
spcl.inf.ethz.ch

@spcl_eth

M. PUESCHEL, T. BEN-NUN

Lecture 8: Scalable lock study and oblivious algorithms

spcl.inf.ethz.ch

@spcl_eth

Project Schedule:

▪ November 15: Send short report on status of project (max. 1 page plus one optional pages with plots only).
It should include a brief summary what was done, how the work was divided, and initial results.

▪ November 29 – December 4: Half hour one-on-one meeting with project supervisor. Bring short
presentation for at most 10 minutes, make sure to include plots with current results.

▪ End of semester: Project presentations during lecture/recitation hours.

2

Administration

spcl.inf.ethz.ch

@spcl_eth

▪ Lock implementation(s)

▪ Advanced locks (CLH + MCS)

▪ Started impossibility of wait-free consensus with atomic registers

▪ “perhaps one of the most striking impossibility results in Computer Science” (Herlihy, Shavit)

▪ Theoretical background for performance

▪ Amdahl’s law

▪ Models: PRAM, Work/Depth, simple alpha-beta (Hockney) model

▪ Simple algorithms: reduce, mergesort, scan

▪ Brent’s scheduling lemma + Little’s law

▪ Roofline model

3

Review of last lecture(s)

spcl.inf.ethz.ch

@spcl_eth

▪ Case study about scalable locking

▪ Same concepts, realistic setting

▪ Oblivious algorithms

▪ How do work-depth graphs relate to practice?

▪ Strict optimality

▪ Work/depth tradeoffs and bounds

▪ Applications of prefix sums

▪ Parallelize seemingly sequential algorithms

▪ Case study about data-centric parallel programming

4

Learning goals for today

spcl.inf.ethz.ch

@spcl_eth

5

DPHPC Overview

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

Various
performance

penalties

LOCKS An example
structure

Inuitive
semantics

Case study: Fast Large-scale Locking in Practice

spcl.inf.ethz.ch

@spcl_eth

P1 P2

P3 P4

Calciu et al.: NUMA-aware reader-writer locks, PPoPP’13

Locks: Challenges

spcl.inf.ethz.ch

@spcl_eth

P

P

P

P

P
P

P

P

P P

P

P

We need intra- and inter-
node topology-awareness

We need to cover
arbitrary topologies

Locks: Challenges

spcl.inf.ethz.ch

@spcl_eth

Reader Reader

Reader

Reader

Reader

Reader

Reader
Reader

Writer

Writer

[1] V. Venkataramani et al. Tao: How facebook serves the social graph. SIGMOD’12.

We need to distinguish between
readers and writers

We need flexible performance
for both types of processes

Locks: Challenges

spcl.inf.ethz.ch

@spcl_eth

What will we use in the
design?

spcl.inf.ethz.ch

@spcl_eth

Proc

Pointer to the
queue tail

Can
enter

Next
proc

Proc

Cannot
enter

Next
proc

Proc

Cannot
enter

Next
proc ...

Proc

Cannot
enter

Next
proc

Can
enter

Mellor-Crummey and Scott: Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors, ACM TOCS’91

Ingredient 1 - MCS Locks

spcl.inf.ethz.ch

@spcl_eth

...

W

R

R

R

R

Ingredient 2 - Reader-Writer Locks

spcl.inf.ethz.ch

@spcl_eth

How to manage the design
complexity?

How to ensure tunable
performance?

What mechanism to use for
efficient implementation?

spcl.inf.ethz.ch

@spcl_eth

REMOTE MEMORY ACCESS (RMA) PROGRAMMING

Memory Memory

Cray

BlueWaters

put

Process p Process q

A

B
get

B

A

B

flush

A

B

TH, J. Dinan, R. Thakur, B. Barrett, P. Balaji, W. Gropp, K. Underwood: Remote Memory Access Programming in MPI-3, ACM TOPC’15

spcl.inf.ethz.ch

@spcl_eth

REMOTE MEMORY ACCESS PROGRAMMING

▪ Implemented in hardware in NICs in the majority of HPC
networks (RDMA support).

spcl.inf.ethz.ch

@spcl_eth

Memory Memoryput

Process p Process q

3
6

6

get

3
3

Fetch-and-Add (FAA)6
39

replace
3

3

6
6

Compare-and-Swap (CAS)
3

T

3

8

8

3

RMA-RW - Required Operations

spcl.inf.ethz.ch

@spcl_eth

▪ Windows expose memory

▪ Created explicitly

▪ Remote accesses

▪ Put, get

▪ Atomics

Accumulate (also atomic Put)

Get_accumulate (also atomic Get)

Fetch and op (faster single-word get_accumulate)

Compare and swap

▪ Synchronization

▪ Two modes: passive and active target

We use passive target today, similar to shared memory!

Synchronization: flush, flush_local

▪ Memory model?

▪ Unified (coherent) and separate (not coherent) view - it’s complicated but versatile

17

Recitation recap: MPI RMA

Process 1 Process 2 Process 3

Private

Memory

Private

Memory

Private

Memory

Process 0

Private

Memory

Remotely

Accessible

Memory

Remotely

Accessible

Memory

Remotely

Accessible

Memory

Remotely

Accessible

Memory

Global
Address

Space

Private

Memory

Private

Memory

Private

Memory

Private

Memory

spcl.inf.ethz.ch

@spcl_eth

How to manage the design
complexity?

How to ensure tunable
performance?

What mechanism to use for
efficient implementation?

spcl.inf.ethz.ch

@spcl_eth

Each element has its own
distributed MCS queue

(DQ) of writers

MCS queues
form a

distributed
tree (DT)

Readers and writers
synchronize with a

distributed counter (DC)

W3 W5 W8

How to manage the design complexity?

Modular
design

W8W7W3 W5 W6W2W1 W4

W1

2 2 3 2

...

W8W3

R9R2

R1

R4
R3 R7 R9R2

R1 R6

R5
R8

P. Schmid, M. Besta, TH: High-Performance Distributed RMA Locks, ACM HPDC’16, best paper

spcl.inf.ethz.ch

@spcl_eth

DT: a
parameter for

the throughput
of readers vs

writers

Each DQ: fairness vs
throughput of writers

DC: a parameter for the
latency of readers vs

writers

W3 W5 W8

How to ensure tunable performance?

W8W7W3 W5 W6W2W1 W4

W1

R4
R3 R7 R9R2

R1 R6

R5
R8

2 2 3 2

A tradeoff
parameter
for every
structure

...
R9R2

R1

W8W3

P. Schmid, M. Besta, TH: High-Performance Distributed RMA Locks, ACM HPDC’16, best paper

spcl.inf.ethz.ch

@spcl_eth

▪ CSCS Piz Daint (Cray XC30)

▪ 5272 compute nodes

▪ 8 cores per node

▪ 169TB memory

▪ Microbenchmarks: acquire/release: latency,
throughput

▪ Distributed hashtable

EVALUATION

spcl.inf.ethz.ch

@spcl_eth

[1] R. Gerstenberger et al. Enabling Highly-scalable Remote Memory Access Programming with MPI-3 One Sided. ACM/IEEE Supercomputing 2013.

Evaluation - Comparison to the State-of-the-Art

Throughput, single-operation benchmark

spcl.inf.ethz.ch

@spcl_eth

20% writers 10% writers

[1] R. Gerstenberger et al. Enabling Highly-scalable Remote Memory Access Programming with MPI-3 One Sided. ACM/IEEE Supercomputing 2013.

Evaluation - Distributed Hashtable

spcl.inf.ethz.ch

@spcl_eth

2% of writers 0% of writers

[1] R. Gerstenberger et al. Enabling Highly-scalable Remote Memory Access Programming with MPI-3 One Sided. ACM/IEEE Supercomputing 2013.

Evaluation - Distributed Hashtable

spcl.inf.ethz.ch

@spcl_eth

▪ MPI-RMA for distributed databases?

25

Another application area - Databases

Sort-JoinHash-Join

C. Barthels, et al., TH: Distributed Join Algorithms on Thousands of Cores presented in Munich, Germany, VLDB Endowment, Aug. 2017

spcl.inf.ethz.ch

@spcl_eth

▪ MPI-RMA for distributed databases on Piz Daint

26

Another application area - Databases

C. Barthels, et al., TH: Distributed Join Algorithms on Thousands of Cores presented in Munich, Germany, VLDB Endowment, Aug. 2017

spcl.inf.ethz.ch

@spcl_eth

▪ Oblivious parallel algorithms

▪ Fixed structure work-depth graphs

▪ Nonoblivious parallel algorithms

▪ Data-dependent structure work-depth graphs

▪ Data movement and I/O complexity

▪ Communication complexity

27

Now on to parallel algorithms!

spcl.inf.ethz.ch

@spcl_eth

“An algorithm is data-oblivious if, for each problem size, the sequence of instructions executed, the set
of memory locations read and the set of memory locations written by each executed instruction are
determined by the input size and are independent of the values of the other inputs”

28

Work/Depth in Practice – Oblivious Algorithms

int reduce(int n, arr[n]) {
for(int i=0; i<n; ++i)
sum += arr[i];

}

int findmin(int n, a[n]) {
for(int i=1; i<n; i++)

if(a[i]<a[0]) a[0] = a[i];
}

int finditem(list_t list)
item = list.head;
while(item.value!=0 && item.next!=NULL)

item=item.next;
}

Data-oblivious or not?

▪ Quicksort?

▪ Prefix sum on an array?

▪ Dense matrix multiplication?

▪ Sparse matrix vector product?

▪ Dense matrix vector product?

▪ Queue-based breadth-first search?

O(1)

No
Yes!
Yes

No
Yes
No

spcl.inf.ethz.ch

@spcl_eth

29

Obliviousness as property of an execution

“An algorithm is data-oblivious if, for each problem size, the sequence of instructions executed, the set
of memory locations read and the set of memory locations written by each executed instruction are
determined by the input size and are independent of the values of the other inputs”

int reduce(int n, arr[n]) {
for(int i=0; i<n; ++i)
sum += arr[i];

}

int findmin(int n, a[n]) {
for(int i=1; i<n; i++)

if(a[i]<a[0]) a[0] = a[i];
}

int finditem(list_t list)
item = list.head;
while(item.value!=0 && item.next!=NULL)

item=item.next;
}

▪ Class question: Can an algorithm decide whether a program is oblivious or not?

▪ Answer: no, proof similar to decision problem whether a program always outputs zero or not

spcl.inf.ethz.ch

@spcl_eth

30

Structural obliviousness as stronger property

“A program is structurally-oblivious if any value used in a conditional branch, and any value used to
compute indices or pointers is structurally-dependent only in the input variable(s) that contain the
problem size, but not on any other input”

int reduce(int n, arr[n]) {
for(int i=0; i<n; ++i)
sum += arr[i];

}

int oblivious(int n, a[n], b[n]) {
for(int i=0; i<n; ++i) {
x = a[i] + 1;
if (x > a[i]) b[i] = 1;
else b[i] = 2;

} }

int finditem(list_t list)
item = list.head;
while(item.value!=0 && item.next!=NULL)

item=item.next;
}

▪ Clear that structurally oblivious programs are also data oblivious

▪ Can be programmatically (statically decided)

▪ Sufficient for practical use

▪ The middle example is not structurally oblivious but data oblivious

▪ First branch is always taken (assuming no overflow) but static dependency analysis is conservative

Structurally oblivious or not?

?

spcl.inf.ethz.ch

@spcl_eth

▪ We can easily reason about oblivious algorithms

▪ Execution DAG can be constructed “statically”

▪ We have done this in the last week intuitively but we never looked BFS for example

▪ Simple example (that you know): parallel summation

▪ Question: what is W(n) and D(n) of sequential summation?

W(n)=D(n)=n-1

▪ Question: is this optimal? How would you define optimality?

Separate for W and D! Typically try to achieve both!

▪ Question: what is W(n) and D(n) of the optimal parallel summation?

W(n)=n-1 D(n)=⌈log2 𝑛⌉

Are both W and D optimal?

Yes!

31

Why obliviousness?

spcl.inf.ethz.ch

@spcl_eth

▪ Next example you know: scan!

▪ For a vector [𝑥1, 𝑥2, … , 𝑥𝑛] compute vector of n results: [𝑥1; 𝑥1 + 𝑥2; 𝑥1 + 𝑥2 + 𝑥3; … ; 𝑥1 + 𝑥2 + 𝑥𝑖 …+ 𝑥𝑛−1 + 𝑥𝑛]

▪ Simple serial schedule

32

Starting simple: optimality?

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8

∑
∑

∑
∑

∑
∑

∑

𝑥1 𝑥1 + 𝑥2
𝑥1 +⋯+ 𝑥3

𝑥1 +⋯+ 𝑥4
𝑥1 +⋯+ 𝑥5

𝑥1 +⋯+ 𝑥6
𝑥1 +⋯+ 𝑥7

𝑥1 +⋯+ 𝑥8

Class question: work and depth?

W(n) = n-1, D(n) = n-1

Class question: is this optimal?

spcl.inf.ethz.ch

@spcl_eth

▪ Recursive to get to 𝑾 = 𝑶 𝒏 and 𝑫 = 𝑶(𝒍𝒐𝒈 𝒏)! Assume 𝒏 = 𝟐𝒌 for simplicity!

▪ Sounds “optimal”, doesn’t it? Well, let’s look at the constants!

▪ Algorithm

33

What did we learn last week?

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8

෍

1

4

෍

3

4

෍

5

6

෍

7

8

෍

1

2

෍

5

8
෍

1

8

෍

1

3

෍

1

5

෍

1

6

෍

1

7

Class question: work?
(hint: after the way up, all powers of two are

done, all others require another operation each)

𝑊 𝑛 = 2𝑛 − log2 𝑛 − 1

Class question: what happened to optimality?

Class question: depth?
(needs to go up and down the tree)

D 𝑛 = 2 log2 𝑛 − 1

spcl.inf.ethz.ch

@spcl_eth

▪ Dissemination/recursive doubling – another well-known algorithmic technique – similar to trees

34

Oh no, not good, another algorithm to the rescue!

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8

෍

1

2

෍

2

3

෍

3

4

෍

4

5

෍

5

6

෍

6

7

෍

7

8

෍

1

3

෍

1

4

෍

2

5

෍

3

6

෍

4

7

෍

5

8

෍

1

5

෍

1

6

෍

1

7

෍

1

8

Class question: work?
(hint: count number of omitted ops)

𝑊 𝑛 = 𝑛 log2 𝑛 − 𝑛 + 1

Class question: is this now optimal?

Class question: depth?

D 𝑛 = log2 𝑛

spcl.inf.ethz.ch

@spcl_eth

▪ Obvious question: is there a depth- and work-optimal algorithm?

▪ This took years to settle! The answer is surprisingly: no

▪ We know, for parallel prefix: 𝑊 +𝐷 ≥ 2𝑛 − 2

35

Oh no, three non-optimal algorithms so far!

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8

𝑥1 +⋯+ 𝑥8

Output tree:
• leaves are all inputs, rooted at 𝑥𝑛
• binary due to binary operation
• 𝑊 = 𝑛 − 1, 𝐷 = 𝐷𝑜

Input tree:
• rooted at 𝑥1, leaves are all outputs
• not binary (simultaneous read)
• 𝑊 = 𝑛 − 1

trees may only overlap
at the “ridge”

Ridge can be at most 𝐷𝑜long!
Now add trees and subtract shared vertices:
𝑛 − 1 + 𝑛 − 1 − 𝐷𝑜 = 2𝑛 − 2 − 𝐷𝑜 ≤ 𝑊

q.e.d.

spcl.inf.ethz.ch

@spcl_eth

36

Work-Depth Tradeoffs and deficiency

“The deficiency of a prefix circuit 𝑐 is defined as def 𝑐 = 𝑊𝑐 + 𝐷𝑐 − (2𝑛 − 2)”

1960

W-D tradeoff: 1986

From Zhu et al.: “Construction of Zero-Deficiency Parallel Prefix Circuits”, 2006

Latest 2006 result for zero-deficiency
construction for 𝑛 > 𝐹 𝐷 + 3 − 1

(𝑓 𝑛 is inverse)

spcl.inf.ethz.ch

@spcl_eth

▪ Work-optimal?

▪ Only sequential! Why?

▪ 𝑊 = 𝑛 − 1, thus 𝐷 = 2𝑛 − 2 −𝑊 = 𝑛 − 1 q.e.d.

▪ Depth-optimal?

▪ Ladner and Fischer propose a construction for work-efficient circuits with minimal depth

𝐷 = ⌈log2 𝑛⌉, 𝑊 ≤ 4𝑛

Simple set of recursive construction rules (too boring for class, check 1980’s paper if needed)

Has an unbounded fan-out! May thus not be practical 

▪ Depth-optimal with bounded fan-out?

▪ Some constructions exist, interesting open problem

▪ Nice research topic to define optimal circuits

37

Work- and depth-optimal constructions

spcl.inf.ethz.ch

@spcl_eth

▪ It’s the simplest problem to demonstrate and prove W-D tradeoffs

▪ And it’s one of the most important parallel primitives

▪ Prefix summation as function composition is extremely powerful!

▪ Many seemingly sequential problems can be parallelized!

▪ Simple first example: binary adder – 𝑠 = 𝑎 + 𝑏 (n-bit numbers)

▪ Starting with single-bit (full) adder for bit i

38

But why do we care about this prefix sum so much?

+

𝑎𝑖 𝑏𝑖

𝑐𝑖𝑛, 𝑖 𝑐𝑜𝑢𝑡, 𝑖

𝑠𝑖

𝑠𝑖 = 𝑎𝑖 xor 𝑏𝑖 xor 𝑐𝑖𝑛,𝑖

𝑐𝑜𝑢𝑡,𝑖 = 𝑎𝑖 and 𝑏𝑖 or [𝑐𝑖𝑛,𝑖 and 𝑎𝑖 xor 𝑏𝑖]

Example 4-bit ripple carry adder

source: electronics-tutorials.ws

Show example 4-bit addition!

Question: what is work and depth?

Question: what are the functions for 𝑠𝑖and 𝑐𝑜𝑢𝑡,𝑖?

spcl.inf.ethz.ch

@spcl_eth

▪ We only want 𝒔!

▪ Requires 𝑐𝑖𝑛,1, 𝑐𝑖𝑛,2, … , 𝑐𝑖𝑛,𝑛 though 

▪ Carry bits can be computed with a scan!

▪ Model carry bit as state starting with 0

Encode state as 1-hot vector: 𝑞0 =
1
0

, 𝑞1 =
0
1

▪ Each full adder updates the carry bit state according to 𝑎𝑖 and 𝑏𝑖
State update is now represented by matrix operator, depending on 𝑎𝑖 and 𝑏𝑖 (𝑀𝑎𝑖𝑏𝑖):

𝑀00 =
1 1
0 0

, 𝑀10 = 𝑀01 =
1 0
0 1

, 𝑀11 =
0 0
1 1

▪ Operator composition is defined on algebraic ring ({0, 1, or, and}) – i.e., replace “+” with “or” and “*” with “and”

Prefix sum on the states computes now all carry bits in parallel!

▪ Example: a=011, b=101 →𝑴𝟏𝟏, 𝑴𝟏𝟎, 𝑴𝟎𝟏

▪ Scan computes: 𝑀11=
0 0
1 1

; 𝑀11𝑀10 =
0 0
1 1

; 𝑀11𝑀10𝑀01 =
0 0
1 1

in parallel

▪ All carry states and 𝑠𝑖 can now be computed in parallel by multiplying scan result with 𝑞0
39

Seems very sequential, can this be parallelized?

source: electronics-tutorials.ws

𝑠𝑖 = 𝑎𝑖 xor 𝑏𝑖 xor 𝑐𝑖𝑛,𝑖

𝑐𝑜𝑢𝑡,𝑖 = 𝑎𝑖 and 𝑏𝑖 or 𝑐𝑖𝑛,𝑖 and (𝑎𝑖 xor 𝑏𝑖)

spcl.inf.ethz.ch

@spcl_eth

▪ Any time a sequential chain can be modeled as function composition!

▪ Let 𝑓1, … , 𝑓𝑛 be an ordered set of functions and 𝑓0 𝑥 = 𝑥

▪ Define ordered function compositions: 𝑓1(𝑥); 𝑓2(𝑓1 𝑥); … ; 𝑓𝑛(…𝑓1 𝑥)

▪ If we can write function composition 𝑔 𝑥 = 𝑓𝑖(𝑓𝑖−1 𝑥) as 𝑔 = 𝑓𝑖 ∘ 𝑓𝑖−1 then we can compute ∘ with a prefix sum!

We saw an example with the adder (𝑀𝑎𝑏 were our functions)

▪ Example: linear recurrence 𝒇𝒊 𝒙 = 𝒂𝒊𝒇𝒊−𝟏 𝒙 + 𝒃𝒊 with 𝒇𝟎 𝒙 =x

▪ Write as matrix form 𝑓𝑖
𝑥
1

=
𝑎𝑖 𝑏𝑖
0 1

𝑓𝑖−1
𝑥
1

▪ Function composition is now simple matrix multiplication!

For example: 𝑓2
𝑥
1

=
𝑎2 𝑏2
0 1

𝑎1 𝑏1
0 1

𝑓0
𝑥
1

=
𝑎1𝑎2 𝑎2𝑏1 + 𝑏2
0 1

𝑥
1

▪ Most powerful! Homework:

▪ Parallelize tridiagonal solve (e.g., Thomas’ algorithm)

▪ Parallelize string parsing

40

Prefix sums as magic bullet for other seemingly sequential algorithms

spcl.inf.ethz.ch

@spcl_eth

▪ Radix sort works bit-by-bit

▪ Sorts k-bit numbers in k iterations

▪ In each iteration 𝑖 stably sort all values by the 𝑖-th bit

▪ Example, k=1:

Iteration 0: 101 111 010 011 110 001

Iteration 1: 010 110 101 111 011 001

Iteration 2: 101 001 010 110 111 011

Iteration 3: 001 010 011 101 110 111

▪ Now on n processors

▪ Each processor owns single k-bit number, each iteration

low = prefix_sum(!bit, sum)

high = n+1-backwards_prefix_sum(bit, sum)

new_idx = (bit == 0) : low ? high

b[new_idx-1] = a[i]

swap(a,b)
41

Another use for prefix sums: Parallel radix sort

Show one example iteration!

Question: work and depth?

spcl.inf.ethz.ch

@spcl_eth

▪ Seems paradoxical but isn’t (may just not be most efficient)

▪ Use adjacency matrix representation of graph – “compute with all zeros”

42

Oblivious graph algorithms

1

3

4
5

2

6

0 1 1 0 0 0

0 0 0 0 1 1

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

i

j

1

3

4
5

2

6

0 2 3 0 0 0

0 0 0 0 3 1

0 0 0 0 0 2

0 0 4 0 0 0

0 0 0 7 0 0

0 0 0 0 8 0

i

j

Unweighted graph – binary matrix Weighted graph – general matrix

spcl.inf.ethz.ch

@spcl_eth

▪ A semiring is an algebraic structure that

▪ Has two binary operations called “addition” and “multiplication”

▪ Addition must be associative ((a+b)+c = a+(b+c)) and commutative ((a+b=b+a)) and have an identity element

▪ Multiplication must be associative and have an identity element

▪ Multiplication distributes over addition (a*(b+c) = a*b+a*c)

→Multiplication by additive identity annihilates

▪ Semirings are denoted by tuples (S, +, *, 0, 1)

“Standard” ring of rational numbers: (ℝ, +, *, 0, 1)

Boolean semiring: ({0,1}, ∨, ∧, 0, 1)

Tropical semiring: (ℝ ∪ {∞}, min, +, ∞, 0) (also called min-plus semiring)

43

Algebraic semirings

spcl.inf.ethz.ch

@spcl_eth

▪ Construct distance matrix from adjacency matrix by replacing all off-diagonal
zeros with ∞

▪ Initialize distance vector 𝒅𝟎of size n to ∞ everywhere but zero at start vertex

▪ E.g., 𝐝𝟎 = ∞, 𝟎,∞,∞,∞,∞ 𝑻

Show evolution when multiplied!

▪ SSSP can be performed with n+1 matrix-vector multiplications!

▪ Question: total work and depth?

𝑊 = 𝑂(𝑛3), 𝐷 = 𝑂(𝑛 log 𝑛)

▪ Question: Is this good? Optimal?

Dijkstra = 𝑂(𝐸 + 𝑉 log 𝑉)

▪ Homework:

▪ Define a similar APSP algorithm with

𝑊 = 𝑂(𝑛3 log 𝑛), 𝐷 = 𝑂(log2 𝑛)

44

Oblivious shortest path search

0 ∞ ∞ ∞ ∞ ∞

2 0 ∞ ∞ ∞ ∞

3 ∞ 0 4 ∞ ∞

∞ ∞ ∞ 0 7 ∞

∞ 3 ∞ ∞ 0 8

∞ 1 2 ∞ ∞ 0

1

3

4
5

2

6

spcl.inf.ethz.ch

@spcl_eth

▪ Question: How could we compute the transitive closure of a graph?

▪ Multiply the matrix (𝐴 + 𝐼) 𝑛 times with itself in the Boolean semiring!

▪ Why?

Demonstrate that 𝐴 + 𝐼 2 has 1s for each path of at most length 1

By induction show that 𝐴 + 𝐼 𝑘 has 1s for each path of at most length k

▪ What is work and depth of transitive closure?

▪ Repeated squaring! 𝑊 = 𝑂(𝑛3log 𝑛) 𝐷 = 𝑂(log2𝑛)

log2 𝑛 multiplications (think 𝐴4 = 𝐴2
2
)

▪ How to get to connected components from a transitive closure matrix?

▪ Each component needs unique label

▪ Create label matrix 𝐿𝑖𝑗 = 𝑗 iff 𝐴𝐼
𝑛
𝑖𝑗 = 1 and 𝐿𝑖𝑗 = ∞ otherwise

▪ For each column (vertex) perform min-reduction to determine its component label!

▪ Overall work and depth?

45

Oblivious connected components
0 1 1 0 0 0

0 0 0 0 1 1

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

i

j

1 1 1 0 0 0

0 1 0 0 1 1

0 0 1 0 0 1

0 0 1 1 0 0

0 0 0 1 1 0

0 0 0 0 1 1

+I

𝑊 = 𝑂(𝑛3log 𝑛), 𝐷 = 𝑂(log2𝑛)

spcl.inf.ethz.ch

@spcl_eth

▪ Not clear whether they are most efficient

▪ Efforts such as GraphBLAS exploit existing BLAS implementations and techniques

▪ Generalizations to other algorithms possible

▪ Can everything be modeled as tensor computations on the right ring?

▪ E. Solomonik, T. Hoefler: “Sparse Tensor Algebra as a Parallel Programming Model”

▪ Much of machine learning/deep learning is oblivious

▪ Many algorithms get non-oblivious though

▪ All sparse algorithms are data-dependent!

▪ E.g., use sparse graphs for graph algorithms on semirings (if 𝐸 < 𝑉 2/log|𝑉|)

May recover some of the lost efficiency by computing zeros!

▪ Now moving to non-oblivious ☺

46

Many if not all graph problems have oblivious or tensor variants!

spcl.inf.ethz.ch

@spcl_eth

▪ Outline:

▪ Reduction on a linked list

▪ Prefix sum on a linked list

▪ Nonoblivious graph algorithms - connected components

▪ Conflict graphs of bounded degree

▪ Modeling assumptions:

▪ When talking about work and depth, we assume each loop iteration on a single PE is unit-cost (may contain multiple
instructions!)

47

Nonoblivious parallel algorithms

spcl.inf.ethz.ch

@spcl_eth

▪ Given: n values in linked list, looking for sum of all values

▪ Sequential algorithm:

48

Reduction on a linked list typedef struct elem {
struct elem *next;
int val;

} elem;

5 1 6 3 7

set S={all elems}
while (S != empty) {
pick some i ∈ S;
S = S – i.next;
i.val += i.next.val;
i.next = i.next.next;

}

A set 𝐼 ⊂ 𝑆 is called an independent set if no
two elements in 𝐼 are connected!

Are the following sets independent or not?
• {1}
• {1,5}
• {1,5,3}
• {7,6,5}
• {7,6,1}

Class question: What is the maximum
size of an independent set of a linked
list with 𝑛 elements?

spcl.inf.ethz.ch

@spcl_eth

▪ Given: n values in linked list, looking for sum of all values

▪ Parallel algorithm:

49

Parallel reduction on a linked list

5 1 6 3 7

set S={all elems}
while (S != empty) {
pick independent subset I ∈ S;
for(each 𝑖 ∈ 𝐼 do in parallel) {
S = S – i.next;
i.val += i.next.val;
i.next = i.next.next;

}
}

A subset 𝐼 ⊂ 𝑆 is called an independent set
if no two elements in 𝐼 are connected!

Basically the same algorithm, just working
on independent subsets!

Class question: Assuming picking a maximum 𝐼 is
free, what are work and depth?

𝑊 = 𝑛 − 1, 𝐷 = ⌈log2n⌉

Is this optimal?

typedef struct elem {
struct elem *next;
int val;

} elem;

spcl.inf.ethz.ch

@spcl_eth

▪ That’s now the whole trick!

▪ It’s simple if all linked values are consecutive in an array – same as “standard” reduction!

Can compute independent set up-front!

▪ Irregular linked list though?

▪ Idea 1: find the order of elements → requires parallel prefix sum, D’oh!

▪ Observation: if we pick 𝐼 > 𝜆|𝑉| in each iteration, we finish in logarithmic time!

▪ Symmetry breaking:

▪ Assume 𝑝 processes work on 𝑝 consecutive nodes

▪ How to find the independent set?

They all look the same (well, only the first and last differ, they have no left/right neighbor)

Local decisions cannot be made 

▪ Introduce randomness to create local differences!

▪ Each node tosses a coin → 0 or 1

▪ Let 𝐼 be the set of nodes such that 𝑣 drew 1 and 𝑣. 𝑛𝑒𝑥𝑡 drew 0!

Show that I is indeed independent!

What is the probability that 𝑣 ∈ 𝐼?
50

How to pick the independent set 𝑰?

5 1 6 3 7

0 0 1 0 1
𝑃 𝑣 ∈ 𝐼 =

1

4

spcl.inf.ethz.ch

@spcl_eth

▪ As the set shrinks, the random selection will get less efficient

▪ When 𝑝 is close to 𝑛 (𝑆) then most processors will fail to make useful progress

▪ Switch to a different algorithm

▪ Recursive doubling!

▪ Show execution on our example!

▪ Algorithm computes prefix sum on the list!

Result at original list head is overall sum

51

Optimizations

5 1 6 3 7

for (i=0; i ≤ ⌈log2𝑛⌉; ++i) {
for(each elem do in parallel) {

elem.val += elem.next.val;
elem.next = elem.next.next;

}
} Class question: What are work and depth?

𝑊 = 𝑛⌈log2𝑛⌉, 𝐷 = ⌈log2n⌉

spcl.inf.ethz.ch

@spcl_eth

▪ Didn’t we just see it? Yes, but work-inefficient (if 𝒑 ≪ 𝒏)!

We extend the randomized symmetry-breaking reduction algorithms

▪ First step: run the reduction algorithm as before

▪ Second step: reinsert in reverse order of deletion

When reinserting, add the value of their successor

52

Prefix summation on a linked list

5 1 6 3 7

5 1 11 10 7

5 1 21 10 7

5 1 22 10 7

5 1 22 10 7

5 1 22 11 7

16 1 22 11 8

spcl.inf.ethz.ch

@spcl_eth

▪ Didn’t we just see it? Yes, but work-inefficient (if 𝒑 ≪ 𝒏)!

We extend the randomized symmetry-breaking reduction algorithms

▪ First step: run the reduction algorithm as before

▪ Second step: reinsert in reverse order of deletion

When reinserting, add the value of their successor

▪ Class question: how to implement this in practice?

▪ Either recursion or a stack!

▪ Design the algorithm as homework (using a parallel for loop)

53

Prefix summation on a linked list

spcl.inf.ethz.ch

@spcl_eth

▪ Straight forward and cheap to compute sequentially – question: how?

▪ Any traversal algorithm in work 𝑂 𝑉 + 𝐸

Seemingly trivial - becomes very interesting in parallel

▪ Our oblivious semiring-based algorithm was 𝑊 = 𝑂(𝑛3log 𝑛), 𝐷 = 𝑂(log2𝑛)

FAR from work optimality! Question: can we do better by dropping obliviousness?

54

Finding connected components as example

A connected component of an undirected graph is a subgraph in which any two vertices are connected
by a path and no vertex in the subgraph is connected to any vertices outside the subgraph. Each
undirected graph G = (V,E) contains one or multiple (at most |V|) connected components.

spcl.inf.ethz.ch

@spcl_eth

55

Connected Components

Label Propagation

9

10

2

6

5

4

7

1
8

3

1

4

2

spcl.inf.ethz.ch

@spcl_eth

56

Connected Components

Label Propagation

2

2

2

1

1

1

1

1
1

1

Work = 𝒪 𝐷 ⋅ 𝑚
Depth = 𝒪(𝐷)

spcl.inf.ethz.ch

@spcl_eth

57

Connected Components

Label Propagation Breadth-First Search

1

2

2

2

1

1

1

1

1
1

1

2

2

2

1

1

1

1

1
1

Work = 𝒪 𝑚 + 𝑛

Depth = 𝒪(∑𝑖=1
𝐶 𝐷 𝑐𝑖)

Work = 𝒪 𝐷 ⋅ 𝑚
Depth = 𝒪(𝐷)

spcl.inf.ethz.ch

@spcl_eth

▪ Straight forward and cheap to compute sequentially – question: how?

▪ Any traversal algorithm in work 𝑂 𝑉 + 𝐸

Seemingly trivial - becomes very interesting in parallel

▪ Our oblivious semiring-based algorithm was 𝑊 = 𝑂(𝑛3log 𝑛), 𝐷 = 𝑂(log2𝑛)

FAR from work optimality! Question: can we do better by dropping obliviousness?

▪ Let’s start simple – assuming concurrent read/write is free

▪ Arbitrary write wins

▪ Concept of supervertices

▪ A supervertex represents a set of vertices in a graph

1. Initially, each vertex is a (singleton) supervertex

2. Successively merge neighboring supervertices

3. When no further merging is possible → each supervertex is a component

▪ Question is now only about the merging strategy
58

Finding connected components as example

A connected component of an undirected graph is a subgraph in which any two vertices are connected
by a path and no vertex in the subgraph is connected to any vertices outside the subgraph. Each
undirected graph G = (V,E) contains one or multiple (at most |V|) connected components.

A fixpoint algorithm proceeds iteratively and
monotonically until it reaches a final state
that is not left by iterating further.

spcl.inf.ethz.ch

@spcl_eth

59

Connected Components

Label Propagation Breadth-First Search Shiloach/Vishkin

2

2

2

1

1

1

1

1
1

1

2

2

2

1

1

1

1

1
1

1

9

10

2

6

5

4

7

1
8

1

2

2

2

1

4

3

1

1
1

31

31

1

Work = 𝒪 𝐷 ⋅ 𝑚
Depth = 𝒪(𝐷)

Work = 𝒪 𝑚 + 𝑛

Depth = 𝒪(∑𝑖=1
𝐶 𝐷 𝑐𝑖)

spcl.inf.ethz.ch

@spcl_eth

▪ Pointer graph/forest:

▪ Define pointer array 𝑃, 𝑃[𝑖] is a pointer from 𝑖 to some other vertex

▪ We call the graph defined by 𝑃 (excluding self loops) the pointer graph

▪ During the algorithm, 𝑃[𝑖] forms a forest such that ∀𝑖: 𝑖, 𝑃 𝑖 there exists a path from 𝑖 to 𝑃[𝑖] in the original graph!

▪ Initially, all 𝑃 𝑖 = 𝑖

▪ The algorithm will run until each forest is a directed star pointing at the (smallest-id) root of the component

▪ Supervertices:

▪ Initially, each vertex is its own supervertex

▪ Supervertices induce a graph - 𝑆𝑖 and 𝑆𝑗 are connected iff ∃ 𝑢, 𝑣 ∈ 𝐸 with 𝑢 ∈ 𝑆𝑖 and 𝑣 ∈ 𝑆𝑗

▪ A supervertex is represented by its tree in 𝑃

60

Shiloach/Vishkin’s algorithm

1

3

4

5
2

6

graph with single component

1

3

4

5
2

6

possible forest formed by 𝑃

1

3

4

5
2

6

star formed by 𝑃

spcl.inf.ethz.ch

@spcl_eth

▪ Algorithm proceeds in two operations:

▪ Hook – merge connected supervertices (must be careful to not introduce cycles!)

▪ Shortcut – turn trees into stars

Repeat two steps iteratively until fixpoint is reached!

61

Shiloach/Vishkin’s algorithm – key components

1

3

4

5
2

6

1

3

4

5
2

6

hook 1

3

4

5
2

6

1

3

4

5
2

6

shortcut

spcl.inf.ethz.ch

@spcl_eth

▪ Correctness proofs:

▪ Lemma 1: The shortcut operation converts rooted trees to rooted stars. Proof: obvious

▪ Theorem 1: The pointer graph always forms a forest (set of rooted trees). Proof: shortcut doesn’t violate, hook works
on rooted stars, connects only to smaller label star, no cycles

▪ Performance proofs:

▪ Lemma 2: The number of iterations of the outer loop is at most log2 𝑛. Proof: consider connected component, if it
has two supervertices before hook, number of supervertices is halved, if no hooking happens, component is done

▪ Lemma 2: The number of iterations of the inner loop in shortcut is at most log2 𝑛. Proof: consider tree of height > 2
at some iteration, the height of the tree halves during that iteration

▪ Corollary: Class question: work and depth?

▪ Algorithm was recently improved for practical architectures

▪ M. Sutton, TBN, A. Barak, “Optimizing Parallel Graph Connectivity Computation via Subgraph Sampling”, IPDPS’18

▪ Introducing CAS, random sampling

62

Shiloach/Vishkin’s algorithm – Proof

𝑊 = 𝑂 𝑛2log 𝑛 , 𝐷 = 𝑂(log2𝑛) (assuming conflicts are free!)

