
spcl.inf.ethz.ch

@spcl_eth

MARCIN COPIK <MARCIN.COPIK@INF.ETHZ.CH>

DPHPC: Amdahl’s Law, Roofline model
Recitation session

spcl.inf.ethz.ch

@spcl_eth

• Will my program scale?
“Am I going to run faster on twice larger machine?”

• Which parts of the program I should improve?

“Let me parallelize one more loop, that should help… I can’t be spending 90% of time on
communication and synchronization!”

• Can my program achieve better performance? How far is it from maximum?
“I spent 50 hours on optimizing every memory accesses and I’m 0.5% faster”

• How should we design a new computing system?
“Do I need accelerators? Do I need more memory?”

Why do we have to do performance modelling?

spcl.inf.ethz.ch

@spcl_eth

• Will my program scale?
“Am I going to run faster on twice larger machine?”

• Which parts of the program I should improve?

“Let me parallelize one more loop, that should help… I can’t be spending 90% of time on
communication and synchronization!”

• Can my program achieve better performance? How far is it from maximum?
“I spent 50 hours on optimizing every memory accesses and I’m 0.5% faster”

• How should we design a new computing system?
“Do I need accelerators? Do I need more memory?”

Two things we need to understand

• Baseline – slow and bad programs tend to scale better.

• Upper bound

Why do we have to do performance modelling?

spcl.inf.ethz.ch

@spcl_eth

Why is upper bound important?

This is pretty pathetic…

spcl.inf.ethz.ch

@spcl_eth

Why is upper bound important?

spcl.inf.ethz.ch

@spcl_eth

Why is upper bound important? Upper bound

for prefix scan

spcl.inf.ethz.ch

@spcl_eth

Why is upper bound important? Upper bound

for prefix scan

We’re actually

improving!

spcl.inf.ethz.ch

@spcl_eth

5

Amdahl’s Law

𝑇1 = 𝑓𝑇1 + 1 − 𝑓 𝑇1

Time of sequential program with f as the fraction not affected

by the parallelization:

spcl.inf.ethz.ch

@spcl_eth

5

Amdahl’s Law

𝑇1 = 𝑓𝑇1 + 1 − 𝑓 𝑇1

Time of sequential program with f as the fraction not affected

by the parallelization:

Time of parallel program:

𝑇𝑃 ≥ 𝑓𝑇1 +
1 − 𝑓 𝑇1

𝑃

spcl.inf.ethz.ch

@spcl_eth

5

Amdahl’s Law

𝑇1 = 𝑓𝑇1 + 1 − 𝑓 𝑇1

Time of sequential program with f as the fraction not affected

by the parallelization:

Time of parallel program:

𝑇𝑃 ≥ 𝑓𝑇1 +
1 − 𝑓 𝑇1

𝑃

spcl.inf.ethz.ch

@spcl_eth

5

Amdahl’s Law

𝑇1 = 𝑓𝑇1 + 1 − 𝑓 𝑇1

Time of sequential program with f as the fraction not affected

by the parallelization:

Time of parallel program:

𝑇𝑃 ≥ 𝑓𝑇1 +
1 − 𝑓 𝑇1

𝑃

𝑆𝑃 =
𝑇1

𝑇𝑃
≤

1
1−𝑓

𝑃
+𝑓

c

Speedup:

spcl.inf.ethz.ch

@spcl_eth

5

Amdahl’s Law

𝑇1 = 𝑓𝑇1 + 1 − 𝑓 𝑇1

Time of sequential program with f as the fraction not affected

by the parallelization:

Time of parallel program:

𝑇𝑃 ≥ 𝑓𝑇1 +
1 − 𝑓 𝑇1

𝑃

𝑆𝑃 =
𝑇1

𝑇𝑃
≤

1
1−𝑓

𝑃
+𝑓

c

Speedup:

𝑇∞ = 𝑓𝑇1

spcl.inf.ethz.ch

@spcl_eth

5

Amdahl’s Law

𝑇1 = 𝑓𝑇1 + 1 − 𝑓 𝑇1

Time of sequential program with f as the fraction not affected

by the parallelization:

Time of parallel program:

𝑇𝑃 ≥ 𝑓𝑇1 +
1 − 𝑓 𝑇1

𝑃

𝑆𝑃 =
𝑇1

𝑇𝑃
≤

1
1−𝑓

𝑃
+𝑓

c

Speedup:

𝑇∞ = 𝑓𝑇1

𝑆∞ ≤
1

𝑓

spcl.inf.ethz.ch

@spcl_eth

5

Amdahl’s Law

𝑇1 = 𝑓𝑇1 + 1 − 𝑓 𝑇1

Time of sequential program with f as the fraction not affected

by the parallelization:

Time of parallel program:

𝑇𝑃 ≥ 𝑓𝑇1 +
1 − 𝑓 𝑇1

𝑃

𝑆𝑃 =
𝑇1

𝑇𝑃
≤

1
1−𝑓

𝑃
+𝑓

c

Speedup:

𝑇∞ = 𝑓𝑇1

𝑆∞ ≤
1

𝑓

spcl.inf.ethz.ch

@spcl_eth

5

Amdahl’s Law

𝑇1 = 𝑓𝑇1 + 1 − 𝑓 𝑇1

Time of sequential program with f as the fraction not affected

by the parallelization:

Time of parallel program:

𝑇𝑃 ≥ 𝑓𝑇1 +
1 − 𝑓 𝑇1

𝑃

𝑆𝑃 =
𝑇1

𝑇𝑃
≤

1
1−𝑓

𝑃
+𝑓

c

Speedup:

𝑇∞ = 𝑓𝑇1

𝑆∞ ≤
1

𝑓

It’s like to see the glass as half empty but…

It could be even worse!

Possible factors: load balancing, communication costs, I/O, scheduling

spcl.inf.ethz.ch

@spcl_eth

6

Amdahl’s Law vs Gustafson-Barsis' Law

…speedup should be measured by scaling the problem to the number of

processors, not by fixing the problem size.

— John Gustafson

spcl.inf.ethz.ch

@spcl_eth

6

Amdahl’s Law vs Gustafson-Barsis' Law

…speedup should be measured by scaling the problem to the number of

processors, not by fixing the problem size.

— John Gustafson

𝑇1 = 𝛼𝑇1 + 1 − 𝛼 𝑃𝑇1

Time of sequential program with 𝛼 as the fraction not affected by the parallelization on P-processors machine:

spcl.inf.ethz.ch

@spcl_eth

6

Amdahl’s Law vs Gustafson-Barsis' Law

…speedup should be measured by scaling the problem to the number of

processors, not by fixing the problem size.

— John Gustafson

𝑇1 = 𝛼𝑇1 + 1 − 𝛼 𝑃𝑇1

Time of sequential program with 𝛼 as the fraction not affected by the parallelization on P-processors machine:

Time of parallel program:

𝑇𝑃 = 𝛼𝑇1 + 1 − 𝛼 𝑇1

spcl.inf.ethz.ch

@spcl_eth

6

Amdahl’s Law vs Gustafson-Barsis' Law

…speedup should be measured by scaling the problem to the number of

processors, not by fixing the problem size.

— John Gustafson

𝑇1 = 𝛼𝑇1 + 1 − 𝛼 𝑃𝑇1

Time of sequential program with 𝛼 as the fraction not affected by the parallelization on P-processors machine:

Time of parallel program:

𝑇𝑃 = 𝛼𝑇1 + 1 − 𝛼 𝑇1

spcl.inf.ethz.ch

@spcl_eth

6

Amdahl’s Law vs Gustafson-Barsis' Law

…speedup should be measured by scaling the problem to the number of

processors, not by fixing the problem size.

— John Gustafson

𝑇1 = 𝛼𝑇1 + 1 − 𝛼 𝑃𝑇1

Time of sequential program with 𝛼 as the fraction not affected by the parallelization on P-processors machine:

Speedup:

𝑆𝑃 =
𝑇1
𝑇𝑃

≤ 𝛼 + 𝑃(1 − 𝛼)

Time of parallel program:

𝑇𝑃 = 𝛼𝑇1 + 1 − 𝛼 𝑇1

spcl.inf.ethz.ch

@spcl_eth

6

Amdahl’s Law vs Gustafson-Barsis' Law

…speedup should be measured by scaling the problem to the number of

processors, not by fixing the problem size.

— John Gustafson

𝑇1 = 𝛼𝑇1 + 1 − 𝛼 𝑃𝑇1

Time of sequential program with 𝛼 as the fraction not affected by the parallelization on P-processors machine:

Speedup:

𝑆𝑃 =
𝑇1
𝑇𝑃

≤ 𝛼 + 𝑃(1 − 𝛼)

Time of parallel program:

𝑇𝑃 = 𝛼𝑇1 + 1 − 𝛼 𝑇1

Note: no parallel overheads are taken into account here!

spcl.inf.ethz.ch

@spcl_eth

• Speedup

• Efficiency

• Strong Scaling

• Weak Scaling

7

Quiz

spcl.inf.ethz.ch

@spcl_eth

• Speedup

▪ How well something responds to adding more resources

▪ What’s your base case? The best serial version or a single parallel process?

• Efficiency

• Strong Scaling

• Weak Scaling

7

Quiz

spcl.inf.ethz.ch

@spcl_eth

• Speedup

▪ How well something responds to adding more resources

▪ What’s your base case? The best serial version or a single parallel process?

• Efficiency

• Strong Scaling

• Weak Scaling

7

Quiz

Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalability! but at what cost?. In Proceedings of the 15th USENIX conference on Hot Topics in Operating

Systems (HOTOS'15), George Candea (Ed.). USENIX Association, Berkeley, CA, USA, 14-14.

spcl.inf.ethz.ch

@spcl_eth

• Speedup

▪ How well something responds to adding more resources

▪ What’s your base case? The best serial version or a single parallel process?

• Efficiency

▪ Gives idea on the “utilization” degree of the computing resources

• Strong Scaling

• Weak Scaling

7

Quiz

Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalability! but at what cost?. In Proceedings of the 15th USENIX conference on Hot Topics in Operating

Systems (HOTOS'15), George Candea (Ed.). USENIX Association, Berkeley, CA, USA, 14-14.

spcl.inf.ethz.ch

@spcl_eth

• Speedup

▪ How well something responds to adding more resources

▪ What’s your base case? The best serial version or a single parallel process?

• Efficiency

▪ Gives idea on the “utilization” degree of the computing resources

• Strong Scaling

▪ Problem size stays fixed as the number of processing elements are increased

• Weak Scaling

7

Quiz

Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalability! but at what cost?. In Proceedings of the 15th USENIX conference on Hot Topics in Operating

Systems (HOTOS'15), George Candea (Ed.). USENIX Association, Berkeley, CA, USA, 14-14.

spcl.inf.ethz.ch

@spcl_eth

• Speedup

▪ How well something responds to adding more resources

▪ What’s your base case? The best serial version or a single parallel process?

• Efficiency

▪ Gives idea on the “utilization” degree of the computing resources

• Strong Scaling

▪ Problem size stays fixed as the number of processing elements are increased

• Weak Scaling

▪ Problem size increases as the number of processing elements are increased

7

Quiz

Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalability! but at what cost?. In Proceedings of the 15th USENIX conference on Hot Topics in Operating

Systems (HOTOS'15), George Candea (Ed.). USENIX Association, Berkeley, CA, USA, 14-14.

spcl.inf.ethz.ch

@spcl_eth

8

Exercise 1

Assume 1% of the runtime of a program is not parallelizable. This program is run on 61 cores of a Intel

Xeon Phi. Under the assumption that the program runs at the same speed on all of those cores, and there

are no additional overheads, what is the parallel speedup?

spcl.inf.ethz.ch

@spcl_eth

8

Exercise 1

Assume 1% of the runtime of a program is not parallelizable. This program is run on 61 cores of a Intel

Xeon Phi. Under the assumption that the program runs at the same speed on all of those cores, and there

are no additional overheads, what is the parallel speedup?

spcl.inf.ethz.ch

@spcl_eth

9

Exercise 2

Assume 0.1% of the runtime is not parallelizable. The program also invokes a broadcast operation, that

add overhead depending on the number of cores involved. There are two broadcast implementations

available. One adds a parallel overhead of 0.0001𝑛, the other one 0.0005 log 𝑛. For which number of cores

do you get the highest speedup for both implementations?

spcl.inf.ethz.ch

@spcl_eth

9

Exercise 2

Assume 0.1% of the runtime is not parallelizable. The program also invokes a broadcast operation, that

add overhead depending on the number of cores involved. There are two broadcast implementations

available. One adds a parallel overhead of 0.0001𝑛, the other one 0.0005 log 𝑛. For which number of cores

do you get the highest speedup for both implementations?

spcl.inf.ethz.ch

@spcl_eth

9

Exercise 2

Assume 0.1% of the runtime is not parallelizable. The program also invokes a broadcast operation, that

add overhead depending on the number of cores involved. There are two broadcast implementations

available. One adds a parallel overhead of 0.0001𝑛, the other one 0.0005 log 𝑛. For which number of cores

do you get the highest speedup for both implementations?

spcl.inf.ethz.ch

@spcl_eth

10

PRAM: Parallel Random Access Machine

▪ P processes with shared memory

▪ Ignores communications and synchronization

▪ Instruction are composed by 3 phases:

▪ Load data from shared memory (if needed)

▪ Perform computation (if any)

▪ Store data in shared memory (if needed)

▪ Any process can read/write to any memory cell

▪ How conflicts are handled?

spcl.inf.ethz.ch

@spcl_eth

• EREW: Exclusive Read / Exclusive Write

▪ No two processes are allowed to read or write to the same memory cell simultaneously

• CREW: Concurrent Read / Exclusive Write

▪ Simultaneous reads are allowed; only one process can write

• CRCW: Concurrent Read / Concurrent Write

▪ Simultaneous reads and write to the same memory cell are allowed

▪ Priority CRCW: processors assigned fixed distinct priorities, highest priority wins

▪ Random CRCW: one randomly chosen write wins

▪ Common CRCW: all processors are allowed to complete write if and only if all the values to be written are
equal

11

PRAM: Conflicting Accesses

http://homes.cs.washington.edu/~arvind/cs424/notes/l2-6.pdf

EREW < CREW < CRCW-C < CRCW-R < CRCW-P

Weak Strong

spcl.inf.ethz.ch

@spcl_eth

• Reduce p values on the p-processor EREW PRAM in 𝑶(𝒍𝒐𝒈𝒑) time

• The algorithm uses exclusive reads and writes

• It’s the basis of other EREW algorithms

12

PRAM: Reduction

spcl.inf.ethz.ch

@spcl_eth

• Computing the position of the first one in the sequence of 0’s and 1’s in a constant time.

13

PRAM: First 1

Algorithm A

(2 parallel steps and n2 processors)
for each 1 i<j n do in parallel

if C[i] =1 and C[j]=1 then C[j]:=0

for each 1 i n do in parallel

if C[i] =1 then FIRST-ONE-POSITION:=i

1 1

1 0

www.csc.liv.ac.uk/~igor/COMP308/ppt/Lect_5.ppt

spcl.inf.ethz.ch

@spcl_eth

14

PRAM: First 1 – Reducing Number of Processors

Algorithm B: it reports if there is any one in the table.

There-is-one:=0

for each 1 i n do in parallel

if C[i] =1 then There-is-one:=1

0000000000000000001 1

1

www.csc.liv.ac.uk/~igor/COMP308/ppt/Lect_5.ppt

spcl.inf.ethz.ch

@spcl_eth

14

PRAM: First 1 – Reducing Number of Processors

Algorithm B: it reports if there is any one in the table.

There-is-one:=0

for each 1 i n do in parallel

if C[i] =1 then There-is-one:=1

0000000000000000001 1

1

Merge A and B

1. Partition table C into segments of size 𝑛

2. In each segment apply the algorithm B

3. Find position of the first one in these sequence by

applying algorithm A

4. Apply algorithm A to this single segment and compute

the final value

B B B B B B BB B B

A

A

www.csc.liv.ac.uk/~igor/COMP308/ppt/Lect_5.ppt

spcl.inf.ethz.ch

@spcl_eth

14

PRAM: First 1 – Reducing Number of Processors

Algorithm B: it reports if there is any one in the table.

There-is-one:=0

for each 1 i n do in parallel

if C[i] =1 then There-is-one:=1

0000000000000000001 1

1

Merge A and B

1. Partition table C into segments of size 𝑛

2. In each segment apply the algorithm B

3. Find position of the first one in these sequence by

applying algorithm A

4. Apply algorithm A to this single segment and compute

the final value

B B B B B B BB B B

A

A

www.csc.liv.ac.uk/~igor/COMP308/ppt/Lect_5.ppt

How many processors we need?

What’s the complexity?

spcl.inf.ethz.ch

@spcl_eth

14

PRAM: First 1 – Reducing Number of Processors

Algorithm B: it reports if there is any one in the table.

There-is-one:=0

for each 1 i n do in parallel

if C[i] =1 then There-is-one:=1

0000000000000000001 1

1

Merge A and B

1. Partition table C into segments of size 𝑛

2. In each segment apply the algorithm B

3. Find position of the first one in these sequence by

applying algorithm A

4. Apply algorithm A to this single segment and compute

the final value

B B B B B B BB B B

A

A

www.csc.liv.ac.uk/~igor/COMP308/ppt/Lect_5.ppt

How many processors we need?

(𝑛)2= 𝑛

What’s the complexity?

3 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑠𝑡𝑒𝑝𝑠 → 𝑂(1)

spcl.inf.ethz.ch

@spcl_eth

16

Exercise 3

How can we find the minimum from an unordered collection of n natural numbers on EREW-PRAM

machine?

spcl.inf.ethz.ch

@spcl_eth

16

Exercise 3

We can find the minimum from an unordered collection of n natural numbers by performing a reduction

along a binary tree: In each round, each processor compares two elements, and the smaller element gets

to the next round, the bigger one is discarded. What is the work and depth of this algorithm?

How can we find the minimum from an unordered collection of n natural numbers on EREW-PRAM

machine?

spcl.inf.ethz.ch

@spcl_eth

16

Exercise 3

We can find the minimum from an unordered collection of n natural numbers by performing a reduction

along a binary tree: In each round, each processor compares two elements, and the smaller element gets

to the next round, the bigger one is discarded. What is the work and depth of this algorithm?

How can we find the minimum from an unordered collection of n natural numbers on EREW-PRAM

machine?

spcl.inf.ethz.ch

@spcl_eth

17

Exercise 4

Develop an algorithm which can find the minimum in an unordered collection of n natural numbers in 𝑂 1
time on a CRCW-PRAM machine.

spcl.inf.ethz.ch

@spcl_eth

17

Exercise 4

Develop an algorithm which can find the minimum in an unordered collection of n natural numbers in 𝑂 1
time on a CRCW-PRAM machine.

• Assume the list is stored in an array 𝐴.

• Create an additional array 𝑡𝑚𝑝 𝑛 initialized with 𝑡𝑟𝑢𝑒.

• We use 𝑂 𝑛2 processors, labelled 𝑝(𝑖, 𝑗) with 0 ≤ 𝑖, 𝑗 ≤ 𝑛.

• Each processor 𝑝(𝑖, 𝑗) checks if 𝐴 𝑖 > 𝐴 𝑗 .

• If true then tmp[𝑖] is set to false (it cannot be the minimum)

• Otherwise nothing is done

• At the end we have only one element of 𝑡𝑚𝑝 set to true, say 𝑡𝑚𝑝[𝑘]. The minimum element of A is 𝐴[𝑘].

spcl.inf.ethz.ch

@spcl_eth

• Usually, floating point performance (Gflop/s) is the metric of interest

• Road to peak in-core performance:

19

Computation

Instruction Level Parallelism (ILP)

spcl.inf.ethz.ch

@spcl_eth

• Usually, floating point performance (Gflop/s) is the metric of interest

• Road to peak in-core performance:

▪ Improve ILP and apply SIMD

19

Computation

Instruction Level Parallelism (ILP)

spcl.inf.ethz.ch

@spcl_eth

• Usually, floating point performance (Gflop/s) is the metric of interest

• Road to peak in-core performance:

▪ Improve ILP and apply SIMD

19

Computation

Instruction Level Parallelism (ILP) Single Instruction Multiple Data (SIMD)

spcl.inf.ethz.ch

@spcl_eth

• Usually, floating point performance (Gflop/s) is the metric of interest

• Road to peak in-core performance:

▪ Improve ILP and apply SIMD

▪ Balance floating-point operation mix: equal number of additions and multiplications

Hardware may have Fused Multiple-Add instructions (FMA) or equal number of
adders/multipliers

19

Computation

Instruction Level Parallelism (ILP) Single Instruction Multiple Data (SIMD)

spcl.inf.ethz.ch

@spcl_eth

• DRAM bandwidth (GB/s) is the metric of interest

20

Communication

for (i=0; i<n; i++)

for (j=0; j<n; j++)

a[i][j] = a[i][j] + c[i][j] * d;

for (i=0; i<n; i++)

for (j=0; j<n; j++)

a[j][i] = a[j][i] + c[j][i] * d;

Lee, Jaekyu, Hyesoon Kim, and Richard Vuduc. "When prefetching works, when it doesn’t, and why." ACM Transactions on Architecture and Code Optimization (TACO) 9.1 (2012): 2.

spcl.inf.ethz.ch

@spcl_eth

• DRAM bandwidth (GB/s) is the metric of interest

• Restructure loops for unit stride accesses

▪ Engages the hardware prefetcher

20

Communication

for (i=0; i<n; i++)

for (j=0; j<n; j++)

a[i][j] = a[i][j] + c[i][j] * d;

for (i=0; i<n; i++)

for (j=0; j<n; j++)

a[j][i] = a[j][i] + c[j][i] * d;

Lee, Jaekyu, Hyesoon Kim, and Richard Vuduc. "When prefetching works, when it doesn’t, and why." ACM Transactions on Architecture and Code Optimization (TACO) 9.1 (2012): 2.

spcl.inf.ethz.ch

@spcl_eth

• DRAM bandwidth (GB/s) is the metric of interest

• Restructure loops for unit stride accesses

▪ Engages the hardware prefetcher

• Ensure memory affinity

▪ E.g., two multicore chips with local memory controller

20

Communication

for (i=0; i<n; i++)

for (j=0; j<n; j++)

a[i][j] = a[i][j] + c[i][j] * d;

for (i=0; i<n; i++)

for (j=0; j<n; j++)

a[j][i] = a[j][i] + c[j][i] * d;

Lee, Jaekyu, Hyesoon Kim, and Richard Vuduc. "When prefetching works, when it doesn’t, and why." ACM Transactions on Architecture and Code Optimization (TACO) 9.1 (2012): 2.

spcl.inf.ethz.ch

@spcl_eth

• DRAM bandwidth (GB/s) is the metric of interest

• Restructure loops for unit stride accesses

▪ Engages the hardware prefetcher

• Ensure memory affinity

▪ E.g., two multicore chips with local memory controller

20

Communication

for (i=0; i<n; i++)

for (j=0; j<n; j++)

a[i][j] = a[i][j] + c[i][j] * d;

for (i=0; i<n; i++)

for (j=0; j<n; j++)

a[j][i] = a[j][i] + c[j][i] * d;

Lee, Jaekyu, Hyesoon Kim, and Richard Vuduc. "When prefetching works, when it doesn’t, and why." ACM Transactions on Architecture and Code Optimization (TACO) 9.1 (2012): 2.

spcl.inf.ethz.ch

@spcl_eth

• DRAM bandwidth (GB/s) is the metric of interest

• Restructure loops for unit stride accesses

▪ Engages the hardware prefetcher

• Ensure memory affinity

▪ E.g., two multicore chips with local memory controller

• Use software prefetching

▪ Depending on the architecture, HW prefetcher can
take time (e.g., 5 loads) to start prefetching

▪ SW prefetching can provide speedups for complex
access patterns

20

Communication

for (i=0; i<n; i++)

for (j=0; j<n; j++)

a[i][j] = a[i][j] + c[i][j] * d;

for (i=0; i<n; i++)

for (j=0; j<n; j++)

a[j][i] = a[j][i] + c[j][i] * d;

Lee, Jaekyu, Hyesoon Kim, and Richard Vuduc. "When prefetching works, when it doesn’t, and why." ACM Transactions on Architecture and Code Optimization (TACO) 9.1 (2012): 2.

spcl.inf.ethz.ch

@spcl_eth

• DRAM bandwidth (GB/s) is the metric of interest

• Restructure loops for unit stride accesses

▪ Engages the hardware prefetcher

• Ensure memory affinity

▪ E.g., two multicore chips with local memory controller

• Use software prefetching

▪ Depending on the architecture, HW prefetcher can
take time (e.g., 5 loads) to start prefetching

▪ SW prefetching can provide speedups for complex
access patterns

20

Communication

for (i=0; i<n; i++)

for (j=0; j<n; j++)

a[i][j] = a[i][j] + c[i][j] * d;

for (i=0; i<n; i++)

for (j=0; j<n; j++)

a[j][i] = a[j][i] + c[j][i] * d;

Lee, Jaekyu, Hyesoon Kim, and Richard Vuduc. "When prefetching works, when it doesn’t, and why." ACM Transactions on Architecture and Code Optimization (TACO) 9.1 (2012): 2.

spcl.inf.ethz.ch

@spcl_eth

• 3Cs Model

▪ Compulsory: On the first access to a block; the
block must be brought into the cache; also called
cold start misses, or first reference misses.

▪ Capacity: Occur because blocks are being discarded
from cache because cache cannot contain all blocks
needed for program execution (program working set
is much larger than cache capacity).

▪ Conflict: In the case of set associative or direct
mapped block placement strategies, conflict misses
occur when several blocks are mapped to the same
set or block frame; also called collision misses or
interference misses.

21

Locality

http://meseec.ce.rit.edu/eecc551-winter2001/551-1-30-2002.pdf

Absolut Miss Rates

on SPEC92

spcl.inf.ethz.ch

@spcl_eth

• 3Cs Model

▪ Compulsory: On the first access to a block; the
block must be brought into the cache; also called
cold start misses, or first reference misses.

▪ Capacity: Occur because blocks are being discarded
from cache because cache cannot contain all blocks
needed for program execution (program working set
is much larger than cache capacity).

▪ Conflict: In the case of set associative or direct
mapped block placement strategies, conflict misses
occur when several blocks are mapped to the same
set or block frame; also called collision misses or
interference misses.

21

Locality

http://meseec.ce.rit.edu/eecc551-winter2001/551-1-30-2002.pdf

What is the lower bound to the number of

memory operations?

Absolut Miss Rates

on SPEC92

spcl.inf.ethz.ch

@spcl_eth

• 3Cs Model

▪ Compulsory: On the first access to a block; the
block must be brought into the cache; also called
cold start misses, or first reference misses.

▪ Capacity: Occur because blocks are being discarded
from cache because cache cannot contain all blocks
needed for program execution (program working set
is much larger than cache capacity).

▪ Conflict: In the case of set associative or direct
mapped block placement strategies, conflict misses
occur when several blocks are mapped to the same
set or block frame; also called collision misses or
interference misses.

21

Locality

http://meseec.ce.rit.edu/eecc551-winter2001/551-1-30-2002.pdf

What is the lower bound to the number of

memory operations?

How to lower capacity misses?

Absolut Miss Rates

on SPEC92

spcl.inf.ethz.ch

@spcl_eth

• 3Cs Model

▪ Compulsory: On the first access to a block; the
block must be brought into the cache; also called
cold start misses, or first reference misses.

▪ Capacity: Occur because blocks are being discarded
from cache because cache cannot contain all blocks
needed for program execution (program working set
is much larger than cache capacity).

▪ Conflict: In the case of set associative or direct
mapped block placement strategies, conflict misses
occur when several blocks are mapped to the same
set or block frame; also called collision misses or
interference misses.

21

Locality

http://meseec.ce.rit.edu/eecc551-winter2001/551-1-30-2002.pdf

What is the lower bound to the number of

memory operations?

How to lower capacity misses?

How to lower conflict misses?

Absolut Miss Rates

on SPEC92

spcl.inf.ethz.ch

@spcl_eth

• 3Cs Model

▪ Compulsory: On the first access to a block; the
block must be brought into the cache; also called
cold start misses, or first reference misses.

▪ Capacity: Occur because blocks are being discarded
from cache because cache cannot contain all blocks
needed for program execution (program working set
is much larger than cache capacity).

▪ Conflict: In the case of set associative or direct
mapped block placement strategies, conflict misses
occur when several blocks are mapped to the same
set or block frame; also called collision misses or
interference misses.

21

Locality

http://meseec.ce.rit.edu/eecc551-winter2001/551-1-30-2002.pdf

What is the lower bound to the number of

memory operations?

How to lower capacity misses?

How to lower conflict misses?

Can we lower compulsory misses?

Absolut Miss Rates

on SPEC92

spcl.inf.ethz.ch

@spcl_eth

• Merging Arrays

• Loop Interchange

• Loop Fusion

• Blocking or “tiling”

22

How to Improve Locality?

spcl.inf.ethz.ch

@spcl_eth

• Merging Arrays

• Loop Interchange

• Loop Fusion

• Blocking or “tiling”

22

How to Improve Locality?

• Reduce conflicts between key and val

• Improve spatial locality

spcl.inf.ethz.ch

@spcl_eth

• Merging Arrays

• Loop Interchange

• Loop Fusion

• Blocking or “tiling” 23

How to Improve Locality?

spcl.inf.ethz.ch

@spcl_eth

• Merging Arrays

• Loop Interchange

• Loop Fusion

• Blocking or “tiling” 23

How to Improve Locality?

Improves spatial locality: sequential access

instead of striding through memory every 100

words

spcl.inf.ethz.ch

@spcl_eth

• Merging Arrays

• Loop Interchange

• Loop Fusion

• Blocking or “tiling” 24

How to Improve Locality?

spcl.inf.ethz.ch

@spcl_eth

• Merging Arrays

• Loop Interchange

• Loop Fusion

• Blocking or “tiling” 24

How to Improve Locality?

• From two missies per access to a & c to one miss

per access

• Improve temporal locality

spcl.inf.ethz.ch

@spcl_eth

• Merging Arrays

• Loop Interchange

• Loop Fusion

• Blocking or “tiling”

▪ Example: matrix multiplication

▪ Goal: reduce the working set

25

How to Improve Locality?

spcl.inf.ethz.ch

@spcl_eth

• What do we mean by “compute bound”?

• What to we mean by “memory bound”?

26

Compute/Memory Bound

spcl.inf.ethz.ch

@spcl_eth

• What do we mean by “compute bound”?

▪ It has high operations intensity

• What to we mean by “memory bound”?

26

Compute/Memory Bound

spcl.inf.ethz.ch

@spcl_eth

• What do we mean by “compute bound”?

▪ It has high operations intensity

• What to we mean by “memory bound”?

▪ It has low operational intensity

26

Compute/Memory Bound

spcl.inf.ethz.ch

@spcl_eth

• What do we mean by “compute bound”?

▪ It has high operations intensity

• What to we mean by “memory bound”?

▪ It has low operational intensity

• They’re not very precise definitions…

26

Compute/Memory Bound

spcl.inf.ethz.ch

@spcl_eth

• What do we mean by “compute bound”?

▪ It has high operations intensity

• What to we mean by “memory bound”?

▪ It has low operational intensity

• They’re not very precise definitions…

• Roofline model helps to clarify

▪ Plots the performance (GFlops/second) as a function of the Operational Intensity (GFlops/byte)

▪ What’s Operational Intensity?

26

Compute/Memory Bound

spcl.inf.ethz.ch

@spcl_eth

How many Flops per byte does your code show?

▪ Work: 𝑊 is the number of operations performed by a given program

▪ Memory Traffic: 𝑄 is the number of bytes transferred from memory by a
given program

27

Operational Intensity

spcl.inf.ethz.ch

@spcl_eth

How many Flops per byte does your code show?

▪ Work: 𝑊 is the number of operations performed by a given program

▪ Memory Traffic: 𝑄 is the number of bytes transferred from memory by a
given program

• Can you increase it?

27

Operational Intensity

spcl.inf.ethz.ch

@spcl_eth

How many Flops per byte does your code show?

▪ Work: 𝑊 is the number of operations performed by a given program

▪ Memory Traffic: 𝑄 is the number of bytes transferred from memory by a
given program

• Can you increase it?

▪ For some kernels, OI is a function of the input size

e.g., dense matrix multiplication

27

Operational Intensity

spcl.inf.ethz.ch

@spcl_eth

How many Flops per byte does your code show?

▪ Work: 𝑊 is the number of operations performed by a given program

▪ Memory Traffic: 𝑄 is the number of bytes transferred from memory by a
given program

• Can you increase it?

▪ For some kernels, OI is a function of the input size

e.g., dense matrix multiplication

▪ What else?

27

Operational Intensity

spcl.inf.ethz.ch

@spcl_eth

How many Flops per byte does your code show?

▪ Work: 𝑊 is the number of operations performed by a given program

▪ Memory Traffic: 𝑄 is the number of bytes transferred from memory by a
given program

• Can you increase it?

▪ For some kernels, OI is a function of the input size

e.g., dense matrix multiplication

▪ What else?

Improve locality

27

Operational Intensity

spcl.inf.ethz.ch

@spcl_eth

• How many Flops per byte does your code show?

▪ Work: 𝑊 is the number of operations performed by a given program

▪ Memory Traffic: 𝑄 is the number of bytes transferred from memory by a
given program

• Can you increase it?

▪ For some kernels, OI is a function of the input size

e.g., dense matrix multiplication

▪ What else?

Improve locality

▪ Example: matrix multiplication (3 nested loops)

𝑊(𝑛) = ~𝑛3

𝑄(𝑛) = 𝑛2

𝐼 𝑛 =
𝑊(𝑛)

𝑄(𝑛)
= ~𝑛

27

Operational Intensity

spcl.inf.ethz.ch

@spcl_eth

• How many Flops per byte does your code show?

▪ Work: 𝑊 is the number of operations performed by a given program

▪ Memory Traffic: 𝑄 is the number of bytes transferred from memory by a
given program

• Can you increase it?

▪ For some kernels, OI is a function of the input size

e.g., dense matrix multiplication

▪ What else?

Improve locality

▪ Example: matrix multiplication (3 nested loops)

𝑊(𝑛) = ~𝑛3

𝑄(𝑛) = 𝑛2

𝐼 𝑛 =
𝑊(𝑛)

𝑄(𝑛)
= ~𝑛

27

Operational Intensity

Measures the traffic between the

caches and DRAM. But why?

spcl.inf.ethz.ch

@spcl_eth

28

Roofline Model

• A kernel with a given OI lies somewhere in the

vertical line with x=OI

• Ridge point: intersection of the diagonal and

horizontal roof

• Its x-coordinate is the minimum operational

intensity required to achieve maximum

performance

• It suggests the level of difficulty for

programmers and compiler writers to achieve

peak performance

spcl.inf.ethz.ch

@spcl_eth

28

Roofline Model

• A kernel with a given OI lies somewhere in the

vertical line with x=OI

• Ridge point: intersection of the diagonal and

horizontal roof

• Its x-coordinate is the minimum operational

intensity required to achieve maximum

performance

• It suggests the level of difficulty for

programmers and compiler writers to achieve

peak performance

Opteron X4:

• Can issue 2 FP SSE2 instructions per cycle

• Slightly faster clock rate

• >4x gain in peak performance w.r.t. X2

spcl.inf.ethz.ch

@spcl_eth

28

Roofline Model

• A kernel with a given OI lies somewhere in the

vertical line with x=OI

• Ridge point: intersection of the diagonal and

horizontal roof

• Its x-coordinate is the minimum operational

intensity required to achieve maximum

performance

• It suggests the level of difficulty for

programmers and compiler writers to achieve

peak performance

Opteron X4:

• Can issue 2 FP SSE2 instructions per cycle

• Slightly faster clock rate

• >4x gain in peak performance w.r.t. X2

Ridge Point shifts right

from 1.0 to 4.4

spcl.inf.ethz.ch

@spcl_eth

29

Adding Ceilings
• What if your program is far from the roofline?

spcl.inf.ethz.ch

@spcl_eth

29

Adding Ceilings
• What if your program is far from the roofline?

▪ Ceilings can help us: you cannot break through a ceiling without performing the associated optimization.

spcl.inf.ethz.ch

@spcl_eth

29

Adding Ceilings
• What if your program is far from the roofline?

▪ Ceilings can help us: you cannot break through a ceiling without performing the associated optimization.

▪ The height of the gap between a ceiling and the next higher one is the potential reward for trying that optimization

spcl.inf.ethz.ch

@spcl_eth

29

Adding Ceilings
• What if your program is far from the roofline?

▪ Ceilings can help us: you cannot break through a ceiling without performing the associated optimization.

▪ The height of the gap between a ceiling and the next higher one is the potential reward for trying that optimization

▪ Their order suggests the optimization order. Lower ceilings: easy to implement by the programmer or likely realized by the
compiler.

spcl.inf.ethz.ch

@spcl_eth

29

Adding Ceilings
• What if your program is far from the roofline?

▪ Ceilings can help us: you cannot break through a ceiling without performing the associated optimization.

▪ The height of the gap between a ceiling and the next higher one is the potential reward for trying that optimization

▪ Their order suggests the optimization order. Lower ceilings: easy to implement by the programmer or likely realized by the
compiler.

Cache usage optimizations can increase the OI, hence put

a kernel in a different optimization region.

First improve OI, then apply other optimizations.

spcl.inf.ethz.ch

@spcl_eth

30

Models & Results

spcl.inf.ethz.ch

@spcl_eth

31

Models & Results

spcl.inf.ethz.ch

@spcl_eth

31

Models & Results

spcl.inf.ethz.ch

@spcl_eth

32

Multithreading

• The ridge point shifts from 1.3 to 4.6

• Increasing the input makes parallelization gain efficiency

▪ Until when the working set gets too big to stay in cache

Ofenbeck, Georg, et al. "Applying the roofline model." Performance Analysis of Systems and Software (ISPASS), 2014 IEEE International Symposium on. IEEE, 2014.

spcl.inf.ethz.ch

@spcl_eth

• For each kernel, we need to measure:

▪ The work W

Counters for floating point operations

▪ The runtime T

Read Time Stamp Counter (RDTSC) is still a right choice

▪ The memory traffic Q

LLC misses can be an underestimation

Measure raw traffic on the memory controller if possible (i.e.,Intel PCM)

• For each architecture, we need to measure:

▪ The peak performance 𝜋: microbenchmarks or manual

▪ The memory bandwidth 𝛽: microbenchmarks, most challenging

33

Applying the Roofline Model

Ofenbeck, Georg, et al. "Applying the roofline model." Performance Analysis of Systems and Software (ISPASS), 2014 IEEE International Symposium on. IEEE, 2014.

spcl.inf.ethz.ch

@spcl_eth

• For each kernel, we need to measure:

▪ The work W

Counters for floating point operations

▪ The runtime T

Read Time Stamp Counter (RDTSC) is still a right choice

▪ The memory traffic Q

LLC misses can be an underestimation

Measure raw traffic on the memory controller if possible (i.e.,Intel PCM)

• For each architecture, we need to measure:

▪ The peak performance 𝜋: microbenchmarks or manual

▪ The memory bandwidth 𝛽: microbenchmarks, most challenging

33

Applying the Roofline Model

E.g., W on a Sandy Bridge platform

Ofenbeck, Georg, et al. "Applying the roofline model." Performance Analysis of Systems and Software (ISPASS), 2014 IEEE International Symposium on. IEEE, 2014.

spcl.inf.ethz.ch

@spcl_eth

• For each kernel, we need to measure:

▪ The work W

Counters for floating point operations

▪ The runtime T

Read Time Stamp Counter (RDTSC) is still a right choice

▪ The memory traffic Q

LLC misses can be an underestimation

Measure raw traffic on the memory controller if possible (i.e.,Intel PCM)

• For each architecture, we need to measure:

▪ The peak performance 𝜋: microbenchmarks or manual

▪ The memory bandwidth 𝛽: microbenchmarks, most challenging

33

Applying the Roofline Model

E.g., W on a Sandy Bridge platform

LibLSB: https://spcl.inf.ethz.ch/Research/Performance/LibLSB/

Ofenbeck, Georg, et al. "Applying the roofline model." Performance Analysis of Systems and Software (ISPASS), 2014 IEEE International Symposium on. IEEE, 2014.

