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Typical Memory Hierarchy
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In practice (hwloc-ls)
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▪ Locality: Programs tend to use data and instructions with addresses near or equal to those they have 
used recently, cf. “Denning: “The locality principle”, CACM’05

▪ Temporal locality:  

Recently referenced items are likely 
to be referenced again in the near future

▪ Spatial locality:  

Items with nearby addresses tend 
to be referenced close together in time
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Why Caches Work: Locality

memory

memory
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▪ Definition: Computer memory with short access time used for the storage of frequently or recently used 
instructions or data

▪ Naturally supports temporal locality

▪ Spatial locality is supported by transferring data in blocks

▪ E.g., Intel’s Core family: one block = 64 B = 8 doubles
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▪ Direct mapped cache:

▪ Cache with E = 1

▪ Means every block from memory has a unique location in cache

▪ Fully associative cache

▪ Cache with S = 1 (i.e., maximal E)

▪ Means every block from memory can be mapped to any location in cache

▪ In practice to expensive to build

▪ One can view the register file as a fully associative cache

▪ LRU (least recently used) replacement

▪ when selecting which block should be replaced (happens only for E > 1), the least recently used one is chosen
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Terminology
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▪ Compulsory (cold) miss

Occurs on first access to a block

▪ Capacity miss

Occurs when working set is larger than the cache

▪ Conflict miss

Conflict misses occur when the cache is large enough, but multiple data objects all map to the same slot

▪ Not a clean classification but still useful
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Types of Cache Misses (The 3 C’s)
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▪ What to do on a write-hit?

▪ Write-through: write immediately to memory

▪ Write-back: defer write to memory until replacement of line

▪ What to do on a write-miss?

▪ Write-allocate: load into cache, update line in cache

▪ No-write-allocate: writes immediately to memory
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What about writes?

Write-back/write-allocate

$

mem

CPU

Write-hit

$
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Write-miss
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Write-through/no-write-allocate
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CPU

Write-hit

$

mem

CPU

Write-miss

1: update

2: update update
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▪ Different caches may have a copy of the same memory location!

▪ Cache coherence (later / next lecture)

▪ Manages existence of multiple copies

▪ Cache architectures

▪ Multi level caches

▪ Shared vs. private (partitioned)

▪ Inclusive vs. exclusive

▪ Write back vs. write through

▪ Victim cache to reduce conflict misses

▪ …
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The actual topic: Cache Coherence in Multiprocessors
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▪ Programmer can hardly deal with unpredictable behavior!

▪ Cache controller maintains data integrity

▪ All writes to different locations are visible
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Cache Coherence Protocol

▪ Snooping

▪ Shared bus or (broadcast) network 

▪ Directory-based 

▪ Record information necessary to maintain coherence: 

E.g., owner and state of a line etc.

Fundamental Mechanisms
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▪ Snooping

▪ Shared bus or (broadcast) network 

▪ Cache controller “snoops” all transactions

▪ Monitors and changes the state of the cache’s data

▪ Works at small scale, challenging at large-scale

E.g., Intel Broadwell

▪ Directory-based 

▪ Record information necessary to maintain coherence 

E.g., owner and state of a line etc.

▪ Central/Distributed directory for cache line ownership

▪ Scalable but more complex/expensive

E.g., Intel Xeon Phi KNC/KNL
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Fundamental CC mechanisms

Source: Intel
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Block 0 Block 1

Set 0

Set 1

Set 2

Set 3

Address Tag Set Offset Miss?

0x050 0 2 16 Y

0x028

0x158

0x0E0

0x040

0x080

Exam question (6 min to solve in exam, 10 min now, in pairs)
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Solution

How many bits wide are memory addresses?  
4 KiB byte-addressable memory = 2^12 elements => 12 bit wide address.

How many bits for offset?
32B byte blocks of byte-addressabe memory= 2^5 => 5 offset bits

How many bits for set?
256B / 32B = 8 blocks, 8 / 2 = 4 sets (due to 2-way assoc.), 4=2^2 => 2 set bits.

How many bits for tag?
All remaining ones, 12 – (5+2) = 5 tag bits.

Now we decompose each address:
0x050 (hexadecimal) in binary         = 0000   0101   0000 => 
rewrite as (tag(5b),set(2b),offset(5b)) 00000  10    10000, 
convert to decimal =>                        tag=0, set=2, offset=16
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Address Tag Set Offset Miss?

0x050 0 2 16 Y

0x028 0 1 8

0x158 2 2 24

0x0E0 1 3 0

0x040 0 2 0

0x080 1 0 0

Solution

0x050 (hexadecimal) in binary      = 0000 0101 0000 => 
rewrite as tag(5b) set(2b) offset(5b) 00000 10 10000, 
convert to decimal =>                    tag=0, set=2, offset=16

0x028 = 0000 0010 1000  => tag=0, set=1, offset=8
0x158 = 0001 0101 1000 => tag=2, set=2, offset=24
0x0E0 = 0000 1110 0000 => tag=1, set=3, offset=0
0x040 = 0000 0100 0000 => tag=0, set=2, offset=0
0x080 = 0000 1000 0000 => tag=1, set=0, offset=0

Now we can fill most of the first table. 
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Address Tag Set Offset Miss?

0x050 0 2 16 Y

0x028 0 1 8 Y

0x158 2 2 24 Y

0x0E0 1 3 0 Y

0x040 0 2 0 N

0x080 1 0 0 Y

Solution

Block 0 Block 1

Set 0 1 (6)

Set 1 0 (2)

Set 2 0 (1 / hit in 5) 2 (3)

Set 3 1 (4)

Now we go through the 
table and check for 
misses/hits and update 
the state of the cache.

The first number is the 
tag, the one in brackets 
the “timestep” / line in 
the left table.
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Homework
Write a program which allows you to determine the sizes of the different caches in your
laptop / computer.

Do not query them, measure the time it takes to perform some operation.
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