechanisms

Source: Intel

Core Core Core

Core Core Core

GDDR5

GDDR5

GDDR5

GDDR5

TD TD

TD TD

spcl.inf.ethz.ch
@spcl_eth

20

Block 0 Block 1

Set 0

Set 1

Set 2

Set 3

Address Tag Set Offset Miss?

0x050 0 2 16 Y

0x028

0x158

0x0E0

0x040

0x080

Exam question (6 min to solve in exam, 10 min now, in pairs)

spcl.inf.ethz.ch
@spcl_eth

Solution

How many bits wide are memory addresses?
4 KiB byte-addressable memory = 2^12 elements => 12 bit wide address.

How many bits for offset?
32B byte blocks of byte-addressabe memory= 2^5 => 5 offset bits

How many bits for set?
256B / 32B = 8 blocks, 8 / 2 = 4 sets (due to 2-way assoc.), 4=2^2 => 2 set bits.

How many bits for tag?
All remaining ones, 12 – (5+2) = 5 tag bits.

Now we decompose each address:
0x050 (hexadecimal) in binary = 0000 0101 0000 =>
rewrite as (tag(5b),set(2b),offset(5b)) 00000 10 10000,
convert to decimal => tag=0, set=2, offset=16

spcl.inf.ethz.ch
@spcl_eth

Address Tag Set Offset Miss?

0x050 0 2 16 Y

0x028 0 1 8

0x158 2 2 24

0x0E0 1 3 0

0x040 0 2 0

0x080 1 0 0

Solution

0x050 (hexadecimal) in binary = 0000 0101 0000 =>
rewrite as tag(5b) set(2b) offset(5b) 00000 10 10000,
convert to decimal => tag=0, set=2, offset=16

0x028 = 0000 0010 1000 => tag=0, set=1, offset=8
0x158 = 0001 0101 1000 => tag=2, set=2, offset=24
0x0E0 = 0000 1110 0000 => tag=1, set=3, offset=0
0x040 = 0000 0100 0000 => tag=0, set=2, offset=0
0x080 = 0000 1000 0000 => tag=1, set=0, offset=0

Now we can fill most of the first table.

spcl.inf.ethz.ch
@spcl_eth

Address Tag Set Offset Miss?

0x050 0 2 16 Y

0x028 0 1 8 Y

0x158 2 2 24 Y

0x0E0 1 3 0 Y

0x040 0 2 0 N

0x080 1 0 0 Y

Solution

Block 0 Block 1

Set 0 1 (6)

Set 1 0 (2)

Set 2 0 (1 / hit in 5) 2 (3)

Set 3 1 (4)

Now we go through the
table and check for
misses/hits and update
the state of the cache.

The first number is the
tag, the one in brackets
the “timestep” / line in
the left table.

spcl.inf.ethz.ch
@spcl_eth

spcl.inf.ethz.ch
@spcl_eth

Homework
Write a program which allows you to determine the sizes of the different caches in your
laptop / computer.

Do not query them, measure the time it takes to perform some operation.

	Slide 1
	Typical Memory Hierarchy
	Slide 3
	Why Caches Work: Locality
	Cache
	Slide 6
	Terminology
	Types of Cache Misses (The 3 C’s)
	What about writes?
	The actual topic: Cache Coherence in Multiprocessors
	Cache Coherence Protocol
	Fundamental CC mechanisms
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 25
	Slide 26

