ETH-urich S S oot DINFK
MARCIN COPIK <MARCIN.COPIK@INF.ETHZ.CH>

DPHPC: Amdahl’s Law, Roofline model
Recitation session

Why do we have to do performance modelling?

* Will my program scale?
“Am | going to run faster on twice larger machine?”

 Which parts of the program | should improve?

“Let me parallelize one more loop, that should help... | can’t be spending 90% of time on
communication and synchronization!”

« Can my program achieve better performance? How far is it from maximum?
“l spent 50 hours on optimizing every memory accesses and I'm 0.5% faster”

« How should we design a new computing system?
“Do I need accelerators? Do | need more memory?”

ETHzurich

Why do we have to do performance modelling?

* Will my program scale?
“Am | going to run faster on twice larger machine?”

 Which parts of the program | should improve?

“Let me parallelize one more loop, that should help... | can’t be spending 90% of time on
communication and synchronization!”

« Can my program achieve better performance? How far is it from maximum?
“l spent 50 hours on optimizing every memory accesses and I'm 0.5% faster”

« How should we design a new computing system?
“Do I need accelerators? Do | need more memory?”

Two things we need to understand
 Baseline — slow and bad programs tend to scale better.
 Upper bound

ETHzurich

spcl.inf.ethz.ch
y@spcl_ eth

ETHzurich

Why Is upper bound important?

Speedup to serial execution

1000

goo

600

200

|deal Speedup

Distributed, Dissemination 2
Distributed, Ladner-Fischer ’
Distributed, MP|_Scan !
Work-stealing, Dissemination)
Work-stealing, Ladner-Fischer !
Waork-stealing, MPI_Scan 4

R ———mp I55.
I M——————__ 183x0 41 91x

B4 128 256 512 1024

Allocated CPU cores

This is pretty pathetic...

Why Is upper bound important?

Speedup to serial execution

200

150

100

Ideal Speedup

Distributed, Dissemination
Distributed, Ladner-Fischer
Distributed, MPI_Scan
Work-stealing, Dissemination
Work-stealing, Ladner-Fischer
Work-stealing, MPI_Scan

Diss.
191x

128 256 512 1024
Allocated CPU cores

spcl.inf.ethz.ch

y@spcl_ eth

ETHzurich

spcl.inf.ethz.ch oo o
venien ETHZzUrich

Why Is upper bound important?

-== |deal Speedup

- Distributed, Dissemination
Distributed, Ladner-Fischer

— Distributed, MPI_Scan

- Work-stealing, Dissemination

- Work-stealing, Ladner-Fischer

— Work-stealing, MPI_Scan

Upper bound
for prefix scan

200
c
=
4+
=
O
%
o 150
S
— e
0) /, 4
wn P
o ’I’
L 4
Q g
-g 100 21 sl =X — Diss.
] 7% / 191x
[L // MPI
o = p® . L-F. - 183x
N
50

64 128 256 512 1024
Allocated CPU cores

spcl.inf.ethz.ch oo o
venien ETHZzUrich

Why Is upper bound important?

-== |deal Speedup

- Distributed, Dissemination
Distributed, Ladner-Fischer

— Distributed, MPI_Scan

- Work-stealing, Dissemination

- Work-stealing, Ladner-Fischer

— Work-stealing, MPI_Scan

Upper bound
for prefix scan

200

150

100

Speedup to serial execution

We’re actually
iImproving!

64 128 256 512 1024
Allocated CPU cores

spcl.inf.ethz.ch oo o
venien ETHZzUrich

Amdahl’s Law

Time of sequential program with f as the fraction not affected
by the parallelization:

T=fMT+A-)T

spcl.inf.ethz.ch oo o
vewien ETHZzUrich

Amdahl’s Law

Time of sequential program with f as the fraction not affected
by the parallelization:

T, =fTi+(1-T
Time of parallel program:

(1-)T

To = T
p=fT) + p

spcl.inf.ethz.ch oo o
venien ETHZzUrich

Amdahl’s Law

Time of sequential program with f as the fraction not affected
by the parallelization:

T, =fTi+(1-T
Time of parallel program:

(1-T
P

P=1 P=2 P=4 P=8
Serial work I
—_— I III ENEEEER
arallelizable work

_1

awl

spcl.inf.ethz.ch oo o
venien ETHZzUrich

Amdahl’s Law

Time of sequential program with f as the fraction not affected
by the parallelization:

=+ -1

Time of parallel program:

s fT1+(1—f)T1
P
- || |... —
m Speedup:

1
Tp —5+f

spcl.inf.ethz.ch oo o
venien ETHZzUrich

Amdahl’s Law

Time of sequential program with f as the fraction not affected
by the parallelization:

=+ -1

Time of parallel program:

Tp = fT1 + a _Pf)Tl =fT;
- || |... S——
m Speedup:

1
Tp —5+f

spcl.inf.ethz.ch oo o
venien ETHZzUrich

Amdahl’s Law

Time of sequential program with f as the fraction not affected
by the parallelization:

=+ -1

Time of parallel program:

1-1)T
TPZfT1+(Pf)l = fT
Parallelizable work II IIII I.......
Speedup:
o L < LI 1
— 1—f < —
T-I_f Soo — f

spcl.inf.ethz.ch

Amdahl’s Law

Time of sequential program with f as the fraction not affected
by the parallelization:

=+ -1

Time of parallel program:

Y @spcl_eth

ETHzurich

1-1)T
TPZfT1+(Pf)l = fT
Parallelizable work II IIII I.......
Speedup:
Tl 1 1
< c
— 1—f < —
TP T-I_f SOO — f

1000
Serial Speedup 672
fraction
#* 0.1%
- 1%
-+ 10% ——— 100
30% /,,/"
< 50%
= 10
3
. .
1 T L L 1 T 1 T T T 1
2 4 8 16 32 64 128 256 512 1024 2048

Number of workers

Amdahl’s Law

spcl.inf.ethz.ch
,@spcl_ eth

Time of sequenty
by the paralleli

Time of parall¢

Serial work

Parallelizable work

awi |

Possible factors: load balancing, communication costs, 1/0, scheduling

It’s like to see the glass as half empty but...

It could be even worse!

1000

80
70

60

40
30
20
10

f,r‘ = (.99 =
/ = Amdahl's Law
/ — Reality

7 i—
y e

50 100 150 200 250
Number of processors

=

——W% 100

10

T,

T 1
? 1024 2048

ETHzurich

spcl.inf.ethz.ch oo o
vewien ETHZzUrich

Amdahl’s Law vs Gustafson-Barsis' Law

...Speedup should be measured by scaling the problem to the number of
processors, not by fixing the problem size.
— John Gustafson

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Amdahl’s Law vs Gustafson-Barsis' Law

...Speedup should be measured by scaling the problem to the number of
processors, not by fixing the problem size.
— John Gustafson

Time of sequential program with a as the fraction not affected by the parallelization on P-processors machine:
Tl — 0(T1 + (1 — 0()PT1

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Amdahl’s Law vs Gustafson-Barsis' Law

...Speedup should be measured by scaling the problem to the number of
processors, not by fixing the problem size.
— John Gustafson

Time of sequential program with a as the fraction not affected by the parallelization on P-processors machine:
Tl — 0(T1 + (1 — OZ)PTl

Time of parallel program:
TP — aTl + (1 - a)Tl

spcl.inf.ethz.ch oo o
venien ETHZzUrich

Amdahl’s Law vs Gustafson-Barsis' Law

...Speedup should be measured by scaling the problem to the number of
processors, not by fixing the problem size.
— John Gustafson

Time of sequential program with a as the fraction not affected by the parallelization on P-processors machine:

Tl — aT]_ + (1 —C()PTl

Time of parallel program: Pt pos -

P=8
TP — aT]_ + (1 _ a)Tl Serial work
Parallelizable work I I|I IIIIII|

aun |

spcl.inf.ethz.ch oo o
venien ETHZzUrich

Amdahl’s Law vs Gustafson-Barsis' Law

...Speedup should be measured by scaling the problem to the number of
processors, not by fixing the problem size.
— John Gustafson

Time of sequential program with a as the fraction not affected by the parallelization on P-processors machine:

Tl — 0(T1 + (1 —OZ)PTl

Time of parallel program: Pt pos -

P-8
TP — aT]_ + (1 _ a)Tl Serial work
Parallelizable work
Speedup: _
T
Sp=—<a+P(l—a)
Tp

aun |

spcl.inf.ethz.ch oo o
vewien ETHZzUrich

Amdahl’s Law vs Gustafson-Barsis' Law

...Speedup should be measured by scaling the problem to the number of
processors, not by fixing the problem size.
— John Gustafson

Time of sequential program with a as the fraction not affected by the parallelization on P-processors machine:

Tl — 0(T1 + (1 —OZ)PTl

Time of parallel program: Pt pos o

4 P=8
TP — aTl + (1 _ a)Tl Serial work
Parallelizable work
Speedup: _
T
Sp=—<a+P(l—a)
Tp

aun |

Note: no parallel overheads are taken into account here!

spcl.inf.ethz.ch oo o
venien ETHZzUrich

« Speedup

« Efficiency

e Strong Scaling

« Weak Scaling

spcl.inf.ethz.ch oo o
vewien ETHZzUrich

« Speedup
= How well something responds to adding more resources
= What’s your base case? The best serial version or a single parallel process?

« Efficiency

e Strong Scaling

« Weak Scaling

spcl.inf.ethz.ch oo o
vewien ETHZzUrich

« Speedup
= How well something responds to adding more resources
= What’s your base case? The best serial version or a single parallel process?

« Efficiency

e Strong Scaling

« Weak Scaling

Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalability! but at what cost?. In Proceedings of the 15th USENIX conference on Hot Topics in Operating
Systems (HOTOS'15), George Candea (Ed.). USENIX Association, Berkeley, CA, USA, 14-14.

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

« Speedup
= How well something responds to adding more resources
= What’s your base case? The best serial version or a single parallel process?

« Efficiency
= Gives idea on the “utilization” degree of the computing resources

e Strong Scaling

« Weak Scaling

Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalability! but at what cost?. In Proceedings of the 15th USENIX conference on Hot Topics in Operating
Systems (HOTOS'15), George Candea (Ed.). USENIX Association, Berkeley, CA, USA, 14-14.

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

« Speedup
= How well something responds to adding more resources
= What’s your base case? The best serial version or a single parallel process?

» Efficiency
= Gives idea on the “utilization” degree of the computing resources

e Strong Scaling
* Problem size stays fixed as the number of processing elements are increased

 Weak Scaling

Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalability! but at what cost?. In Proceedings of the 15th USENIX conference on Hot Topics in Operating
Systems (HOTOS'15), George Candea (Ed.). USENIX Association, Berkeley, CA, USA, 14-14.

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

« Speedup
= How well something responds to adding more resources
= What’s your base case? The best serial version or a single parallel process?

» Efficiency
= Gives idea on the “utilization” degree of the computing resources

e Strong Scaling
* Problem size stays fixed as the number of processing elements are increased

 Weak Scaling
» Problem size increases as the number of processing elements are increased

Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalability! but at what cost?. In Proceedings of the 15th USENIX conference on Hot Topics in Operating
Systems (HOTOS'15), George Candea (Ed.). USENIX Association, Berkeley, CA, USA, 14-14.

spcl.inf.ethz.ch oo o
vewien ETHZzUrich

Exercise 1

Assume 1% of the runtime of a program is not parallelizable. This program is run on 61 cores of a Intel
Xeon Phi. Under the assumption that the program runs at the same speed on all of those cores, and there
are no additional overheads, what is the parallel speedup?

spcl.inf.ethz.ch oo o
vewien ETHZzUrich

Exercise 1

Assume 1% of the runtime of a program is not parallelizable. This program is run on 61 cores of a Intel
Xeon Phi. Under the assumption that the program runs at the same speed on all of those cores, and there
are no additional overheads, what is the parallel speedup?

Amdahl’s law assumes that a program consists of a serial part and a parallelizable part. The fraction of the program
which is serial can be denoted as B — so the parallel fraction becomes 1 — B. If there is no additional overhead
due to parallelization, the speedup can therefore be expressed as

1

2= B+ 1(1-B)

For the given value of B = 0.01 we get S(61) = 38.125.

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Exercise 2

Assume 0.1% of the runtime is not parallelizable. The program also invokes a broadcast operation, that
add overhead depending on the number of cores involved. There are two broadcast implementations
available. One adds a parallel overhead of 0.0001n, the other one 0.0005 logn. For which number of cores
do you get the highest speedup for both implementations?

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Exercise 2

Assume 0.1% of the runtime is not parallelizable. The program also invokes a broadcast operation, that
add overhead depending on the number of cores involved. There are two broadcast implementations
available. One adds a parallel overhead of 0.0001n, the other one 0.0005 logn. For which number of cores
do you get the highest speedup for both implementations?

1
~0.001 + 20.999 + 0.0001n

1
1) =
0.001 + 20.999 + 0.0005l0g(n)

spcl.inf.ethz.ch oo o
vewien ETHZzUrich

Exercise 2

Assume 0.1% of the runtime is not parallelizable. The program also invokes a broadcast operation, that
add overhead depending on the number of cores involved. There are two broadcast implementations
available. One adds a parallel overhead of 0.0001n, the other one 0.0005 logn. For which number of cores
do you get the highest speedup for both implementations?

1
~0.001 + 20.999 + 0.0001n

1
n)=
0.001 + 20.999 + 0.0005l0g(n)

We can get the maximum of these terms if we minimize the term in denominator.

d 1 0.999
——0.001 + —0.999 + 0.0001n = 0 > 0.0001 — —— =0 < n = 100
i n n
0.005n0.999

d 1
—0.001 + —0.999 + 0.0005log(n) = 0 +»

; 3 =0 n = 1998
dn n n

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

PRAM: Parallel Random Access Machine

= P processes with shared memory

= |gnores communications and synchronization

= |nstruction are composed by 3 phases: Shared Memory
» Load data from shared memory (if needed)
» Perform computation (if any)
» Store data in shared memory (if needed)
= Any process can read/write to any memory cell P, P, P, T Pp

= How conflicts are handled?

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

PRAM: Conflicting Accesses

« EREW: Exclusive Read / Exclusive Write
= No two processes are allowed to read or write to the same memory cell simultaneously

« CREW: Concurrent Read / Exclusive Write
» Simultaneous reads are allowed; only one process can write

« CRCW: Concurrent Read / Concurrent Write
» Simultaneous reads and write to the same memory cell are allowed
» Priority CRCW: processors assigned fixed distinct priorities, highest priority wins
» Random CRCW: one randomly chosen write wins

= Common CRCW: all processors are allowed to complete write if and only if all the values to be written are
equal

Weak Strong
EREW < CREW < CRCW-C < CRCW-R < CRCW-P

http://homes.cs.washington.edu/~arvind/cs424/notes/|2-6.pdf

spcl.inf.ethz.ch oo o
vewien ETHZzUrich

PRAM: Reduction

 Reduce p values on the p-processor EREW PRAM in O(logp) time
 The algorithm uses exclusive reads and writes
* It’s the basis of other EREW algorithms

spcl.inf.ethz.ch
,@spcl_ eth

ETHzurich

PRAM: First 1

« Computing the position of the first one in the sequence of 0’s and 1’s in a constant time.

/AlqorithmA
(2 parallel steps and n? processors)
for each 1< i<j < n do 1in parallel
if C[i] =1 and C[j]=1 then C[j]:=0
for each 1< i < n do in parallel
if C[i] =1 then FIRST-ONE-POSITION:=1

~

www.csc.liv.ac.uk/~igor/COMP308/ppt/Lect_5.ppt

B 1 N N

-

B 1 B o BN

spcl.inf.ethz.ch oo o
vewien ETHZzUrich

PRAM: First 1 — Reducing Number of Processors

Algorithm B: it reports if there is any one in the table. -1 -1 -

There-is-one:=0
for each 1< i < n do in parallel

if C[i] =1 then There-is-one:=1 1

V

www.csc.liv.ac.uk/~igor/COMP308/ppt/Lect_5.ppt

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

PRAM: First 1 — Reducing Number of Processors

Algorithm B: it reports if there is any one in the table. -1 -1 -

There-is-one:=0
for each 1< i < n do in parallel

if C[i] =1 then There-is-one:=1 1

Merge A and B

1. Partition table C into segments of size \n

2. Ineach segment apply the algorithm B

3. Find position of the first one in these sequence by
applying algorithm A

4. Apply algorithm A to this single segment and compute
the final value

www.csc.liv.ac.uk/~igor/COMP308/ppt/Lect_5.ppt

spcl.inf.ethz.ch oo o
venien ETHZzUrich

PRAM: First 1 — Reducing Number of Processors

Algorithm B: it reports if there is any one in the table. -1 -1 -

There-is-one:=0
for each 1< 1 < n do 1in 4 M-

if C[i] =1 then The

How many processors we need? |

Merge A and B :
. _ What's the complexity?

1. Partition table C into se m

2. Ineach segment apply !

3. Find position of the first one in these sequence by cejtejced(e)(elle)(e(s](e] (&)
applying algorithm A

4. Apply algorithm A to this single segment and compute
the final value

www.csc.liv.ac.uk/~igor/COMP308/ppt/Lect_5.ppt 14

spcl.inf.ethz.ch oo o
venien ETHZzUrich

PRAM: First 1 — Reducing Number of Processors

0000 1 00000 1 000

Algorithm B: it reports if there is any one in the table.

There—-is-one:=0
for each 1< 1 < n do 1n 4
if C[i] =1 then The

How many processors we need? 1

Wm?=n !

Merge A and B What's the complexity?

1. Partition table C into se 3 parallel steps — 0(1) m

2. Ineach segment apply ! _

3. Find position of the first one in these sequence by cejtejced(e)(elle)(e(s](e] (&)
applying algorithm A

4. Apply algorithm A to this single segment and compute
the final value

www.csc.liv.ac.uk/~igor/COMP308/ppt/Lect_5.ppt 14

spcl.inf.ethz.ch oo o
venien ETHZzUrich

Exercise 3

How can we find the minimum from an unordered collection of n natural numbers on EREW-PRAM
machine?

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Exercise 3

How can we find the minimum from an unordered collection of n natural numbers on EREW-PRAM
machine?

We can find the minimum from an unordered collection of n natural numbers by performing a reduction
along a binary tree: In each round, each processor compares two elements, and the smaller element gets
to the next round, the bigger one is discarded. What is the work and depth of this algorithm?

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Exercise 3

How can we find the minimum from an unordered collection of n natural numbers on EREW-PRAM
machine?

We can find the minimum from an unordered collection of n natural numbers by performing a reduction
along a binary tree: In each round, each processor compares two elements, and the smaller element gets
to the next round, the bigger one is discarded. What is the work and depth of this algorithm?

The dependency graph of this computation is a tree with log2(n) levels. Therefore the longest path, which is equal
to the depth/span has length loga(n). The tree contains 2n — 1 nodes, which is equal to the work.

spcl.inf.ethz.ch oo o
vewien ETHZzUrich

Exercise 4

Develop an algorithm which can find the minimum in an unordered collection of n natural numbers in 0(1)
time on a CRCW-PRAM machine.

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Exercise 4

Develop an algorithm which can find the minimum in an unordered collection of n natural numbers in 0(1)
time on a CRCW-PRAM machine.

* Assume the list is stored in an array A.

« Create an additional array tmp|[n] initialized with true.

« We use 0(n?) processors, labelled p(i,j) with 0 < i,j < n.

« [Each processor p(i,j) checks if A[i] > A[j].
« If true then tmp[i] is set to false (it cannot be the minimum)
« Otherwise nothing is done

« At the end we have only one element of tmp set to true, say tmp[k]. The minimum element of Ais A[k].

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Computation

« Usually, floating point performance (Gflop/s) is the metric of interest
 Road to peak in-core performance:

IF | ID | EX MEM| WB
IF | ID | EX MEM| WB
l’. IF | ID | EX |[MEM| WB
IF | ID | EX IMEM| WB
- IF | ID | EX IMEM| WB
IF | ID | EX IMEM| WB
IF [ID | EX [MEM| WB
IF [ID | EX |[MEM| WB
IF | ID | EX [MEM| WB
IF | ID | EX |[MEM| WB

Instruction Level Parallelism (ILP)

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Computation

« Usually, floating point performance (Gflop/s) is the metric of interest

 Road to peak in-core performance:
= Improve ILP and apply SIMD

IF | ID | EX MEM| WB
IF | ID | EX MEM| WB
l’. IF | ID | EX |[MEM| WB
IF | ID | EX IMEM| WB
- IF | ID | EX IMEM| WB
IF | ID | EX IMEM| WB
IF [ID | EX [MEM| WB
IF [ID | EX |[MEM| WB
IF | ID | EX [MEM| WB
IF | ID | EX |[MEM| WB

Instruction Level Parallelism (ILP)

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Computation

« Usually, floating point performance (Gflop/s) is the metric of interest

 Road to peak in-core performance:
= Improve ILP and apply SIMD

1o | ex mevi S Scalar mode SIMD processing
J IF ID EX MEM| WB E,[:,neerigss.ﬂtu)monpmduces (one instruction can produce multiple results)
IF ID EX MEM| WB : : . . :
- IF | ID | EX |MEM| WB a m BBl ali+41 B[i#3]] afi+2] afi+1] Bl
IF | ID | EX |MEM| WB + + +
R e R SN i 71] B -1 Bl bii+2) bri+1) B
ol

IF [ID | EX [MEM| wB
IF | D | EX [MEM wB a[i]#bi] b (] avsl]

IF | ID | EX [MEM| WB

PRl ci+4] [Ci#s] ci+2] cli*1]

Instruction Level Parallelism (ILP) Single Instruction Multiple Data (SIMD)

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Computation

« Usually, floating point performance (Gflop/s) is the metric of interest

 Road to peak in-core performance:
= Improve ILP and apply SIMD

::Z :g Ei mgm mg Scalar mode SIMD processing
li IE D | Ex IMEM| wB gir;erigssﬁlrt”)dionpmd”m (one instruction can produce multiple results)
‘ d syl BlirEsll BEs + + +
o F | D FEX IMEM| WB ali] Qﬁ“ 73| BTGl BWESA ari+41 li*3] afi+2] afi+11 Fafil
IF | ID | EX |MEM| WB * + +
IF | ID | EX |[MEM| WB I BTiE77| ETiEst| BIEs] ori-41 bhi*31) bli+2] bli+1] HBl
IF [ID | EX |[MEM| WB
Ik D | EXMEM| WB a[i+bli] S B B a2 [a@si] i) e [
IF | ID | EX |MEM WB

Instruction Level Parallelism (ILP) Single Instruction Multiple Data (SIMD)

= Balance floating-point operation mix: equal number of additions and multiplications
Hardware may have Fused Multiple-Add instructions (FMA) or equal number of
adders/multipliers

spcl.inf.ethz.ch oo o
vewien ETHZzUrich

Communication

« DRAM bandwidth (GB/s) is the metric of interest

for (1i=0; i<n; 1i++) for (i=0; i<n; 1i++)
for (3=0; j<n; J++) for (J=0; j<n; Jj++)
ali] (3] = alil[J] + cl[1]([3] * d; aljlli] = aljlli] + cl[g][1] * d;

Lee, Jaekyu, Hyesoon Kim, and Richard Vuduc. "When prefetching works, when it doesn’t, and why." ACM Transactions on Architecture and Code Optimization (TACQO) 9.1 (2012): 2.

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Communication

« DRAM bandwidth (GB/s) is the metric of interest

for (1i=0; i<n; 1i++) for (i=0; i<n; 1i++)
for (3=0; j<n; J++) for (J=0; j<n; Jj++)
ali] (3] = alil[J] + cl[1]([3] * d; aljlli] = aljlli] + cl[Jl[1] * d;

* Restructure loops for unit stride accesses
» Engages the hardware prefetcher

Lee, Jaekyu, Hyesoon Kim, and Richard Vuduc. "When prefetching works, when it doesn’t, and why." ACM Transactions on Architecture and Code Optimization (TACQO) 9.1 (2012): 2.

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Communication

« DRAM bandwidth (GB/s) is the metric of interest

for (1i=0; i<n; 1i++) for (i=0; i<n; 1i++)
for (3=0; j<n; J++) for (J=0; j<n; Jj++)
ali] (3] = alil[J] + cl[1]([3] * d; aljlli] = aljlli] + cl[Jl[1] * d;

« Restructure loops for unit stride accesses
» Engages the hardware prefetcher

« Ensure memory affinity
= E.g., two multicore chips with local memory controller

Lee, Jaekyu, Hyesoon Kim, and Richard Vuduc. "When prefetching works, when it doesn’t, and why." ACM Transactions on Architecture and Code Optimization (TACO) 9.1 (2012): 2.

et ETHzlrich
Communication

« DRAM bandwidth (GB/s) is the metric of interest

for (i=0; i<n; 1i++)
for (3=0; j<n; J++)
alil[3] = alill[j] + c[il[3] * d;
* Restructure loops for unit stride accesses 2600 e c=-2600
» Engages the hardware prefetcher | = == | T T

CORES CORE® CORES CORE®

CORE7 COREE CORE7 CORES
o s

« Ensure memory affinity
= E.g., two multicore chips with local memory controller

Lee, Jaekyu, Hyesoon Kim, and Richard Vuduc. "When prefetching works, when it doesn’t, and why." ACM Transactions on Architecture and Code Optimization (TACQO) 9.1 (2012): 2.

“worn ETHZzUrich
Communication

DRAM bandwidth (GB/s) is the metric of interest

for (1i=0; i<n; 1i++) for (i=0; i<n; 1i++)
for (3=0; j<n; J++) for (J=0; j<n; Jj++)
ali] (3] = alil[J] + cl[1]([3] * d; aljlli] = aljlli] + cl[Jl[1] * d;

Xeon E5-2600 I DDR3

CORE CORE 2

Restructure loops for unit stride accesses L 52500
» Engages the hardware prefetcher S T

CORES COREG

CORE3 CORE4 l DDR3

CORES CORE®
| oor3
CORE7 CORES

e
MRAAR

CORE7 COREE

| DDR3

Ensure memory affinity
= E.g., two multicore chips with local memory controller

Use software prefetching

» Depending on the architecture, HW prefetcher can
take time (e.g., 5 loads) to start prefetching

= SW prefetching can provide speedups for complex
access patterns

Lee, Jaekyu, Hyesoon Kim, and Richard Vuduc. "When prefetching works, when it doesn’t, and why." ACM Transactions on Architecture and Code Optimization (TACO) 9.1 (2012): 2.

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Communication

DRAM bandwidth (GB/s) is the metric of interest

for (i=0; i<n; i++) for (i=0; i<n; i++)
for (3=0; j<n; J++) for (3=0; j<n; J++)
alil[3] = alill[3] + clil[j) * d; al§1[i] = al§1[4i] + c[§]1[i] * d;
« Restructure loops for unit stride accesses] || Xeon €5-2600 NI Xeon €5-2600 BV

CORET CORE 2 CORE CORE 2

» Engages the hardware prefetcher oors] eapleraall 12 | el | ook
=
CORE7 COREE 8.0p(:1'°/s CORE7 COREB
* Ensure memory affinity O)| |)
= E.g., two multicore chips with local memory controller upto E'm_m'ﬂ—:,c;‘ AT

1600

HN GHB [] STR mm SW [] SW+GHB SW+STR — Speedup

Use software prefetching

» Depending on the architecture, HW prefetcher can
take time (e.g., 5 loads) to start prefetching

= SW prefetching can provide speedups for complex
access patterns

Norm. Execution Cycle

Lee, Jaekyu, Hyesoon Kim, and Richard Vuduc. "When prefetching works, when it doesn’t, and why." ACM Transactions on Architecture and Code Optimization (TACO) 9.1 (2012): 2.

“weonien ETHZzUrich
Locality

« 3Cs Model

= Compulsory: On the first access to a block; the
block must be brought into the cache; also called
cold start misses, or first reference misses.

0.14

= Capacity: Occur because blocks are being discarded .12
from cache because cache cannot contain all blocks 0.1
needed for program execution (program working set

IS much larger than cache capacity). 0.08

0.06

= Conflict: In the case of set associative or direct 0.04

mapped block placement strategies, conflict misses 0.02
occur when several blocks are mapped to the same 0
set or block frame; also called collision misses or - o - ® © I~ 3 -
interference misses.

Cache Size (KB) Compulsory

Absolut Miss Rates
on SPEC92

http://meseec.ce.rit.edu/eecc551-winter2001/551-1-30-2002.pdf

“weonien ETHZzUrich
Locality

« 3Cs Model

= Compulsory: On the first access to a block; the
block must be brought into the cache; also called
cold start misses, or first reference misses.

What is the lower bound to the number of
memory operations?

0.14
= Capacity: Occur because blocks are being discarded 0.12
from cache because cache cannot contain all blocks 0.1
needed for program execution (program working set
is much larger than cache capacity). 0-08
0.06
= Conflict: In the case of set associative or direct 0-04
mapped block placement strategies, conflict misses 0.02
occur when several blocks are mapped to the same 0
set or block frame; also called collision misses or - o - ® © I~ 3 -

interference misses.
Cache Size (KB) Compulsory

Absolut Miss Rates
on SPEC92

http://meseec.ce.rit.edu/eecc551-winter2001/551-1-30-2002.pdf

“weonien ETHZzUrich
Locality

« 3Cs Model

= Compulsory: On the first access to a block; the
block must be brought into the cache; also called
cold start misses, or first reference misses.

What is the lower bound to the number of
memory operations?

: _ _ How to lower capacity misses?
= Capacity: Occur because blocks are being discarded

from cache because cache cannot contain all blocks
needed for program execution (program working set
is much larger than cache capacity).

= Conflict: In the case of set associative or direct
mapped block placement strategies, conflict misses
occur when several blocks are mapped to the same
set or block frame; also called collision misses or
interference misses.

Cache Size (KB) Compulsory

Absolut Miss Rates
on SPEC92

http://meseec.ce.rit.edu/eecc551-winter2001/551-1-30-2002.pdf

spcl.inf.ethz.ch oo o
vewien ETHZzUrich

Locality

« 3Cs Model

= Compulsory: On the first access to a block; the
block must be brought into the cache; also called
cold start misses, or first reference misses.

What is the lower bound to the number of
memory operations?

How to lower capacity misses?

= Capacity: Occur because blocks are being discarded
from cache because cache cannot contain all blocks
needed for program execution (program working set
Is much larger than cache capacity). How to lower conflict misses?

= Conflict: In the case of set associative or direct
mapped block placement strategies, conflict misses
occur when several blocks are mapped to the same
set or block frame; also called collision misses or
interference misses.

oL

=+)
—

Cache Size (KB) Compulsory

Absolut Miss Rates
on SPEC92

http://meseec.ce.rit.edu/eecc551-winter2001/551-1-30-2002.pdf

“venien ETHzUrich
Locality

« 3Cs Model

= Compulsory: On the first access to a block; the
block must be brought into the cache; also called
cold start misses, or first reference misses.

What is the lower bound to the number of
memory operations?

: _ _ How to lower capacity misses?
= Capacity: Occur because blocks are being discarded

from cache because cache cannot contain all blocks
needed for program execution (program working set
is much larger than cache capacity).

= Conflict: In the case of set associative or direct
mapped block placement strategies, conflict misses
occur when several blocks are mapped to the same
set or block frame; also called collision misses or
interference misses.

Can we lower compulsory misses?

— AR N \ 2

Cache Size (KB) Compulsory

Absolut Miss Rates
on SPEC92

http://meseec.ce.rit.edu/eecc551-winter2001/551-1-30-2002.pdf

spcl.inf.ethz.ch oo o
vewien ETHZzUrich

How to Improve Locality?

* Merging Arrays

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {

int wval;

int key;
}i

struct merge merged array[SIZE];

* Loop Interchange
 Loop Fusion
* Blocking or “tiling”

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

How to Improve Locality?

* Merging Arrays

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */

* Reduce conflicts between key and val
* Improve spatial locality

struct merge {

int wval;

int key;
}i

struct merge merged array[SIZE];

* Loop Interchange
 Loop Fusion
* Blocking or “tiling”

spcl.inf.ethz.ch oo o
vewien ETHZzUrich

How to Improve Locallty’?

* Merging Arrays
 Loop Interchange

/* Before */
for (k = 0; k < 100; k = k+1)
for (3 = 0; j < 100; j = j+1)
for (1 = 0; 1 < 5000; i = i+1l)
x[1i][3] = 2 * x[i]1[3];
/* After */
for (k = 0; k < 100; k = k+1)
for (1 = 0; 1 < 5000; 1 = 1i+1)
for (j = 0; j < 100; j = j+1)
x[1i][3] = 2 * x[i]1[3];

 Loop Fusion
« Blocking or “tiling”

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

How to Improve Locallty’P

* Merging Arrays
* Loop Interchange
/* Before */

for (k = 0; k < 100; k = k+1)
for (3 = 0; j < 100; j = j+1)

for (1 = 0; 1 < 5000; 1 = i+1)

x[1i][3] = 2 * x[i]1[3];
/* After */
for (k = 0; k < 100; k = k+1)
for (1 = 0; 1 < 5000; 1 = 1i+1)
for (3 = 0; j < 100; j = j+1)

Improves spatial locality: sequential access
instead of striding through memory every 100
words

x[1]1[3] = 2 * x[1i][]];

 Loop Fusion
« Blocking or “tiling”

spcl.inf.ethz.ch oo o
vewien ETHZzUrich

How to Improve Locallty’?

* Merging Arrays
 Loop Interchange

 Loop Fusion
/* Before */
for (1 = 0; 1 < N; 1 = i+l)
for (jJ = 0; J < N; j = j+1)
alil[3] = 1/b[il[3]1 * c[il[3]~
for (1 = 0; 1 < N; 1 = i+l)
for (j = 0; j < N; j = j+1)
d[i] []] = ali]l[j] + c[i][3];
/* After */
for (1 = 0; 1 < N; 1 = i+l)
for (j = 0; 3 < N; j = j+1)
{ af[i][3j] = 1/b[i]l[3j] * c[i][3];
dl[i]l[3] = a[il[3j] + c[i][3]1:}

« Blocking or “tiling”

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

How to Improve Locallty’>

* Merging Arrays
 Loop Interchange

 Loop Fusion
/* Before */
for (1 = 0; 1 < N; 1 = i+l)
for (jJ = 0; J < N; j = j+1)
alil[3] = 1/b[il[3]1 * c[il[3]~
for (1 = 0; 1 < N; 1 = i+l)
for (j = 0; j < N; j = j+1)
d[i] []] = ali]l[j] + c[i][3];
/* After */
for (1 = 0; 1 < N; 1 = i+l)
for (j = 0; 3 < N; j = j+1)
{ af[i][3j] = 1/b[i]l[3j] * c[i][3];
dl[i]l[3] = a[il[3j] + c[i][3]1:}

* From two missies per access to a & ¢ to one miss

per access
* Improve temporal locality

« Blocking or “tiling”

spcl.inf.ethz.ch oo o
vewien ETHZzUrich

How to Improve Locallty’?

* Merging Arrays
 Loop Interchange
 Loop Fusion

* Blocking or “tiling”
= Example: matrix multiplication
= Goal: reduce the working set

spcl.inf.ethz.ch oo o
vewien ETHZzUrich

Compute/l\/lemory Bound

 What do we mean by “compute bound”?

« What to we mean by “memory bound”?

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Compute/l\/lemory Bound

 What do we mean by “compute bound”?
» |t has high operations intensity

 What to we mean by “memory bound”?

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Compute/l\/lemory Bound

 What do we mean by “compute bound”?
» |t has high operations intensity

 What to we mean by “memory bound”?
= |t has low operational intensity

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Compute/l\/lemory Bound

 What do we mean by “compute bound”?
= |t has high operations intensity

 What to we mean by “memory bound”?
= |t has low operational intensity

* They’re not very precise definitions...

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Compute/l\/lemory Bound

What do we mean by “compute bound”?
= |t has high operations intensity

What to we mean by “memory bound”?
= |t has low operational intensity

They’re not very precise definitions...

Roofline model helps to clarify
» Plots the performance (GFlops/second) as a function of the Operational Intensity (GFlops/byte)
= What's Operational Intensity?

“woniw ETHziirich
Operational Intensity

How many Flops per byte does your code show?
= Work: W is the number of operations performed by a given program

= Memory Traffic: Q is the number of bytes transferred from memory by a
given program

“vewien ETHZzUrich
Operational Intensity

How many Flops per byte does your code show?
= Work: W is the number of operations performed by a given program

= Memory Traffic: Q is the number of bytes transferred from memory by a
given program

« Can you increase it?

“weniwn ETHZzUrich
Operational Intensity

How many Flops per byte does your code show?
= Work: W is the number of operations performed by a given program

= Memory Traffic: Q is the number of bytes transferred from memory by a
given program

« Can you increase it?
» For some kernels, Ol is a function of the input size
e.g., dense matrix multiplication A

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Operational Intensity

How many Flops per byte does your code show?
= Work: W is the number of operations performed by a given program

= Memory Traffic: Q is the number of bytes transferred from memory by a B
given program

by; by
D; 1 |bzzlbss
« Can you increase it? B — T I-
= For some kernels, Ol is a function of the input size mo
e.g., dense matrix multiplication Al
= What else? 2. (3, . (e— ()

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Operational Intensity

How many Flops per byte does your code show?
= Work: W is the number of operations performed by a given program
= Memory Traffic: Q is the number of bytes transferred from memory by a B

given program = —
b]..Z l:']..3
bZZ b2.3
« Can you increase it? — T I-
= For some kernels, Ol is a function of the input size mo
e.g., dense matrix multiplication ALl
= What else? a,, |2, — ()
Improve locality el (L]|

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Operational Intensity

« How many Flops per byte does your code show?
= Work: W is the number of operations performed by a given program
= Memory Traffic: Q is the number of bytes transferred from memory by a B

given program = —
by; by
» b; ;| b3
« Can you increase it? B — T I-
= For some kernels, Ol is a function of the input size mo £
e.g., dense matrix multiplication Al
= What else? 2. (3, . (e— ()
Improve locality %:1]3a2

= Example: matrix multiplication (3 nested loops)

Wmn) = ~n3
Q(n) = n?
[(n) = W) = ~n

Q(n)

“vewien ETHZzUrich
Operational Intensity

« How many Flops per byte does your code show?
= Work: W is the number of operations performed by a given program

= Memory Traffic: Q is the number of bytes transferred from memory by a
given program

« Can you increase it?

» For some kernels, Ol is a function of the input size
e.g., dense matrix multiplication A
= What else?
Improve locality i

= Example: matrix multiplication (3 nested loops)

Wmn) = ~n3
.2 :
Qn) = n Measures the traffic between the
caches and DRAM. But why?
W (n)
I(n) = = ~n

Q(n)

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Roofline Model

128

Attainable GFlops/sec = Min(Peak Floating Point Performance,
Peak Memory Bandwidth x Operational Intensity)

64 |

A kernel with a given Ol lies somewhere in the | s
Vertlcal Ilne Wlth X:OI | &?{.9 pea.k floating=point performance|

* Ridge point: intersection of the diagonal and
horizontal roof
 Its x-coordinate is the minimum operational :
intensity required to achieve maximum 2

Attainable GFlops/s
(=]

performance

* |t suggests the level of difficulty for
programmers and compiler writers to achieve
peak performance

QOperational Intensity 2 (compute-bound)

perational Intensity 1 (memory-bound]

0

112 i . '
1/4 1/2 1 2 4 8 16
Operational Intensity (Flops/Byte)

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Roofline Model

Attainable GFlops/sec = Min(Peak Floating Point Performance, b _ - Onteron xé
Peak Memory Bandwidth x Operational Intensity) M _ o |
« A kernel with a given Ol lies somewhere in the | s il
vertical line with x=0I | ﬁ“ pesk foatng-pon peromanca 1 | g Oplaron X2
s |
* Ridge point: intersection of the diagonal and 2 8] i § sl o
horizontal roof : /1 g :
 Its x-coordinate is the minimum operational 2 '5
intensity required to achieve maximum 2p a3 2 2
performance 1 £ 2
It suggests the level of difficulty for 3 ~ ‘
programmers and compiler writers to achieve " 15;5‘ e l
peak performance opsrstonelrksesi (peoy s M perational intensity (FopsByte) .
Opteron X4:

« Canissue 2 FP SSEZ2 instructions per cycle
« Slightly faster clock rate
« >4x gain in peak performance w.r.t. X2

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Roofline Model

p
Ridge Point shifts right
128 from 1.0to 4.4

Attainable GFlops/sec = Min(Peak Floating Point Performance, b _ Oiaron ¥4
Peak Memory Bandwidth x Operational Intensity) M _ o |
« A kernel with a given Ol lies somewhere in the | s il
vertical line with x=0I | ﬁ“ pesk foatng-pon peromanca 1 | g Oplaron X2
s |
* Ridge point: intersection of the diagonal and 2 8] i § sl o
horizontal roof : /1 g :
 Its x-coordinate is the minimum operational 2 '5
intensity required to achieve maximum 2p a3 2 2
performance 1 £ 2
It suggests the level of difficulty for 3 ~ ‘
programmers and compiler writers to achieve " 15;5‘ e l
peak performance opsrstonelrksesi (peoy s M perational intensity (FopsByte) .
Opteron X4:

« Canissue 2 FP SSEZ2 instructions per cycle
« Slightly faster clock rate
« >4x gain in peak performance w.r.t. X2

spcl.inf.ethz.ch
,@spcl_ eth

ETHzurich

Adding Cellings

 What if your program is far from the roofline?

128 : - r . .
64
32 |
peak rlnating—point perfcrmancq
w 16 | Y 6'
~3 2. floallng point balanc
2 &
=]
(TR
(‘5 -
@ 8 1. ILP or SIMD/
2
=
=
< 4
27 TLP only
i1t .
1!2 1 L A L | il
1/8 1/4 12 1 2 4 8 16

(a) Computational Ceilings

Operational Intensity (Flops/Byte)

Attainable GFlops/s

(b) Bandwidth Ceilings

128 T

64

32

—
(=1
T

o

F 9

6
.
S

1/2 !
1/8 1/4

@
&

T T T T

peak floating—point performance|

i L L 1

1/2 1 2 4 8 16

Operational Intensity (Flops/Byte)

Attainable GFlops/s

128

64

32

(=1]

W

s

(c) Optimization Regions

y/ 7ﬁng-p'oinjt balance|
o7 1 .
& ; :

T T T T

peak floating—point perfo rmance

i 1.ILP or SIMD

TLP only

Kernel 2

i L

172 1 2 4 8 16
Operational Intensity (Flops/Byte)

29

spcl.inf.ethz.ch oo o
vewien ETHZzUrich

Adding Cellings

 What if your program is far from the roofline?
= Ceilings can help us: you cannot break through a ceiling without performing the associated optimization.

(a) Computational Ceilings (b) Bandwidth Ceilings (c) Optimization Regions
128 T T T T T 128 T T T T T 128 T T T T T
64 64 64
32 : 1 32 : 1 32+ : 1
peak floating—point performance peak floating—point performance] peak floating—point performance|
4 16 & 2. floating—point balance] 2 16 £ 16 Q 2. fjeting—point balanc
a a a o 1 ;
=] o o & 1 2
[[[3 - :
g . a 15 & H :
o 8 1.ILPorSIMD| 2 8 1 2 8 i 1.ILPorSIMD
8 9 = , : :
£ £ £ :
i P 2 :
< a4t 1l < 4 | <= 4 1
!
1
i :
2 r TLP only| 2 1 2 1 TLP only]
1
. i
1t 1 1 i i
1 o
g g
1 £ 1 £
1/2 i i i i I 1 1/2 Oy 1 L i L I 1 1/2 Oy 1 [| Q i L 1 g i
1/8 1/4 1/2 1 2 4 8 16 1/8 1/4 1/2 1 2 4 8 16 1/8 1/4 172 1 2 4 8 16

Operational Intensity (Flops/Byte) Operational Intensity (Flops/Byte) Operational Intensity (Flops/Byte)

spcl.inf.ethz.ch

,@spcl_ eth

ETHzurich

Adding Cellings

 What if your program is far from the roofline?
= Ceilings can help us: you cannot break through a ceiling without performing the associated optimization.

(a) Computational Ceilings

128
64
32
peak rlnating—point performance
z 16) 2. floating—point balancé
g
(TR
a
o 8 r 1. ILP or SIMD|
=]
[+
=
g
< 4
2 TLP only
1
1/2 L L i i i i
1/8 1/4 1/2 1 2 4 8 16

Operational Intensity (Flops/Byte)

Attainable GFlops/s

(b) Bandwidth Ceilings

128

64

32t

172 £ !
1/8 1/4

peak fl oating-point performance(

L 1 L | il
1/2 1 2 4 8 16
Operational Intensity (Flops/Byte)

Attainable GFlops/s

(c) Optimization Regions

128
64
a2 -
peak Iluating-point performance|
16 y/ 7ﬂ_dng—p’oirit bala
g‘a' 1 i
=5 .
4 ! -
8 © Uy 1ILPor SIMD
! q
]
4 i
'
]
i .
2] TLP only
1
]
1 i
! o™
'3
=
1/2 i i L 1)ué i
1/8 1/4 1/2 1 2 4 8 16

Operational Intensity (Flops/Byte)

» The height of the gap between a ceiling and the next higher one is the potential reward for trying that optimization

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Adding Cellings

 What if your program is far from the roofline?
= Ceilings can help us: you cannot break through a ceiling without performing the associated optimization.

(a) Computational Ceilings (b) Bandwidth Ceilings

(c) Optimization Regions

128 128 128
64 64 64
32 1 32 1 32 r
peak floating—point performance peak floating—point performance| peak floating—point performance
L. 2. floating-point balance & 2 16 & 2. : ing—point balanc
=1 = a e g :
k=] =] =] & 1 :
(TR [TH [TH 3 = 3
a a (5] & : :
Q@ 1.ILPor SIMD| @ @ 8 i U 1UILP or SIMD
=] =] 0
@ @ @ 1 i
£ £ £ .
£ = 2 -
= = <, i
'
|
i p
TLP only 2 1 TLP only
1
]
1 1 l
! o
'S
=
L]
'IJ’E 1 L 1 L | il 1;2 fb- 1 L ' L | il 1}‘2 " 1 ' L I x 1
1/8 1/4 1/2 1 2 4 8 16 1/8 1/4 1/2 1 2 4 8 16 1/8 1/4 /2 1 2 4 8 16
Operational Intensity (Flops/Byte) Operational Intensity (Flops/Byte) Operational Intensity (Flops/Byte)

» The height of the gap between a ceiling and the next higher one is the potential reward for trying that optimization

= Their order suggests the optimization order. Lower ceilings: easy to implement by the programmer or likely realized by the
compiler.

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Adding Cellings

 What if your program is far from the roofline?
= Ceilings can help us: you cannot break through a ceiling without performing the associated optimization.

(a) Computational Ceilings (b) Bandwidth Ceilings (c) Optimization Regions
128 T T T ‘ 128 T T T 128 T

64

Cache usage optimizations can increase the Ol, hence put
a kernel in a different optimization region.

32

ing-point performance|

o)ﬁ{ting—poin_t balanc
a - - . . . i]
2 First improve Ol, then apply other optimizations. v
% i 1.ILPor SIMD
@ [@ I
z z, Z ,
!
i
i .
TLP only 2 fr ! TLP only
1
]
i
1 1 '
'3
1 £
1/2 L i i i I i 1/2 Oy 1 L i i I i - 1 i L 1 g i
1/8 1/4 1/2 1 2 4 8 16 1/8 1/4 1/2 1 2 4 8 16 1/8 1/4 172 1 2 4 8 16
Operational Intensity (Flops/Byte) Operational Intensity (Flops/Byte) Operational Intensity (Flops/Byte)

» The height of the gap between a ceiling and the next higher one is the potential reward for trying that optimization

= Their order suggests the optimization order. Lower ceilings: easy to implement by the programmer or likely realized by the
compiler.

spcl.inf.ethz.ch oo o
venien ETHZzUrich

Models & Results

(a) Intel Xeon (Clovertown) (b) Intel Xeon (Clovertown)
128 T T] I L] I T 128 T L] T L} T L T
peak DP
64 64
32 r 32 r
@ 16 N e o 16 Y ey G
@ G . .
(=8 o o -
o o +balanced mul/add
% % : :
8 - . : 8
11 .
: : : TLP only TLP only
4 I R : A 4]
o
o
1
= ! T "’8 i - i
i Qi1 =
I S+
1 - e l _||ILI.I l LL 1 1 1 A 1 1 1 1
116 1/8 1/4 1/2 1 2 4 8 16 116 1/8 1/4 1/2 1 2 4 8 16

Operational Intensity (Flops/Byte) Operational Intensity (Flops/Byte)

spcl.inf.ethz.ch oo o
vewien ETHZzUrich

Models & Results

(e) IBM Cell (QS20) (f) IBM Cell (QS20)
128 T T T T T T T 128 T T T T T T T
64 . 64 .
35 | peak DP; 32 | -peak DP]
N +FMA ~ +SIMD
1 . .
I vLl
o 16 -m o 16 b - g R
2 111 . +SIMD 2 +ILP
o . o
o 1 (| r
C g ! AN © g
' LA +LP +FMA
I (|
I i
4 | EEERREREE ||| 4 .. HEEII R
[(| TLP only TLP only
I 111
I I
2 i 11N l 2 I
1z f11Eb
15 % LN]
1 i i luf}-}‘ VT T i i 1 i 1 SpMV i i i i i
116 1/8 1/4 1/2 1 2 4 8 16 116 1/8 1/4 1/2 1 2 4 8 16

Operational Intensity (Flops/Byte) Operational Intensity (Flops/Byte)

128

64

32

GFlops/s
>

(o +]

Models & Results

(e) IBM Cell (QS20)

L peak DP;
1 0 +FMA
LI
. &*
1 : +SIMD
i 1
. I DO R
f LA +LP
I: 111
I i
I: ll '
I 111 TLP only
[in
[I
I 1% %N 7
1z f11Eb
L5 ZS11 B
— m L W
1 i i 1w = 1 1 LW L i
116 1/8 1/4 1/2 1 2 4 16

Operational Intensity (Flops/Byte)

GFlops/s

(f) IBM Cell (QS20)

spcl.inf.ethz.ch
,@spcl_ eth

128

64

32

—
)]
T

[o2]

peak DP,

- +SIMD

ETHzurich

1
116

1/8

Cell Processor Architecture

Power Processor Element (PPE)
(64 bit PowerPC with VMX)
/0]
Controller l I I Controller l GEL l
/o I_ Y RAM
Controller l Controller

/ SPE1 SPES
Dual "configurable' =
High speed 'O
channels SPE 2 SPE6
(76.8 GBytes per
second in total)

SPE 3 SPE7
Dual 12.8 GByte per
second memory busses
SPE 4 SPE8 give Cell huge memory
(25.6 GBytes
N per second in total)
\ EIB (Element Interconnect Bus)

kel as Blachford 2005 is the internal system.

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Multithreading

Performance [Flops/Cycle] Performance [Flops/Cycle]
Peak mpar. (48.0 Flops/Cycle) Peak mtpar. (48.0 Flops/Cycle) L~ 2800

dgemm

10 Peak 1 seq. (8.0 Flops/Cycle) 10 Peak 1 seq. (8.0 Flops/Cyde)

FFT
2800
4194304
— 4194304 N
I I I 2440000
10034 32
dgemv dgemv
0.1 | 10 0.1 | 10
Operational Intensity [Flops/Byte] Operational Intensity [Flops/Byte]
(a) Sequential code. (b) Parallel code.

 The ridge point shifts from 1.3to 4.6

* Increasing the input makes parallelization gain efficiency
= Until when the working set gets too big to stay in cache

Ofenbeck, Georg, et al. "Applying the roofline model."” Performance Analysis of Systems and Software (ISPASS), 2014 IEEE International Symposium on. IEEE, 2014.

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Applylng the Roofline I\/Iodel

* For each kernel, we need to measure:
» The work W
Counters for floating point operations

» Theruntime T
Read Time Stamp Counter (RDTSC) is still a right choice

= The memory traffic Q
LLC misses can be an underestimation
Measure raw traffic on the memory controller if possible (i.e.,Intel PCM)

* For each architecture, we need to measure:
» The peak performance m: microbenchmarks or manual
» The memory bandwidth £: microbenchmarks, most challenging

Ofenbeck, Georg, et al. "Applying the roofline model."” Performance Analysis of Systems and Software (ISPASS), 2014 IEEE International Symposium on. IEEE, 2014.

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Applylng the Roofline I\/Iodel

 For each kernel, we need to measure;
= The work W

_ _ _ W = Scalar_double + SSE_double x 2 + AVX_double x 4
Counters for floating point operations

[E.g., Won a Sandy Bridge platform]

» Theruntime T
Read Time Stamp Counter (RDTSC) is still a right choice

= The memory traffic Q
LLC misses can be an underestimation
Measure raw traffic on the memory controller if possible (i.e.,Intel PCM)

* For each architecture, we need to measure:
» The peak performance m: microbenchmarks or manual
» The memory bandwidth £: microbenchmarks, most challenging

Ofenbeck, Georg, et al. "Applying the roofline model."” Performance Analysis of Systems and Software (ISPASS), 2014 IEEE International Symposium on. IEEE, 2014.

spcl.inf.ethz.ch oo o
wewien ETHZzUrich

Applylng the Roofline I\/Iodel

 For each kernel, we need to measure;
= The work W

_ _ _ W = Scalar_double + SSE_double x 2 + AVX_double x 4
Counters for floating point operations

[E.g., Won a Sandy Bridge platform]

» Theruntime T
Read Time Stamp Counter (RDTSC) is still a right choice

= The memory traffic Q
LLC misses can be an underestimation
Measure raw traffic on the memory controller if possible (i.e.,Intel PCM)

* For each architecture, we need to measure:
» The peak performance m: microbenchmarks or manual
» The memory bandwidth £: microbenchmarks, most challenging

[LibLSB: https://spcl.inf.ethz.ch/Research/Performance/LibLSB/ }

Ofenbeck, Georg, et al. "Applying the roofline model."” Performance Analysis of Systems and Software (ISPASS), 2014 IEEE International Symposium on. IEEE, 2014.

