
spcl.inf.ethz.ch

@spcl_eth

MARCIN COPIK <MARCIN.COPIK@INF.ETHZ.CH>

DPHPC, Network models
Recitation session, 12.12.2019

spcl.inf.ethz.ch

@spcl_eth

Admin

• Presentations starting next Monday!

spcl.inf.ethz.ch

@spcl_eth

Admin

• Presentations starting next Monday!

• How to give good presentations?
▪ Make multiple dry-runs!

▪ Short and clear introduction & motivation

▪ Plots should be self-explanatory.

▪ Avoid long bullet-point lists and walls of texts.

▪ PowerPoint/Impress make it quite easy and fast to create diagrams.

spcl.inf.ethz.ch

@spcl_eth

HPC Networking Basics

• Familiar (non-HPC) network: Internet TCP/IP

▪ Common model:

• Class Question: What parameters are needed to model the performance (including
pipelining)?

Network DestinationSource

spcl.inf.ethz.ch

@spcl_eth

HPC Networking Basics

• Familiar (non-HPC) network: Internet TCP/IP

▪ Common model:

• Class Question: What parameters are needed to model the performance (including
pipelining)?
▪ Latency, Bandwidth, Injection Rate, Host Overhead

Network DestinationSource

spcl.inf.ethz.ch

@spcl_eth

4

A Simple Model for Communication

• Transfer time T(s) = α+βs

▪ α = startup time (latency)

▪ β = cost per byte (bandwidth=1/β)

• As s increases, bandwidth approaches 1/β asymptotically

▪ Convergence rate depends on α

▪ s1/2 = α/β

• Assuming no pipelining (new messages can only be issued from a process after
all arrived)

spcl.inf.ethz.ch

@spcl_eth

Bandwidth vs. Latency

• s1/2 = α/β often used to distinguish bandwidth- and latency-bound messages

▪ s1/2 is in the order of kilobytes on real systems

asymptotic limit

spcl.inf.ethz.ch

@spcl_eth

Broadcast

• Simplest linear broadcast

▪ One process has a data item to be distributed to all processes

• Broadcasting s bytes among P processes:

▪ T(s) = 𝑃 − 1 × 𝛼 + 𝛽𝑠 = 𝒪(P)

• Class question: Do we know a faster method to accomplish the same?

spcl.inf.ethz.ch

@spcl_eth

k-ary tree broadcast

• Origin process is the root of the tree, passes messages to k neighbors which pass
them on.

• What is the broadcast time in the simple latency/bandwidth model?

9

spcl.inf.ethz.ch

@spcl_eth

k-ary tree broadcast

• Origin process is the root of the tree, passes messages to k neighbors which pass
them on.

• What is the broadcast time in the simple latency/bandwidth model?

▪ (for fixed k)

• What is the optimal k?

10

tree levels

of messages on each level

spcl.inf.ethz.ch

@spcl_eth

k-ary tree broadcast

• Origin process is the root of the tree, passes messages to k neighbors which pass
them on.

• What is the broadcast time in the simple latency/bandwidth model?

▪ (for fixed k)

• What is the optimal k?

▪

▪ Independent of P, α, β, s!

11

tree levels

of messages on each level

spcl.inf.ethz.ch

@spcl_eth

Better tree broadcast

• Class Question: Can we broadcast faster than in a ternary tree?

spcl.inf.ethz.ch

@spcl_eth

Better tree broadcast

• Class Question: Can we broadcast faster than in a ternary tree?

▪ Yes because each respective root is idle after sending three messages!

▪ Those roots could keep sending!

▪ Result is a k-nomial tree. For k=2, it’s a binomial tree

spcl.inf.ethz.ch

@spcl_eth

Better tree broadcast

• Class Question: Can we broadcast faster than in a ternary tree?

▪ Yes because each respective root is idle after sending three messages!

▪ Those roots could keep sending!

▪ Result is a k-nomial tree. For k=2, it’s a binomial tree

Source: Wikipedia, “Broadcast (parallel pattern)”

spcl.inf.ethz.ch

@spcl_eth

Better tree broadcast

• Class Question: Can we broadcast faster than in a ternary tree?

▪ Yes because each respective root is idle after sending three messages!

▪ Those roots could keep sending!

▪ Result is a k-nomial tree. For k=2, it’s a binomial tree

• Class Question: What about the runtime?

▪

Source: Wikipedia, “Broadcast (parallel pattern)”

spcl.inf.ethz.ch

@spcl_eth

Better tree broadcast

• Class Question: Can we broadcast faster than in a ternary tree?

▪ Yes because each respective root is idle after sending three messages!

▪ Those roots could keep sending!

▪ Result is a k-nomial tree. For k=2, it’s a binomial tree

• Class Question: What about the runtime?

▪

• Class Question: What is the optimal k here?

▪ T(s) d/dk is monotonically increasing for k>1, thus kopt=2

Source: Wikipedia, “Broadcast (parallel pattern)”

spcl.inf.ethz.ch

@spcl_eth

Better tree broadcast

• Class Question: Can we broadcast faster than in a ternary tree?

▪ Yes because each respective root is idle after sending three messages!

▪ Those roots could keep sending!

▪ Result is a k-nomial tree. For k=2, it’s a binomial tree

• Class Question: What about the runtime?

▪

• Class Question: What is the optimal k here?

▪ T(s) d/dk is monotonically increasing for k>1, thus kopt=2

• Class Question: Can we broadcast faster than in a k-nomial tree?

▪ is asymptotically optimal for s=1!

▪ But what about large s?

Source: Wikipedia, “Broadcast (parallel pattern)”

spcl.inf.ethz.ch

@spcl_eth

Very Large Message Broadcast

• Extreme case (P small, s large): simple pipeline

▪ Split message into segments of size z

▪ Send segments from PE i to PE i+1

spcl.inf.ethz.ch

@spcl_eth

Very Large Message Broadcast

• Extreme case (P small, s large): simple pipeline

▪ Split message into segments of size z

▪ Send segments from PE i to PE i+1

Source: Wikipedia, “Broadcast (parallel pattern)”

spcl.inf.ethz.ch

@spcl_eth

Very Large Message Broadcast

• Extreme case (P small, s large): simple pipeline

▪ Split message into segments of size z

▪ Send segments from PE i to PE i+1

• Class Question: What is the runtime?
▪

𝑇 𝑠 = (𝑃 − 2 +
𝑠

𝑧
)(𝛼 + 𝛽𝑧)

Source: Wikipedia, “Broadcast (parallel pattern)”

spcl.inf.ethz.ch

@spcl_eth

Very Large Message Broadcast

• Extreme case (P small, s large): simple pipeline

▪ Split message into segments of size z

▪ Send segments from PE i to PE i+1

• Class Question: What is the runtime?
▪

• Compare 2-nomial tree with simple pipeline for α=10, β=1, P=4, s=106, and z=105

▪ 2,000,020 vs. 1,200,120

𝑇 𝑠 = (𝑃 − 2 +
𝑠

𝑧
)(𝛼 + 𝛽𝑧)

Source: Wikipedia, “Broadcast (parallel pattern)”

spcl.inf.ethz.ch

@spcl_eth

Very Large Message Broadcast

• Extreme case (P small, s large): simple pipeline

▪ Split message into segments of size z

▪ Send segments from PE i to PE i+1

• Class Question: What is the runtime?
▪

• Compare 2-nomial tree with simple pipeline for α=10, β=1, P=4, s=106, and z=105

▪ 2,000,020 vs. 1,200,120

• Class Question: Can we do better for given α, β, P, s?
▪ Derive optimal z

• What is the time for simple pipeline for α=10, β=1, P=4, s=106, zopt?
▪ 1,008,964

𝑇 𝑠 = (𝑃 − 2 +
𝑠

𝑧
)(𝛼 + 𝛽𝑧)

Source: Wikipedia, “Broadcast (parallel pattern)”

spcl.inf.ethz.ch

@spcl_eth

Lower Bounds

• Class Question: What is a simple lower bound on the broadcast time?

▪

spcl.inf.ethz.ch

@spcl_eth

Lower Bounds

• Class Question: What is a simple lower bound on the broadcast time?

▪

spcl.inf.ethz.ch

@spcl_eth

Lower Bounds

• Class Question: What is a simple lower bound on the broadcast time?

▪

• How close are the binomial tree for small messages and the pipeline for large
messages (approximately)?

▪ Bin. tree is a factor of log2(P) slower in bandwidth

▪ Pipeline is a factor of P/log2(P) slower in latency

• Class Question: What can we do for intermediate message sizes?

spcl.inf.ethz.ch

@spcl_eth

Lower Bounds

• Class Question: What is a simple lower bound on the broadcast time?

▪

• How close are the binomial tree for small messages and the pipeline for large
messages (approximately)?

▪ Bin. tree is a factor of log2(P) slower in bandwidth

▪ Pipeline is a factor of P/log2(P) slower in latency

• Class Question: What can we do for intermediate message sizes?

▪ Combine pipeline and tree → pipelined tree

▪ Achieve low latency for short messages and decent bandwidth for large ones.

spcl.inf.ethz.ch

@spcl_eth

Lower Bounds

• Class Question: What is a simple lower bound on the broadcast time?

▪

• How close are the binomial tree for small messages and the pipeline for large
messages (approximately)?

▪ Bin. tree is a factor of log2(P) slower in bandwidth

▪ Pipeline is a factor of P/log2(P) slower in latency

• Class Question: What can we do for intermediate message sizes?

▪ Combine pipeline and tree → pipelined tree

▪ Achieve low latency for short messages and decent bandwidth for large ones.

spcl.inf.ethz.ch

@spcl_eth

Lower Bounds

• Class Question: What is a simple lower bound on the broadcast time?

▪

• How close are the binomial tree for small messages and the pipeline for large
messages (approximately)?

▪ Bin. tree is a factor of log2(P) slower in bandwidth

▪ Pipeline is a factor of P/log2(P) slower in latency

• Class Question: What can we do for intermediate message sizes?

▪ Combine pipeline and tree → pipelined tree

▪ Achieve low latency for short messages and decent bandwidth for large ones.

• Class Question: What is the runtime of the pipelined binary tree algorithm?

spcl.inf.ethz.ch

@spcl_eth

Lower Bounds

• Class Question: What is a simple lower bound on the broadcast time?

▪

• How close are the binomial tree for small messages and the pipeline for large
messages (approximately)?

▪ Bin. tree is a factor of log2(P) slower in bandwidth

▪ Pipeline is a factor of P/log2(P) slower in latency

• Class Question: What can we do for intermediate message sizes?

▪ Combine pipeline and tree → pipelined tree

▪ Achieve low latency for short messages and decent bandwidth for large ones.

• Class Question: What is the runtime of the pipelined binary tree algorithm?

▪

spcl.inf.ethz.ch

@spcl_eth

Lower Bounds

• Class Question: What is a simple lower bound on the broadcast time?

▪

• How close are the binomial tree for small messages and the pipeline for large
messages (approximately)?

▪ Bin. tree is a factor of log2(P) slower in bandwidth

▪ Pipeline is a factor of P/log2(P) slower in latency

• Class Question: What can we do for intermediate message sizes?

▪ Combine pipeline and tree → pipelined tree

▪ Achieve low latency for short messages and decent bandwidth for large ones.

• Class Question: What is the runtime of the pipelined binary tree algorithm?

▪

• Class Question: What is the optimal z?

▪

spcl.inf.ethz.ch

@spcl_eth

Towards an Optimal Algorithm

• What is the complexity of the pipelined tree with zopt for small s, large P and for large s,
constant P?

▪ Small messages, large P: s=1; z=1 (s≤z), will give O(log P)

▪ Large messages, constant P: assume α, β, P constant, will give asymptotically O(sβ)

Asymptotically optimal for large P and s but bandwidth is off by a factor of 2! Why?

spcl.inf.ethz.ch

@spcl_eth

Towards an Optimal Algorithm

• What is the complexity of the pipelined tree with zopt for small s, large P and for large s,
constant P?

▪ Small messages, large P: s=1; z=1 (s≤z), will give O(log P)

▪ Large messages, constant P: assume α, β, P constant, will give asymptotically O(sβ)

Asymptotically optimal for large P and s but bandwidth is off by a factor of 2! Why?

• Bandwidth-optimal algorithms exist, e.g., Sanders et al. “Full Bandwidth Broadcast,
Reduction and Scan with Only Two Trees”. 2007

▪ Intuition: in binomial tree, all leaves (P/2) only receive data and never send → wasted bandwidth

▪ Send along two simultaneous binary trees where the leafs of one tree are inner nodes of the other

▪ Construction needs to avoid endpoint congestion (makes it complex)

spcl.inf.ethz.ch

@spcl_eth

The LogP Model

• Defined by four parameters:

▪ L: an upper bound on the latency, or delay, incurred in communicating a message
containing a word (or small number of words) from its source module to its target
module.

▪ o: the overhead, defined as the length of time that a processor is engaged in the
transmission or reception of each message; during this time, the processor cannot
perform other operations.

▪ g: the gap, defined as the minimum time interval between consecutive message
transmissions or consecutive message receptions at a processor. The reciprocal of g
corresponds to the available per-processor communication bandwidth.

▪ P: the number of processor/memory modules. We assume unit time for local
operations and call it a cycle.

spcl.inf.ethz.ch

@spcl_eth

The LogP Model

spcl.inf.ethz.ch

@spcl_eth

Simple Examples

• Sending a single message

▪ 𝑇 = 2𝑜 + 𝐿

• Ping-Pong Round-Trip

▪ 𝑇 = 4𝑜 + 2𝐿

• Transmitting n messages

▪ 𝑇 = 𝐿 + 𝑛 − 1 ∗ max 𝑔, 𝑜 + 2𝑜

p0

p1

send

rcv

o L o

send

p0

p1

send

rcv

o L o o L o

rcv

p0

p1

s

r

o L m(o, g) m(o, g) m(o, g) o

s s s

r r r

g

o

spcl.inf.ethz.ch

@spcl_eth

Simplifications

• o is bigger than g on some machines

▪ g can be ignored (eliminates max() terms)

▪ be careful with multicore!

• Offloading networks might have very low o

▪ Can be ignored (not yet but hopefully soon)

• L might be ignored for long message streams

▪ If they are pipelined

• Account g also for the first message

▪ Eliminates “-1”

spcl.inf.ethz.ch

@spcl_eth

Benefits

• Models pipelining

▪ How to model N incoming messages in alfa-beta model?

▪ Finite capacity of network L/g messages can be “in flight”

▪ Captures state of the art (cf. TCP windows)

• Models computation/communication overlap

▪ CPU and NIC operations are not necessarily serialized.

▪ Asynchronous algorithms

• Models endpoint congestion/overload

▪ Can the CPU/NIC process a sequence of incoming packages?

▪ Benefits balanced algorithms

spcl.inf.ethz.ch

@spcl_eth

Example: Broadcast

• Class Question: What is the LogP running time for a linear broadcast of a single
packet?

▪ 𝑇 = 𝐿 + 𝑃 − 2 ∗ max 𝑜, 𝑔 + 2𝑜

• Class Question: Approximate the LogP runtime for a binary-tree broadcast of a
single packet?

▪ 𝑇 ≤ log2 𝑃 ∗ (𝐿 + max 𝑜, 𝑔 + 2𝑜)

• Class Question: Approximate the LogP runtime for
an k-ary-tree broadcast of a single packet?

▪ 𝑇 ≤ log𝑘 𝑃 ∗ (𝐿 + 𝑘 − 1 ∗ max 𝑜, 𝑔 + 2𝑜)

p0

p1

send

rcv

max(o,g) o L o

p2

send

rcv

spcl.inf.ethz.ch

@spcl_eth

Example: Broadcast

• Class Question: Approximate the LogP runtime for a binomial tree broadcast of a
single packet (assume L > g)?

▪ 𝑇 ≤ log2 𝑃 ∗ (𝐿 + 2𝑜)

• Class Question: Approximate the LogP runtime for a k-nomial tree broadcast of a
single packet?

▪ 𝑇 ≤ log𝑘 𝑃 ∗ 𝐿 + 𝑘 − 2 ∗ max 𝑜, 𝑔 + 2𝑜

spcl.inf.ethz.ch

@spcl_eth

Broadcast: can we do better?

• Can we do better than kopt-ary binomial broadcast?

▪ Problem: fixed k in all stages might not be optimal

▪ We can construct a schedule for the optimal broadcast in practical settings

▪ First proposed by Karp et al. in “Optimal Broadcast and Summation in the LogP Model”

spcl.inf.ethz.ch

@spcl_eth

Optimal broadcast

• Broadcast to P-1 processes

▪ Each process who received the value sends it on; each process receives exactly once

Source: Culler et al., “LogP: towards a realistic model of parallel computation.”

spcl.inf.ethz.ch

@spcl_eth

Optimal broadcast runtime

• This determines the maximum number of PEs (P(t)) that can be reached in time t

• P(t) can be computed with a generalized Fibonacci recurrence (assuming o> g):

• Which can be bounded by (see [1]):

[1]: Hoefler et al.: “Scalable Communication Protocols for Dynamic Sparse Data Exchange” (Lemma 1)

How many processors could receive

message sent L + 2o time ago?

How many processors are processing

receive from o time ago?

spcl.inf.ethz.ch

@spcl_eth

The LogGP Model

• Defined by four parameters:

▪ L: an upper bound on the latency, or delay, incurred in communicating a message
containing a word (or small number of words) from its source module to its target
module.

▪ o: the overhead, defined as the length of time that a processor is engaged in the
transmission or reception of each message; during this time, the processor cannot
perform other operations.

▪ g: the gap, defined as the minimum time interval between consecutive message
transmissions or consecutive message receptions at a processor. The reciprocal of g
corresponds to the available per-processor communication bandwidth.

▪ G: the Gap per byte for long messages, defined as the time per byte for a long
message. The reciprocal of G characterizes the available per processor
communication bandwidth for long messages.

▪ P: the number of processor/memory modules. We assume unit time for local
operations and call it a cycle.

spcl.inf.ethz.ch

@spcl_eth

The LogGP Model

spcl.inf.ethz.ch

@spcl_eth

Network topologies

2D Torus Fat tree

spcl.inf.ethz.ch

@spcl_eth

• Diameter

▪ What is the maximum distance between any two nodes?

Graph Metrics

Besta et al.: “Slim Fly: A Cost Effective Low-Diameter Network Topology”

spcl.inf.ethz.ch

@spcl_eth

• Average distance

Graph Metrics

Besta et al.: “Slim Fly: A Cost Effective Low-Diameter Network Topology”

spcl.inf.ethz.ch

@spcl_eth

• Bisection bandwidth

▪ If we cut a graph into two partitions,
what’s the bandwidth between them?
Find the minimum!

▪ Reveals true bandwidth of the network –
potential bottleneck.

Graph Metrics

Besta et al.: “Slim Fly: A Cost Effective Low-Diameter Network Topology”

spcl.inf.ethz.ch

@spcl_eth

Good luck!

marcin.copik@inf.ethz.ch

