e

se - TR T (S Ly L Linf.ethz.ch
ETH urich R T PR oy e DINFK

M. PUESCHEL, T. BEN-NUN

B T A
S

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Review of last lecture

= Memory models in practical parallel programming
= Synchronized programming
= How locks synchronize processes and memory!
How to code in C++ and Java

= Proving program correctness
» Pre-/postconditions — sequential
= Lifting to parallel
How to prove locked programs correct (nearly trivial)

= Lock implementation
= Proof of correctness (using read/write histories, program and visibility orders)
With x86 memory model!
= Peterson lock
= Lock performance
Simple x86 — how much does memory model correctness cost?

Recap: Spin-Locks

= Two-Thread Locks
= First “Lock”
= LockOne
= LockTwo

= Peterson Lock

= N-Thread Locks

void unlock()
flag = 0;

No mutual exclusion

= Lamport’s Bakery Algorithm

volatile int flag[2];

void lock() {
intj=1-tid;
flag[tid] = true;
while (flag[j]) {} // wait
}

void unlock() {
flag[tid] = false;
}
v" Mutual exclusion
Deadlock if two
attempts overlap

X

X

spcl.inf.ethz.ch oo o
v oo ETHZUrich

volatile int victim;

void lock() {
victim = tid; // grant access
while (victim == tid) {} // wait
}

void unlock() {}

v" Mutual exclusion
Deadlock if two
attempts do not overlap

volatile int flag[n] = {0,0,...,0};
volatile int label[n] = {0,0,....,0};

NOW SERVING

void lock() {
flag[tid] = 1; // request
label[tid] = max(label[0], ...,label[n-1]) + 1; // take ticket
while ((3k != tid)(flag[k] && (label[k],k) <* (label[tid],tid))) {};
}
public void unlock() {
flag[tid] = O;
}

spcl.inf.ethz.ch oo o
v oo ETHZUrich

DPHPC Overview
DPHPC\\\\\\\

2 locality Egralle\lism
o \
2 - caches vector ISA shared memory distributed memory
< - memory hierarchy
2 : cache coherency
o3 |
P memory distributed |
o models algorithms '
S
S locks group commu-
o lock free nications

wait free

linearizability

Amdahl's and Gustafson's law

| memory | PRAM | LogP
| qa - B | [

I/O complexity

balance principles | balance principles Il
Little's Law scheduling

models

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Goals of this lecture

= Scientific Benchmarking

= Fast and scalable practical locks!
= Based on atomic operations
= Why do we need atomic operations?

= Recap lock-free and wait-free programming
= Proof that wait-free consensus is impossible without atomics
Valence argument: a proof technique similar to showing that atomics are needed for locks

= Locks in practical setting
= How to block?
= When to block?
= How long to block?
Simple proof of competitiveness

spcl.inf.ethz.ch
L 4 @spcl_eth

Interlude: Scientific integrity — or how to report benchmark results?

Scientific Benchmarking of Parallel Computing Systems

Twelve ways to tell the masses when reporting performance results

1991 — the classic!

A & 0 Ve h nl L4l AL A Sl 7 o (T)

2012 — the shocking

2013 — the extension

[==

Fooling the Masses with Performance
Results: Old Classics & Some New Ideas

J"""‘Q""?' ke

Gerhard Wellein®2, Georg Hager®@

(UDepartment for Computer Science —me |
I— (@Erlangen Regional Computing Center E S===F tAliNoen-nonnsena
Friedrich-Alexander-Universitit Erlangen-Niirnberg

TECHNISCHE FAKULTAT

Torsten Hoefler
Dept. of Computer Science
ETH Zurich
Zurich, Swilzerland
htor@inf.ethz.ch

ABSTRACT

Measuring and reporting performance of parallel computers con
stimtes the basis For scientific advancement of high-perfformance
compiiting (HPC), Most scientific reports show performsnce im-
provements of new technigues and are thus obliged (o ensare repo
ducibility or at least iterpretahlity, Our investigation of a strai
fied sample of 120 papers scross three top conferences in the held
shans that the staie of the practice i lacking. For example, it is of-
teen une leair i reported improvements are deterministic or obscerved
by chance. In addition 1o distilling best practices fram existing
work, we propose stulistically sound analysis and reporting lech-
nigues and simple guidelines for experimental design in paraliel
computing and codily them in i pariable benchmarking library, We
i o improve the standinds of reporting rescarch results and init-
ale o discussion in the HPC field. A wide adoption of our minimal
set of rules will lewd to better interpretability of performance resulis
anel improve the sehentilie calture in HPC

Categories and Subject Descriptors

.28 | Solltware Engineering|: Metrics—complexity measures, per
Sormance measures

Keywords

Benchmarking, parallel computing, statistics, data analysis

1. INTRODUCTION

Clorrect I_l,' ||;'ﬂ1'],t|'|illp imiplnlul CRAPETIMCTLS 0 MEksire gl nepon
performance numbers is a challenging task, Yer, there is surpris
ingly lintle agreement on standard technbgies for measinng, repor-
ing, and inierpreiing compuier performance. For example, com-
man guestions such as “How many ilerations do 1 have o mn pers
TR T "How many messurements should 1 ran™
1 have all data, how do | sommarize it into o single nuo
“How do | mcasure tme inoa poarallel system? e

swered hased on inmition. While we believe that an expert’s intu
Wby i most oflen correct, there are cases whene it fils and invali-
dates expengive expeniments or even misleads us. Bailey |3] illos
trates thig in several common bt misleading data reporting patiems
that he and his colleagues huve ohserved in practice,

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HWEpXIWAWTU)

Roberto Belli
Dapt. of Computer Science
ETH Zurich
2urich, Swilzerland
bellir@inf.ethz.ch

Reproducing experiments is one of the main principles of the sci-
entific method. 1 is well known that the performance of & compuler
Progran 1k~prmlu o the uﬂ\l'wmim, the inpat, the ﬂmlpﬂur, the
runtime environment, the machine, and the measurement method-
ology | 20,43), 1If a single one of these aspects of experimenial de-
sign is nol appropriately motivated and descrbed, presented resulis
can hardly be reproduced and may even be misleading or incormect.

The complexity and unigueness of many supercompuiers makes
reproducibilivy a hard sk, For example, it is practically impossi
ble 1o recreste most hero-rins that atilize the world's largest ma
chines because these machines are ofien unigue and their software
configurtions changes regularly. We introduce the nation of i
terpretability, which is weaker than reproducibility. We call an ex
peviment interpretable if it provides enough information to allow
seteniisiy i wnderstand the experiment, draw own conclusions, ax
sexs their certaingy, and possibly generalize resules. In other words,
interpretable experiments support sound conclusions and convey
procise information among scieniists, Obviously, every scientific
paper should be interpretable; unfortunately, many are not.

For example, reporting thut an High-Performance Linpack
(HPL) run on 64 nodes (N=314k) of the Piz Daint system during
normal opertion (cf, Section 4.1.2) achieved 77.38 Top/s 15 hard
to imterpret, 1 we add that the theoretical peak is 94.5 Tilop's, it
becomes clearer, the benchmark achieves 81.8% of peak perfor-
mance. But is this e for every mn of a typical ran? Figure |

Min | hedisn’ frithmetic Mean

U LH ; g
‘:’nm : s
3

.00/ ”"J.I il IL| | [l il

Comglotion Time (8}
Figure 1: Distribution of completion times for 50 HPL runs,

provides a mach more interpreiable and informative represeniaion

of the collected mntimes of 50 cxecutions. It shows that the varia
) ., "

ETH-zurich

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Scientific Benchmarking: Pitfalls of Relative Performance Reporting (Rule 1)

Baseline = 7 seconds Baseline = 10 seconds
16 1 —@— Measured data - 17.5 1 —®— Measured data
- - - Linear speedup I - - - Linear speedup
14 s
12 ~
Q 10
-
@
v 81
o
wn
6 -
4 -
2 -
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of processors Number of processors

Both plots show speedups calculated from the same data.
The only difference is the baseline.

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HWEpXIWAWTU)

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Rule 1: When publishing parallel speedup, report if the base
case is a single parallel process or best serial execution, as well as
the absolute execution performance of the base case.

= A simple generalization of this rule implies that one should never report ratios without
absolute values.

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC18

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Scientific Benchmarking: Benchmark Selection (Rule 2)

The presented data set contains only a subset
ct of GCC -O3 opt of the Mantevo benchmark suite.

Based on the presented data, one may
conclude that using -03 is always a good idea.

* Miniapps:
* *CloverLeaf Version 1.1, Reference Version 1.1
+ =CloverLeaf30: Version 1.0, Reference Version 1.0
+ CoMD: Reference Version 1.1
* HPCCG: Reference Version 1.0
* *Ninidero: Version 1.0
* =hfiniAMR: Version 1.0, Reference Version 1.0
* *MiniFE: Version 2.0.1 (new cpenmp_opt version), Reference Version 2.0
+ MiniGhost: Version 1.0.1, Reference Version 1.0.1
* *MinibD: Version 1.2 (update in upcoming minor suite release), Reference Version 2.0
* *MiniSMAC2D: Reference Version 2.0 (SkxSk, Tkx7k test inputs)
* Minixyce: Reference Version 1.0
+ **Pathfinder. Version 1.0.0
+ #*Tealeaf Version 1.0, Reference Version 1.0

w
1

Time [sec]

* Minidrivers:
* *Cleverleaf. Version 2.0, Reference Version 2.0
* EpetraBenchmarkTesk Version 1.0

N
1

-

The incompleteness of data may lead to wrong conclusions.
Sometimes -03 may not be a good idea for a code: e.g., vectorization
(enabled by -03) may segfault on a loop which does unaligned memory
access on some x86. But this is not demonstrated by the presented dataset.

miniAMR

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HWEpXIWAWTU)

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Rule 2: Specify the reason for only reporting subsets of standard
benchmarks or applications or not using all system resources.

= This implies: Show results even if your code/approach stops scaling!

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HWEpXIWAWTU)

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch PP
v oo ETH ZUrich

Scientific Benchmarking: The fallacies of summarizing (Rules 3+4)

Testcase

Floating-point operations [Gflop]

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwWEpXIWAWTU) 12

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Rule 3: Use the arithmetic mean only for summarizing costs.
Use the harmonic mean for summarizing rates.

Rule 4: Avoid summarizing ratios (e.g., speedup); summarize the
costs or rates that the ratios base on instead. Only if these are not
available use the geometric mean for summarizing ratios.

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HWEpXIWAWTU)

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Nondeterminism in [most] performance measurements!

Same code executed 1000 times. Instruction count Cache miss count
Two metrics measured each time.
40 -

v

20 A

How do we report measurements
showing high variation?
20

Relative difference from median [%]
o
Relative difference from median [%]

—40 1 —40 1

const int n=1000; 0 200 400 600 800 1000 0 200 400 600 800 1000

volatile int a=0; Experiment Experiment
for (int i=0; i<n; ++1i) . _
a++; One is amazingly stable. The other—not at all!

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HWEpXIWAWTU)

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Rule 5: Report if the measurement values are deterministic. For
nondeterministic data, report confidence intervals of the
measurement.

= (Cls allow us to compute the number of required measurements!

= Can be very simple, e.g., single sentence in evaluation:
“We collected measurements until the 99% confidence interval was within 5% of our reported means.”

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Rule 6: Do not assume normality of collected data (e.g., based on
the number of samples) without diagnostic checking.

"= Most events will slow down performance
= Heavy right-tailed distributions

= The Central Limit Theorem only applies asymptotically
= Some papers/textbook mention “30-40 samples”, don’t trust them!

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch
L 4 @spcl_eth

ETH-zurich

Thou shalt not trust your system!

Look what

‘Min: 1.57 o

data | got!
6- Max: 7.2 I

Piz Dora
Median Arithmetic Mean
\ /

—1—

/ 99% Cl{Median)

\
\\

99% Cl (Mean)
i o

1.6
1759
Clearly, the
mean/median are
not sufficient!
Try quantile e —
1.6

regression!

18
Pilatus

Median
/(N

99% Cl (Median)

1.9 2.0

Arithmetic Mean
/

/99% Cl (Mean)

1.9

spcl.inf.ethz.ch oo o
v o e ETHZUrich

Rule 8: Carefully investigate if measures of central tendency
such as mean or median are useful to report. Some problems,
such as worst-case latency, may require other percentiles.

= Check Oliveira et al. “Why you should care about quantile regression”. SIGARCH Computer
Architecture News, 2013.

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

How many measurements are needed?

= Measurements can be expensive!
= Yet necessary to reach certain confidence

"= How to determine the minimal number of measurements?
= Measure until the confidence interval has a certain acceptable width
= For example, measure until the 95% Cl is within 5% of the mean/median
= Can be computed analytically assuming normal data

= Compute iteratively for nonparametric statistics

= Often heard: “we cannot afford more than a single measurement”
= E.g., Gordon Bell runs
= Well, then one cannot say anything about the variance
Even 3-4 measurement can provide very tight Cl (assuming normality)
Can also exploit repetitive nature of many applications

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Rule 9: Document all varying factors and their levels as well as the
complete experimental setup (e.g., software, hardware, techniques)
to facilitate reproducibility and provide interpretability.

= We recommend factorial design

= Consider parameters such as node allocation, process-to-node mapping, network or node contention
= |f they cannot be controlled easily, use randomization and model them as random variable

= This is hard in practice and not easy to capture in rules

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Time in parallel systems
That’s nonsense!
My simple
broadcast takes
only one latency!

But | measured it
so it must be true!

Measure each

t = -MPIl_Wtime(); | TR S . G DO e e operation

for(i=0; i<1000; i++) { ol g o g | | separately!
MPI_Bcast(...);

}

t += MPI_Wtime();
t /= 1000;

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Rule 10: For parallel time measurements, report all measurement,
(optional) synchronization, and summarization techniques.

= Measure events separately
= Use high-precision timers
= Synchronize processes

= Summarize across processes:
= Min/max (unstable), average, median — depends on use-case

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Rule 11: If possible, show upper performance bounds to facilitate
interpretability of the measured results.

= Model computer system as k-dimensional space
= Each dimension represents a capability
Floating point, Integer, memory bandwidth, cache bandwidth, etc.
= Features are typical rates
= Determine maximum rate for each dimension
E.g., from documentation or benchmarks
= Can be used to prove optimality of implementation
= |f the requirements of the bottleneck dimension are minimal

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Rule 12: Plot as much information as needed to interpret the
experimental results. Only connect measurements by lines if they
indicate trends and the interpolation is valid.

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Back to Peterson in Practice ... on x86

= Implement and run our little counter on x86

= Many iterations
= 1.6-10%% errors

= What is the
problem?

volatile int flag[2];
volatile int victim;

void lock() {
o~ . ‘ int j = 1 - tid;
Principle 4 Hiras el -Fl a g [t id] = 1 ; / / I ? m i nte r‘e St ed

v oesen ETHzlirich

Pl P2
Read: b -dered with old i diff I i 0 0 . °
Dt ot with lder wrikes 0 the same locaton. NO WS Rl) a-lw bol \Vale t im = t 1 d ; / / Ot h er goe S -F irs t
Cussion i1, 2-0alowed? while (flag[j] && victim == tid) {}; // wait
1 _/‘
H oK }
I
4
1
ADO:f:-‘;'Il::A;;:;: can be enforced with mfence. |I OK o
it:?mictn:t_h\s rulte mavv allow reads to mo;eimo) 1 P VO 1 d u n 1 O C k () {

critical sections 1

:

wo) § v L P flag[tid] = ©; // I’m not interested
}

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Peterson in Practice ... on x86

= Implement and run our little counter on x86

= Many iterations

= 1.6-10%% errors))
volatile int flag[2];

" Whatis the volatile int victim;
problem?
No sequential void lock() {
consistency int j = 1 - tid;
for W(v) and flag[tid] = 1; // I’m interested
R(flaglj]) victim = tid; // other goes first

asm(“mfence”);
while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
flag[tid] = @; // I’m not interested

}

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Peterson in Practice ... on x86

= Implement and run our little counter on x86

= Many iterations

= 1.6-10%% errors))
volatile int flag[2];

* Whatis the volatile int victim;
problem?
No sequential void lock() {
consistency int j = 1 - tid;
for W(v) and flag[tid] = 1; // I’m interested
R(flagljl) victim = tid; // other goes first
= Still 1.3 - 105% asm(“mfence”);
Why? while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = @; // I’m not interested

}

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Peterson in Practice ... on x86

= Implement and run our little counter on x86

= Many iterations

= 1.6-10%% errors))
volatile int flag[2];

* Whatis the volatile int victim;
problem?
No sequential void lock() {
consistency int j = 1 - tid;
for W(v) and flag[tid] = 1; // I’m interested
R(flagljl) victim = tid; // other goes first
= Still 1.3 - 105% asm(“mfence”);
Why? while (flag[j] && victim == tid) {}; // wait

Reads may slip into CR! } The compiler may inline
void unlock() { this function ©

asm(“mfence”);
flag[tid] = @; // I’m not interested

}

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Correct Peterson Lock on x86

= Unoptimized (naive sprinkling of mfences)
= Performance:

= No mfence) .
volatile int flag[2];

375ns volatile int victim;
= mfence in lock
379ns void lock() {
= mfence in unlock int j = 1 - tid;
404ns flag[tid] = 1; // I’m interested

victim = tid; // other goes first
) asm(“mfence”);
427ns (+14%) while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
asm(“mfence”);
flag[tid] = @; // I’m not interested

}

= Two mfence

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Hardware Support? ool T eig\ngsilggol *flag) {

*flag = true;
return old;
} // all atomic!

mov1 $1, %eax
xchg %eax, (%ebx)
= Hardware atomic operations:

= Test&Set

Write const to memory while returning the old value __global__ void Sum (float *in, float *out, int N) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
float previous_value = atomicAdd(out, in[tid]);

Atomically exchange memory and register // do something with previous_value
= Fetch&Op }

Get value and apply operation to memory location bool CompareAndSwap (T *value, T old, T new) {

= Compare&Swap if (*value != old) return false;
))) *value = new;
Compare two values and swap memory with register if return true;

equal } // all atomic!

= |oad-linked/Store-Conditional LL/SC (or load-acquire
(LDA) store-release (STL) on ARM)

Loads value from memory, allows operations, commits

= Atomic swap

_ . - mov1 $1, %eax
only if no other updates committed = mini-TM xacquire lock xchg %eax, (%ebx)
= |ntel TSX (transactional synchronization extensions) e
xrelease movl $0, (%ebx)

Hardware-TM (roll your own atomic operations)

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Relative Power of Synchronization

= Design-Problem I: Multi-core Processor
= Which atomic operations are useful?

= Design-Problem Il: Complex Application
= What atomic should | use?

= Generally hard to answer ®
= Depends on too many system and application details (access patterns, CC implementation, contention, algorithm ...)

= Concept of “consensus number” C: if a primitive can be used to solve the “consensus problem” in a finite
number of steps (even if threads stop)

= atomic registers have C=1 (thus locks have C=1!)
= TAS, Swap, Fetch&Op have C=2
= CAS, LL/SC, TM have C=o°

spcl.inf.ethz.ch L
v e en ETHzUrich

Test-and-Set Locks

= Test-and-Set semantics

= Memoize old value .

= Set fixed value TASval (true) bogio-{ez;gngsiilaﬁ?;(ﬂ flag) {
*flag = true;

return old;

= Post-condition is a fixed (constant) value! } // all atomic!

= Return old value

= After execution:

32

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Test-and-Set Locks bool TestAndSet (bool *flag) {
bool old = *flag;

*flag = true;

return old;

= Write something else to indicate “unlocked” } // all atomic!

= TAS until return value is != TASval (1 in this example)

= Assume TASval indicates “locked”

= Questions:
= When will the lock be granted?
= Does this work well in practice?
Is spinning in lock (TAS) a good idea? void lock() {

while (TestAndSet(&lck) == 1);
}

void unlock() {
lck = 0;
}

volatile int 1ck = 0;

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Cacheline contention (or: MESI and friends return)

= On x86, the XCHG instruction is used to implement TAS
= x86 lock is implicit in xchg!

= Cacheline is read and written mov1l $1, %eax
= Ends up in exclusive state, invalidates other copies xchg %eax, (%ebx)

= Cacheline is “thrown” around uselessly
= High load on memory subsystem
x86 lock is essentially a full memory barrier &

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Test-and-Test-and-Set (TATAS) Locks

= Spinning in TAS is not a good idea
= Spin on cache line in shared state

= All threads at the same time, no cache coherency/memory traffic

n |
Danger: volatile int 1ck = 0;
= Efficient but use with great care!

= Generalizations are very dangerous void lock() {
do {
while (lck == 1);
} while (TestAndSet(&lck) == 1);
}

void unlock() {
lck = 0;
}

Warning: Even experts get it wrong!

Example: Double-Checked Locking

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

1997

Double-Checked Locking

An Optimization Pattern for Efficiently
Initializing and Accessing Thread-safe Objects

Douglas C. Schmidt
schmidt@cs.wustl.edu
Dept. of Computer Science
‘Wash. U., §t. Louis

This paper appeared in a chapter in the book “Pattern
Languages of Program Design 3" ISBN, edited by Robert
Martin, Frank Buschmann, and Dirke Riehle published by
Addison-Wesley, 1997.

Abstract

This paper shows how the canonical implementation [1] of
the Singleton pattern does not work correctly in the pres-
ence of preemptive multi-tasking or true parallelism. To
solve this problem, we present the Double-Checked Lock-
ing optimization pattern. This pattern is useful for reducing
contention and synchronization overhead whenever “critical
sections” of code should be executed just once. In addition,
Double-Checked Locking illustrates how changes in under-
lying forces (i.e., adding multi-threading and parallelism to
the common Singleton use-case) can impact the form and
content of patterns used to develop concurrent software.

Tim Harrison
harrison@cs.wustledu
Dept. of Computer Science
Wash. U., St Louis

context of concurrency. To illustrate this, consider how the
canonical implementation [1] of the Singleton pattern be-
haves in multi-threaded environments.

The Singleton pattern ensures a class has only one instance
and provides a global point of access to that instance [1]. Dy-
namically allocating Singletons in C++ programs is common
since the order of initialization of global static objects in C++
programs is not well-defined and is therefore non-portable.
Moreover, dynamic allocation avoids the cost of initializing
a Singleton if it is never used.

Defining a Singleton is straightforward:
class Singleton
[iub lic:

static Singleton *instance (void)

‘ if (instance_ == Q)

/f Critical
instance_ = new Singleton;

return instance_;

Go gle double-checked locking § Q

All News Shopping Images Videos More Settings Tools

About 9.500.000 results (0,41 seconds)

Double-checked locking - Wikipedia
hitps://fen.wikipedia.org/wiki/Double-checked_locking ~

In software engineering, double-checked locking is a software design pattern used to reduce the
overhead of acquiring a lock by first testing the locking criterion ...
Usage in C++11 - Usage in Java - Usage in Microsoft NET ..

The "Double-Checked Locking is Broken" Declaration
hitps://www.cs.umd.edu/~pugh/java/imemoryModel/DoubleCheckedLocking.html ~

Double-Checked Locking is widely cited and used as an efficient method for implementing lazy
initialization in a multithreaded environment. Unfortunately, it will ..

Double-Checked Locking with Singleton | Baeldung
https://www.baeldung.com/java-singleton-double-checked-locking ~

Apr 23, 2018 - Learn about double-checked locking and its alternatives to tackle synchronization
problems.

LCK10-J. Use a correct form of the double-checked locking idiom - SEI ...
hitps://wiki.sei.cmu.edu/.../LCK10-J.+Use+a+correct+form+of+the+double-checked+l... ¥

Feb 12, 2018 - The double-checked locking idiom 15 a software design pattern used to reduce the
overhead of acquiring a lock by first testing the locking ..

Double-checked locking: Clever, but broken | JavaWorld
https://www.javaworld.com/article/.../double-checked-locking--clever--but-broken.ht... »

Feb 9, 2001 - Many Java programmers are familiar with the double-checked locking idiom, which
allows you to perform lazy initialization with reduced

Problem: Memory ordering leads to race-conditions!

36

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Contention?

= Do TATAS locks still have contention?

= When lock is released, k threads fight for
cache line ownership
= One gets the lock, all get the CL exclusively (serially!)
= What would be a good solution?
think “collision avoidance” volatile int 1lck = 0;

void lock() {
do {
while (lck == 1);
} while (TestAndSet(&lck) == 1);
}

void unlock() {
lck = 0;
}

37

spcl.inf.ethz.ch oo o
v oo ETHZUrich

TAS Lock with Exponential Backoff

= Exponential backoff eliminates contention statistically
= Locks granted in unpredictable order

= Starvation possible but unlikely elleteiie T Tdk = 6
How can we make it even less likely?
void lock() {
while (TestAndSet(&lck) == 1) {
wait(time);
time *= 2; // double waiting time
}
}

void unlock() {
lck = 0;
}

Similar to: T. Anderson: “The performance of spin lock alternatives for shared-memory multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990

spcl.inf.ethz.ch oo o
v oo ETHZUrich

TAS Lock with Exponential Backoff

= Exponential backoff eliminates contention statistically
= Locks granted in unpredictable order

= Starvation possible but unlikely volatile int 1lck = 0©;
Maximum waiting time makes it less likely const int maxtime=1000;

void lock() {

while (TestAndSet(&lck) == 1) {
wait(time);
time = min(time * 2, maxtime);
}
}
void unlock() {
lck = 0;
}

Similar to: T. Anderson: “The performance of spin lock alternatives for shared-memory multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Performance of our locks compared +
: =7f-
L,
+ 200 -
)
S : . . Lock
2 . B3 Backoff
. Ed Peterson
9 E B Peterson 1f
S B2 Peterson 2f
o} B TAS
© 100+ * B1 TATAS
0]
o - . ==
o * -1- ! -‘-

2 3 4 5 6 7 8
of threads 40

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Improvements?

= Are TAS locks perfect?
= What are the two biggest issues?
= Cache coherency traffic (contending on same location with expensive atomics)

- Or -
= Critical section underutilization (waiting for backoff times will delay entry to CR)

m What would be a fix for that?

= How is this solved at airports and shops (often at least)?

= Queue locks -- Threads enqueue
= Learn from predecessor if it’s their turn
= Each threads spins at a different location
= FIFO fairness

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Array Queue Lock

= Array to implement queue
= Tail-pointer shows next free queue

position volatile int array[n] = {1,0,..,0};
= Each thread spins on own location volatile int index[n] = {90,0,..,0};
CL padding! volatile int tail = 0;

= index[] array can be put in TLS void lock() {

index[tid] = FetchAndInc(tail) % n;
= Soare we done now? while (!array[index[tid]]); // wait to receive lock
= What’s wrong? ¥
= Synchronizing M objects
requires O(NM) storage
= What do we do now?

void unlock() {

array[index[tid]] = @; // I release my lock
array[(index[tid] + 1) % n] = 1; // next one
}

spcl.inf.ethz.ch oo o
v oo ETHZUrich

CLH Lock (1993)

typedef struct gnode {
struct gnode *prev;
= List-based (same queue principle) int succ_blocked;
= Discovered twice by Craig, } gnode;
Landin, Hagersten 1993/94
gnode *1ck = new gnode; // node owned by lock

= 2N+3M words

» N threads, M locks void lock(gnode *1ck, gnode *gn) {
gn->succ_blocked = 1;
gn->prev = FetchAndSet(1lck, gn);

" Requires thread-local gnode while (gn->prev->succ_blocked);

pointer }
= Can be hidden!
void unlock(gnode **qgn) {
gnode *pred = (*gn)->prev;
(*qn)->succ_blocked = 0;
*gn = pred;

}

spcl.inf.ethz.ch oo o
v oo ETHZUrich

CLH Lock (1993)

typedef struct gnode {
struct gnode *prev;

= Qnode objects represent int succ_blocked;
thread state! } gnode;
= succ_blocked == 1 if waiting or
acquired lock gnode *1ck = new gnode; // node owned by lock

= succ_blocked == 0 if released lock

void lock(gnode *1ck, gnode *qgn) {
= Listis implicit! gn->succ_blocked = 1;
= One node per thread gn->prev = FetchAndSet(lck, qgn);
while (gn->prev->succ_blocked);

}

= Spin location changes
NUMA issues (cacheless)

void unlock(gnode **qgn) {
= Can we do better? gnode *pred = (*qn)->prev;
(*gn)->succ_blocked = 09;
*gn = pred;

}

spcl.inf.ethz.ch oo o
v oo ETHZUrich

MCS Lock (1991)

typedef struct gnode {
struct gnode *next;

= Make queue explicit int locked;

void lock(gnode **1ck, gnode *qgn) {

. Acqukjlockby gn->next = NULL; } gnode;
appending to queue * _ * .
gnode *pred = FetchAndSet(*1lck, qgn); _ .
= Spin on own node if(pred != NULL) { gnode *lck = NULL;
until locked is reset gn->locked = 1;
= Similar advantages pred->next = qn;
as CLH but while(gn->locked);

= Only 2N + M words } !
= Spinning position is fixed!
Benefits cache-less NUMA void unlock(gnode **1ck, gnode *qgn) {
= What are the issues? if(gn->next == NULL) { // if we’re the last waiter
if(CAS(*1ck, gn, NULL)) return;

= Releasing lock spins
8 P while(gn->next == NULL); // wait for pred arrival

= More atomics! }
gn->next->locked = 0; // free next waiter

gn->next = NULL;
}

Mellor-Crummey and Scott: Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors, ACM TOCS’91

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Lessons Learned!

= Key Lesson:
= Reducing memory (coherency) traffic is most important!
= Not always straight-forward (need to reason about CL states)
Remember how the coherence protocols work (can lead to better protocols!)

= MCS: 2006 Dijkstra Prize in distributed computing

= “an outstanding paper on the principles of distributed computing, whose significance and impact on the theory
and/or practice of distributed computing has been evident for at least a decade”

= “probably the most influential practical mutual exclusion algorithm ever”
= “vastly superior to all previous mutual exclusion algorithms”
= fast, fair, scalable - widely used, always compared against!

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Time to Declare Victory?

= Down to memory complexity of 2N+M
= Probably close to optimal

= Only local spinning
= Several variants with low expected contention

= But: we assumed sequential consistency ®
= Reality causes trouble sometimes
= Sprinkling memory fences may harm performance
= Open research on minimally-synching algorithms!

spcl.inf.ethz.ch oo o
v oo ETHZUrich

More Practical Optimizations

= Let’s step back to “data race”
= (recap) two operations A and B on the same memory cause a data race if one of them is a write (“conflicting access”)

and neither A>B nor B>A
= So we put conflicting accesses into a CR and lock it!
Remember: this also guarantees memory consistency in C++/Java!

= Let’s say you implement a web-based encyclopedia
= Consider the “average two accesses” — do they conflict?

B
A Number of edits (2007-11/27/2017): 921,644,695
N ,;J ﬂ Average views per day: ~200,000,000
WIKIPEDIA - 0.12% write rate

The Free Encyclopedia

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Reader-Writer Locks

= Allows multiple concurrent reads
= Multiple reader locks concurrently in CR

= Guarantees mutual exclusion between writer and writer locks and reader and writer locks
= Syntax:

= read_(un)lock()

= write_(un)lock()

49

A Simple and Fast RW Lock

= Seems efficient!?
= |sit? What’s wrong?
= Polling CAS!

= s it fair?
= Readers are preferred!

= (Can always delay
writers (again and
again and again)

spcl.inf.ethz.ch oo o
v oo ETHZUrich

const W = 1;
const R = 2;
volatile int lock=0; // LSB is writer flag!

void read lock(lock t lock) {
AtomicAdd(lock, R);
while(lock & W);

}

void write lock(lock t lock) {
while(!CAS(lock, 0, W));
}

void read unlock(lock t lock) {
AtomicAdd(lock, -R);

}

void write unlock(lock t lock) {
AtomicAdd(lock, -W);

}

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Fighting CPU waste: Condition Variables

Allow threads to yield CPU and leave the OS run queue
= Qther threads can get them back on the queue!

= cond_wait(cond, lock) — yield and go to sleep
= cond_signal(cond) — wake up sleeping threads

= Wait and signal are OS calls
= Often expensive, which one is more expensive?
Wait, because it has to perform a full context switch

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

When to Spin and When to Block?

= Spinning consumes CPU cycles but is cheap
= “Steals” CPU from other threads

= Blocking has high one-time cost and is then free
= Often hundreds of cycles (trap, save TCB ...)
= Wakeup is also expensive (latency)
Also cache-pollution

= Strategy:
= Poll for a while and then block
But what is a “while”??

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

When to Spin and When to Block?

= Optimal time depends on the future
= When will the active thread leave the CR?
= Can compute optimal offline schedule
Q: What is the optimal offline schedule (assuming we know the future, i.e., when the lock will become available)?
= Actual problem is an online problem

= Competitive algorithms
= An algorithm is c-competitive if for a sequence of actions x and a constant a holds:
C(x) < c*C,pulx) + @

= What would a good spinning algorithm look like and what is the competitiveness?

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Competitive Spinning

= |fTis the overhead to process a wait, then a locking algorithm that spins for time T before it
blocks is 2-competitive!

= Karlin, Manasse, McGeoch, Owicki: “Competitive Randomized Algorithms for Non-Uniform Problems”,
SODA 1989

= |f randomized algorithms are used, then e/(e-1)-competitiveness (~1.58) can be achieved
= See paper above!

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Remember: lock-free vs. wait-free

= A locked method
= May deadlock (methods may never finish)

= A lock-free method
= Guarantees that infinitely often some method call finishes in a finite number of steps

= A wait-free method

= Guarantees that each method call finishes in a finite number of steps (implies lock-free)

= Synchronization instructions are not equally powerful!

= |ndeed, they form an infinite hierarchy; no instruction (primitive) in level x can be used for lock-/wait-free
implementations of primitives in level z>x.

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Concept: Consensus Number

= Each level of the hierarchy has a “consensus number” assigned.
= |s the maximum number of threads for which primitives in level x can solve the consensus problem

= The consensus problem:
= Has single function: decide(v)
= Each thread calls it at most once, the function returns a value that meets two conditions:
consistency: all threads get the same value
validity: the value is some thread’s input
= Simplification: binary consensus (inputs in {0,1})

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Understanding Consensus

= Can a particular class solve n-thread consensus wait-free?

= A class Csolves n-thread consensus if there exists a consensus protocol using any number of objects of class C
and any number of atomic registers

= The protocol has to be wait-free (bounded number of steps per thread)
= The consensus number of a class C is the largest n for which that class solves n-thread consensus (may be infinite)

= Assume we have a class D whose objects can be constructed from objects out of class C. If class C has consensus
number n, what does class D have?

spcl.inf.ethz.ch
L 4 @spcl_eth

ETH-zurich

Starting simple ...

= Binary consensus with two threads (A, B)!

Each thread moves until it decides on a value

May update shared objects

Protocol state = state of threads + state of shared objects
Initial state = state before any thread moved

Final state = state after all threads finished

States form a tree, wait-free property guarantees a finite tree
Example with two threads and two moves each!

spcl.inf.ethz.ch oo o
v oo ETHZUrich

Atomic Registers
= Theorem [Herlihy’91]: Atomic registers have consensus number one
= j.e., they cannot be used to solve even two-thread consensus! Really?
= Proof outline:

= Assume arbitrary consensus protocol, thread A, B

= Run until it reaches critical state where next action determines outcome (show that it must have a critical state first)

= Show all options using atomic registers and show that they cannot be used to determine one outcome for all
possible executions!

1) Any thread reads (other thread runs solo until end)
2) Threads write to different registers (order doesn’t matter)
3) Threads write to same register (solo thread can start after each write)

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Atomic Registers

= Theorem [Herlihy’91]: Atomic registers have consensus number one

= Corollary: It is impossible to construct a wait-free implementation of any object with
consensus number of >1 using atomic registers
= “perhaps one of the most striking impossibility results in Computer Science” (Herlihy, Shavit)
= - We need hardware atomics or Transactional Memory!

= Proof technique borrowed from:

Impossibility of distributed consensus with one ... - ACM Digital Library
https://dl.acm.org/citation.cfm?id=214121

by MJ Fischer - 1985 - Cited by 4669 - Related articles
Sep 4, 2012 - Michael J. Fischer , Nancy A. Lynch |, Michael 5. Paterson, Impossibility of distributed
consensus with one faulty process, Proceedings of the ...

= Very influential paper, always worth a read!
= Nicely shows proof techniques that are central to parallel and distributed computing!

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Other Atomic Operations

= Simple RMW operations (Test&Set, Fetch&Op, Swap, basically all functions where the op
commutes or overwrites) have consensus number 2!

= Similar proof technique (bivalence argument)

= CAS and TM have consensus number oo
= Constructive proof!

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Compare and Set/Swap Consensus

const int first = -1
volatile int thread = -1;
int proposed[n];

int decide(v) {
proposed[tid] = v;
if(CAS(thread, first, tid)) “QI\T Us
return v; // I won! SENS F'
else |
return proposed[thread]; // thread won

= CAS provides an infinite consensus number
= Machines providing CAS are asynchronous computation equivalents of the Turing Machine
= |.e., any concurrent object can be implemented in a wait-free manner (not necessarily fast!)

spcl.inf.ethz.ch oo o
v oo ETH ZUrich

Now you know everything ©

= Notreally...;-)

= We'll argue more about performance now!

= But you have all the tools for:
= Efficient locks
= Efficient lock-based algorithms
= Reasoning about parallelism!

= What now?
= Now you understand practice and will appreciate theory
Wasn’t that all too messy ©?
= Focus on (parallel) performance, techniques, and algorithms

