
spcl.inf.ethz.ch

@spcl_eth

M. PUESCHEL, T. BEN-NUN

Lecture 6: Fast practical locks, lock-free, consensus, and scalable locks

spcl.inf.ethz.ch

@spcl_eth

▪ Memory models in practical parallel programming
▪ Synchronized programming

▪ How locks synchronize processes and memory!

How to code in C++ and Java

▪ Proving program correctness
▪ Pre-/postconditions – sequential

▪ Lifting to parallel

How to prove locked programs correct (nearly trivial)

▪ Lock implementation
▪ Proof of correctness (using read/write histories, program and visibility orders)

With x86 memory model!

▪ Peterson lock

▪ Lock performance

Simple x86 – how much does memory model correctness cost?

2

Review of last lecture

spcl.inf.ethz.ch

@spcl_eth

▪ Two-Thread Locks

▪ First “Lock”

▪ LockOne

▪ LockTwo

▪ Peterson Lock

▪ N-Thread Locks

▪ Lamport’s Bakery Algorithm

3

Recap: Spin-Locks volatile int flag=0;

void lock() {
while(flag);
flag = 1;

}

void unlock() {
flag = 0;

}

No mutual exclusion ✓ Mutual exclusion
× Deadlock if two

attempts overlap

volatile int flag[2];

void lock() {
int j = 1 - tid;
flag[tid] = true;
while (flag[j]) {} // wait

}

void unlock() {
flag[tid] = false;

}

volatile int victim;

void lock() {
victim = tid; // grant access
while (victim == tid) {} // wait

}

void unlock() {}

✓ Mutual exclusion
× Deadlock if two

attempts do not overlap

volatile int flag[n] = {0,0,…,0};
volatile int label[n] = {0,0,….,0};

void lock() {
flag[tid] = 1; // request
label[tid] = max(label[0], ...,label[n-1]) + 1; // take ticket
while ((∃k != tid)(flag[k] && (label[k],k) <* (label[tid],tid))) {};

}
public void unlock() {
flag[tid] = 0;

}

spcl.inf.ethz.ch

@spcl_eth

5

DPHPC Overview

spcl.inf.ethz.ch

@spcl_eth

▪ Scientific Benchmarking

▪ Fast and scalable practical locks!

▪ Based on atomic operations

▪ Why do we need atomic operations?

▪ Recap lock-free and wait-free programming

▪ Proof that wait-free consensus is impossible without atomics

Valence argument: a proof technique similar to showing that atomics are needed for locks

▪ Locks in practical setting

▪ How to block?

▪ When to block?

▪ How long to block?

Simple proof of competitiveness

6

Goals of this lecture

spcl.inf.ethz.ch

@spcl_eth

7

Interlude: Scientific integrity – or how to report benchmark results?

1991 – the classic!

2012 – the shocking

2013 – the extension

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch

@spcl_eth

8

Scientific Benchmarking: Pitfalls of Relative Performance Reporting (Rule 1)

▪ Most common (and oldest) problem with reporting

▪ First seen 1988 – also included in Bailey’s 12 ways

▪ Speedups can look arbitrarily good if it’s relative to a bad
baseline

▪ Imagine an unoptimized vs. parallel matrix multiplication:

My parallel MM is 10x faster than the unoptimized!

What does this mean?

▪ Class question: how could we improve the situation?

▪ Recently rediscovered in the “big data” universe

A. Rowstron et al.: Nobody ever got fired for using Hadoop on a cluster, HotCDP 2012

F. McSherry et al.: Scalability! but at what cost?, HotOS 2015Both plots show speedups calculated from the same data.

The only difference is the baseline.

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch

@spcl_eth

▪ Most common (and oldest) problem with reporting

▪ First seen 1988 – also included in Bailey’s 12 ways

▪ Speedups can look arbitrarily good if it’s relative to a bad
baseline

▪ Imagine an unoptimized vs. optimized matrix multiplication:

The optimized MM is 10x faster than the unoptimized!

What does this mean?

▪ Class question: how could we improve the situation?

▪ Recently rediscovered in the “big data” universe

A. Rowstron et al.: Nobody ever got fired for using Hadoop on a cluster, HotCDP 2012

F. McSherry et al.: Scalability! but at what cost?, HotOS 2015

9

Scientific Benchmarking: Pitfalls of Relative Performance Reporting (Rule 1)

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC18

Rule 1: When publishing parallel speedup, report if the base
case is a single parallel process or best serial execution, as well as

the absolute execution performance of the base case.

▪ A simple generalization of this rule implies that one should never report ratios without
absolute values.

spcl.inf.ethz.ch

@spcl_eth

10

Based on the presented data, one may
conclude that using -O3 is always a good idea.

The incompleteness of data may lead to wrong conclusions.
Sometimes -O3 may not be a good idea for a code: e.g., vectorization

(enabled by -O3) may segfault on a loop which does unaligned memory
access on some x86. But this is not demonstrated by the presented dataset.

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

Scientific Benchmarking: Benchmark Selection (Rule 2)

The presented data set contains only a subset
of the Mantevo benchmark suite.

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch

@spcl_eth

11

Based on the presented data, one may
conclude that using -O3 is always a good idea.

The incompleteness of data may lead to wrong conclusions.
Sometimes -O3 may not be a good idea for a code: e.g., vectorization

(enabled by -O3) may segfault on a loop which does unaligned memory
access on some x86. But this is not demonstrated by the presented dataset.

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

Scientific Benchmarking: Benchmark Selection (Rule 2)

The presented data set contains only a subset
of the Mantevo benchmark suite.

Rule 2: Specify the reason for only reporting subsets of standard
benchmarks or applications or not using all system resources.

▪ This implies: Show results even if your code/approach stops scaling!

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch

@spcl_eth

12

Scientific Benchmarking: The fallacies of summarizing (Rules 3+4)

System A System B

Testcase I II III I II III

Floating-point operations [Gflop] 10,0 15,0 20,0 10,0 15,0 20,0

Time [seconds] 2,0 1,3 0,7 1,1 1,3 2,0

Flop Rate [Gflop/s] 5,0 11,5 28,6 9,1 11,5 10,0

Arithmetic Mean of Flop Rates [Gflop/s] 15,0 10,2

Harmonic Mean of Flop Rates [Gflop/s] 9,3 10,1

Flop Rate by Dividing Totals [Gflop/s] 11,3 10,2

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch

@spcl_eth

13TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

RULE 3 and 4

System A System B

Testcase I II III I II III

Floating-point operations [Gflop] 10,0 15,0 20,0 10,0 15,0 20,0

Time [seconds] 2,0 1,3 0,7 1,1 1,3 2,0

Flop Rate [Gflop/s] 5,0 11,5 28,6 9,1 11,5 10,0

Arithmetic Mean of Flop Rates [Gflop/s] 15,0 10,2

Harmonic Mean of Flop Rates [Gflop/s] 9,3 10,1

Flop Rate by Dividing Totals [Gflop/s] 11,3 10,2

Rule 3: Use the arithmetic mean only for summarizing costs.
Use the harmonic mean for summarizing rates.

Rule 4: Avoid summarizing ratios (e.g., speedup); summarize the
costs or rates that the ratios base on instead. Only if these are not

available use the geometric mean for summarizing ratios.

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch

@spcl_eth

14

Nondeterminism in [most] performance measurements!

const int n=1000;
volatile int a=0;
for (int i=0; i<n; ++i)
a++;

Same code executed 1000 times.
Two metrics measured each time.

One is amazingly stable. The other—not at all!

How do we report measurements
showing high variation?

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch

@spcl_eth

15

The latency of
Piz Dora is

1.77us!

How did you
get to this?

I averaged 106

tests, it must be
right!

u
se

c

sample

Why do you think
so? Can I see the

data?

The simplest networking question: ping pong latency!

Rule 5: Report if the measurement values are deterministic. For
nondeterministic data, report confidence intervals of the

measurement.

▪ CIs allow us to compute the number of required measurements!

▪ Can be very simple, e.g., single sentence in evaluation:

“We collected measurements until the 99% confidence interval was within 5% of our reported means.”

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

Thou shalt not trust your average textbook!

16

The confidence
interval is 1.765us to

1.775us

Did you assume
normality?

Yes, I used the central
limit theorem to

normalize by summing
subsets of size 100!

Can we test for
normality?

Ugs, the data is not
normal at all! The real CI
is actually 1.6us to 1.9us!

Rule 6: Do not assume normality of collected data (e.g., based on
the number of samples) without diagnostic checking.

▪ Most events will slow down performance

▪ Heavy right-tailed distributions

▪ The Central Limit Theorem only applies asymptotically

▪ Some papers/textbook mention “30-40 samples”, don’t trust them!

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

17

Thou shalt not trust your system!
Look what
data I got!

Clearly, the
mean/median are

not sufficient!

Try quantile
regression!

Image credit: nersc.gov

S

D

spcl.inf.ethz.ch

@spcl_eth

Quantile Regression

18

Wow, so Pilatus is better for (worst-case)
latency-critical workloads even though

Dora is expected to be faster

Rule 8: Carefully investigate if measures of central tendency
such as mean or median are useful to report. Some problems,

such as worst-case latency, may require other percentiles.

▪ Check Oliveira et al. “Why you should care about quantile regression”. SIGARCH Computer
Architecture News, 2013.

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

▪ Measurements can be expensive!

▪ Yet necessary to reach certain confidence

▪ How to determine the minimal number of measurements?

▪ Measure until the confidence interval has a certain acceptable width

▪ For example, measure until the 95% CI is within 5% of the mean/median

▪ Can be computed analytically assuming normal data

▪ Compute iteratively for nonparametric statistics

▪ Often heard: “we cannot afford more than a single measurement”

▪ E.g., Gordon Bell runs

▪ Well, then one cannot say anything about the variance

Even 3-4 measurement can provide very tight CI (assuming normality)

Can also exploit repetitive nature of many applications

19

How many measurements are needed?

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

20

Experimental design

MPI_Reduce
behaves much

simpler!

I don’t believe you, try
other numbers of

processes!

Rule 9: Document all varying factors and their levels as well as the
complete experimental setup (e.g., software, hardware, techniques)

to facilitate reproducibility and provide interpretability.

▪ We recommend factorial design

▪ Consider parameters such as node allocation, process-to-node mapping, network or node contention

▪ If they cannot be controlled easily, use randomization and model them as random variable

▪ This is hard in practice and not easy to capture in rules

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

21

Time in parallel systems

My simple
broadcast takes

only one latency!

That’s nonsense!

But I measured it
so it must be true!

t = -MPI_Wtime();
for(i=0; i<1000; i++) {

MPI_Bcast(…);
}
t += MPI_Wtime();
t /= 1000;

…
Measure each

operation
separately!

spcl.inf.ethz.ch

@spcl_eth

22

Summarizing times in parallel systems!

My new reduce
takes only 30us

on 64 ranks.

Come on, show me
the data!

Rule 10: For parallel time measurements, report all measurement,
(optional) synchronization, and summarization techniques.

▪ Measure events separately

▪ Use high-precision timers

▪ Synchronize processes

▪ Summarize across processes:

▪ Min/max (unstable), average, median – depends on use-case

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

23

Give times a meaning!

I compute 1010

digits of Pi in 2ms
on Dora!

I have no clue.

Can you provide?
- Ideal speedup
- Amdahl’s speedup
- Parallel overheads

Ok: The code runs
17ms on a single
core, 0.2ms are

initialization and it
has one reduction!

Rule 11: If possible, show upper performance bounds to facilitate
interpretability of the measured results.

▪ Model computer system as k-dimensional space

▪ Each dimension represents a capability

Floating point, Integer, memory bandwidth, cache bandwidth, etc.

▪ Features are typical rates

▪ Determine maximum rate for each dimension

E.g., from documentation or benchmarks

▪ Can be used to prove optimality of implementation

▪ If the requirements of the bottleneck dimension are minimal

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

My most common
request was “show

me the data”

24

Plot as much information as possible!

This is how I should
have presented the

Dora results.

Rule 12: Plot as much information as needed to interpret the
experimental results. Only connect measurements by lines if they

indicate trends and the interpolation is valid.

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

▪ Implement and run our little counter on x86

▪ Many iterations

▪ 1.6 ∙ 10-6% errors

▪ What is the
problem?

25

Back to Peterson in Practice … on x86

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1; // I’m interested
victim = tid; // other goes first
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = 0; // I’m not interested

}

spcl.inf.ethz.ch

@spcl_eth

▪ Implement and run our little counter on x86

▪ Many iterations

▪ 1.6 ∙ 10-6% errors

▪ What is the
problem?

No sequential
consistency
for W(v) and

R(flag[j])

26

Peterson in Practice … on x86

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1; // I’m interested
victim = tid; // other goes first
asm(“mfence”);
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = 0; // I’m not interested

}

spcl.inf.ethz.ch

@spcl_eth

▪ Implement and run our little counter on x86

▪ Many iterations

▪ 1.6 ∙ 10-6% errors

▪ What is the
problem?

No sequential
consistency
for W(v) and

R(flag[j])

▪ Still 1.3 ∙ 10-6%

Why?

27

Peterson in Practice … on x86

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1; // I’m interested
victim = tid; // other goes first
asm(“mfence”);
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = 0; // I’m not interested

}

spcl.inf.ethz.ch

@spcl_eth

▪ Implement and run our little counter on x86

▪ Many iterations

▪ 1.6 ∙ 10-6% errors

▪ What is the
problem?

No sequential
consistency
for W(v) and

R(flag[j])

▪ Still 1.3 ∙ 10-6%

Why?

Reads may slip into CR!

28

Peterson in Practice … on x86

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1; // I’m interested
victim = tid; // other goes first
asm(“mfence”);
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
asm(“mfence”);
flag[tid] = 0; // I’m not interested

}

The compiler may inline
this function ☺

spcl.inf.ethz.ch

@spcl_eth

▪ Unoptimized (naïve sprinkling of mfences)

▪ Performance:

▪ No mfence

375ns

▪ mfence in lock

379ns

▪ mfence in unlock

404ns

▪ Two mfence

427ns (+14%)

29

Correct Peterson Lock on x86

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1; // I’m interested
victim = tid; // other goes first
asm(“mfence”);
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
asm(“mfence”);
flag[tid] = 0; // I’m not interested

}

spcl.inf.ethz.ch

@spcl_eth

▪ Hardware atomic operations:

▪ Test&Set

Write const to memory while returning the old value

▪ Atomic swap

Atomically exchange memory and register

▪ Fetch&Op

Get value and apply operation to memory location

▪ Compare&Swap

Compare two values and swap memory with register if
equal

▪ Load-linked/Store-Conditional LL/SC (or load-acquire
(LDA) store-release (STL) on ARM)

Loads value from memory, allows operations, commits
only if no other updates committed →mini-TM

▪ Intel TSX (transactional synchronization extensions)

Hardware-TM (roll your own atomic operations)

30

Hardware Support? bool TestAndSet (bool *flag) {
bool old = *flag;
*flag = true;
return old;

} // all atomic!

movl $1, %eax
xchg %eax, (%ebx)

__global__ void Sum (float *in, float *out, int N) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
float previous_value = atomicAdd(out, in[tid]);
// do something with previous_value

}

movl $1, %eax
xacquire lock xchg %eax, (%ebx)
...
xrelease movl $0, (%ebx)

bool CompareAndSwap (T *value, T old, T new) {
if (*value != old) return false;
*value = new;
return true;

} // all atomic!

spcl.inf.ethz.ch

@spcl_eth

▪ Design-Problem I: Multi-core Processor

▪ Which atomic operations are useful?

▪ Design-Problem II: Complex Application

▪ What atomic should I use?

▪ Generally hard to answer 

▪ Depends on too many system and application details (access patterns, CC implementation, contention, algorithm …)

▪ Concept of “consensus number” C: if a primitive can be used to solve the “consensus problem” in a finite
number of steps (even if threads stop)

▪ atomic registers have C=1 (thus locks have C=1!)

▪ TAS, Swap, Fetch&Op have C=2

▪ CAS, LL/SC, TM have C=∞

31

Relative Power of Synchronization

spcl.inf.ethz.ch

@spcl_eth

▪ Test-and-Set semantics

▪ Memoize old value

▪ Set fixed value TASval (true)

▪ Return old value

▪ After execution:

▪ Post-condition is a fixed (constant) value!

32

Test-and-Set Locks

bool TestAndSet (bool *flag) {
bool old = *flag;
*flag = true;
return old;

} // all atomic!

spcl.inf.ethz.ch

@spcl_eth

▪ Assume TASval indicates “locked”

▪ Write something else to indicate “unlocked”

▪ TAS until return value is != TASval (1 in this example)

▪ Questions:

▪ When will the lock be granted?

▪ Does this work well in practice?

Is spinning in lock (TAS) a good idea?

33

Test-and-Set Locks

volatile int lck = 0;

void lock() {
while (TestAndSet(&lck) == 1);

}

void unlock() {
lck = 0;

}

bool TestAndSet (bool *flag) {
bool old = *flag;
*flag = true;
return old;

} // all atomic!

spcl.inf.ethz.ch

@spcl_eth

▪ On x86, the XCHG instruction is used to implement TAS

▪ x86 lock is implicit in xchg!

▪ Cacheline is read and written

▪ Ends up in exclusive state, invalidates other copies

▪ Cacheline is “thrown” around uselessly

▪ High load on memory subsystem

x86 lock is essentially a full memory barrier 

34

Cacheline contention (or: MESI and friends return)

movl $1, %eax
xchg %eax, (%ebx)

spcl.inf.ethz.ch

@spcl_eth

▪ Spinning in TAS is not a good idea

▪ Spin on cache line in shared state

▪ All threads at the same time, no cache coherency/memory traffic

▪ Danger!

▪ Efficient but use with great care!

▪ Generalizations are very dangerous

35

Test-and-Test-and-Set (TATAS) Locks

volatile int lck = 0;

void lock() {
do {

while (lck == 1);
} while (TestAndSet(&lck) == 1);

}

void unlock() {
lck = 0;

}

spcl.inf.ethz.ch

@spcl_eth

▪ Example: Double-Checked Locking

36

Warning: Even experts get it wrong!

Problem: Memory ordering leads to race-conditions!

1997

2019

spcl.inf.ethz.ch

@spcl_eth

▪ Do TATAS locks still have contention?

▪ When lock is released, k threads fight for
cache line ownership

▪ One gets the lock, all get the CL exclusively (serially!)

▪ What would be a good solution?

think “collision avoidance”

37

Contention?

volatile int lck = 0;

void lock() {
do {
while (lck == 1);

} while (TestAndSet(&lck) == 1);
}

void unlock() {
lck = 0;

}

spcl.inf.ethz.ch

@spcl_eth

▪ Exponential backoff eliminates contention statistically

▪ Locks granted in unpredictable order

▪ Starvation possible but unlikely

How can we make it even less likely?

38

TAS Lock with Exponential Backoff

volatile int lck = 0;

void lock() {
while (TestAndSet(&lck) == 1) {
wait(time);
time *= 2; // double waiting time

}
}

void unlock() {
lck = 0;

}

Similar to: T. Anderson: “The performance of spin lock alternatives for shared-memory multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990

spcl.inf.ethz.ch

@spcl_eth

▪ Exponential backoff eliminates contention statistically

▪ Locks granted in unpredictable order

▪ Starvation possible but unlikely

Maximum waiting time makes it less likely

39

TAS Lock with Exponential Backoff

volatile int lck = 0;
const int maxtime=1000;

void lock() {
while (TestAndSet(&lck) == 1) {
wait(time);
time = min(time * 2, maxtime);

}
}

void unlock() {
lck = 0;

}

Similar to: T. Anderson: “The performance of spin lock alternatives for shared-memory multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990

spcl.inf.ethz.ch

@spcl_eth

40

Performance of our locks compared

spcl.inf.ethz.ch

@spcl_eth

▪ Are TAS locks perfect?

▪ What are the two biggest issues?

▪ Cache coherency traffic (contending on same location with expensive atomics)

-- or --

▪ Critical section underutilization (waiting for backoff times will delay entry to CR)

▪ What would be a fix for that?

▪ How is this solved at airports and shops (often at least)?

▪ Queue locks -- Threads enqueue

▪ Learn from predecessor if it’s their turn

▪ Each threads spins at a different location

▪ FIFO fairness

41

Improvements?

spcl.inf.ethz.ch

@spcl_eth

▪ Array to implement queue

▪ Tail-pointer shows next free queue
position

▪ Each thread spins on own location

CL padding!

▪ index[] array can be put in TLS

▪ So are we done now?

▪ What’s wrong?

▪ Synchronizing M objects
requires Θ(NM) storage

▪ What do we do now?

42

Array Queue Lock

volatile int array[n] = {1,0,…,0};
volatile int index[n] = {0,0,…,0};
volatile int tail = 0;

void lock() {
index[tid] = FetchAndInc(tail) % n;
while (!array[index[tid]]); // wait to receive lock
}

void unlock() {
array[index[tid]] = 0; // I release my lock
array[(index[tid] + 1) % n] = 1; // next one
}

spcl.inf.ethz.ch

@spcl_eth

▪ List-based (same queue principle)

▪ Discovered twice by Craig,
Landin, Hagersten 1993/94

▪ 2N+3M words

▪ N threads, M locks

▪ Requires thread-local qnode
pointer

▪ Can be hidden!

43

CLH Lock (1993)

void lock(qnode *lck, qnode *qn) {
qn->succ_blocked = 1;
qn->prev = FetchAndSet(lck, qn);
while (qn->prev->succ_blocked);

}

void unlock(qnode **qn) {
qnode *pred = (*qn)->prev;
(*qn)->succ_blocked = 0;
*qn = pred;

}

typedef struct qnode {
struct qnode *prev;
int succ_blocked;

} qnode;

qnode *lck = new qnode; // node owned by lock

spcl.inf.ethz.ch

@spcl_eth

▪ Qnode objects represent
thread state!

▪ succ_blocked == 1 if waiting or
acquired lock

▪ succ_blocked == 0 if released lock

▪ List is implicit!

▪ One node per thread

▪ Spin location changes

NUMA issues (cacheless)

▪ Can we do better?

44

CLH Lock (1993)

void lock(qnode *lck, qnode *qn) {
qn->succ_blocked = 1;
qn->prev = FetchAndSet(lck, qn);
while (qn->prev->succ_blocked);

}

void unlock(qnode **qn) {
qnode *pred = (*qn)->prev;
(*qn)->succ_blocked = 0;
*qn = pred;

}

typedef struct qnode {
struct qnode *prev;
int succ_blocked;

} qnode;

qnode *lck = new qnode; // node owned by lock

spcl.inf.ethz.ch

@spcl_eth

▪ Make queue explicit

▪ Acquire lock by
appending to queue

▪ Spin on own node
until locked is reset

▪ Similar advantages
as CLH but

▪ Only 2N + M words

▪ Spinning position is fixed!

Benefits cache-less NUMA

▪ What are the issues?

▪ Releasing lock spins

▪ More atomics!

45

MCS Lock (1991)

void lock(qnode **lck, qnode *qn) {
qn->next = NULL;
qnode *pred = FetchAndSet(*lck, qn);
if(pred != NULL) {
qn->locked = 1;
pred->next = qn;
while(qn->locked);

}
}

void unlock(qnode **lck, qnode *qn) {
if(qn->next == NULL) { // if we’re the last waiter
if(CAS(*lck, qn, NULL)) return;
while(qn->next == NULL); // wait for pred arrival

}
qn->next->locked = 0; // free next waiter
qn->next = NULL;

}

typedef struct qnode {
struct qnode *next;
int locked;

} qnode;

qnode *lck = NULL;

Mellor-Crummey and Scott: Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors, ACM TOCS’91

spcl.inf.ethz.ch

@spcl_eth

▪ Key Lesson:

▪ Reducing memory (coherency) traffic is most important!

▪ Not always straight-forward (need to reason about CL states)

Remember how the coherence protocols work (can lead to better protocols!)

▪ MCS: 2006 Dijkstra Prize in distributed computing

▪ “an outstanding paper on the principles of distributed computing, whose significance and impact on the theory
and/or practice of distributed computing has been evident for at least a decade”

▪ “probably the most influential practical mutual exclusion algorithm ever”

▪ “vastly superior to all previous mutual exclusion algorithms”

▪ fast, fair, scalable → widely used, always compared against!

46

Lessons Learned!

spcl.inf.ethz.ch

@spcl_eth

▪ Down to memory complexity of 2N+M

▪ Probably close to optimal

▪ Only local spinning

▪ Several variants with low expected contention

▪ But: we assumed sequential consistency 

▪ Reality causes trouble sometimes

▪ Sprinkling memory fences may harm performance

▪ Open research on minimally-synching algorithms!

47

Time to Declare Victory?

spcl.inf.ethz.ch

@spcl_eth

▪ Let’s step back to “data race”

▪ (recap) two operations A and B on the same memory cause a data race if one of them is a write (“conflicting access”)
and neither A→B nor B→A

▪ So we put conflicting accesses into a CR and lock it!

Remember: this also guarantees memory consistency in C++/Java!

▪ Let’s say you implement a web-based encyclopedia

▪ Consider the “average two accesses” – do they conflict?

48

More Practical Optimizations

Number of edits (2007-11/27/2017): 921,644,695
Average views per day: ~200,000,000

→ 0.12% write rate

spcl.inf.ethz.ch

@spcl_eth

▪ Allows multiple concurrent reads

▪ Multiple reader locks concurrently in CR

▪ Guarantees mutual exclusion between writer and writer locks and reader and writer locks

▪ Syntax:

▪ read_(un)lock()

▪ write_(un)lock()

49

Reader-Writer Locks

spcl.inf.ethz.ch

@spcl_eth

▪ Seems efficient!?

▪ Is it? What’s wrong?

▪ Polling CAS!

▪ Is it fair?

▪ Readers are preferred!

▪ Can always delay
writers (again and
again and again)

50

A Simple and Fast RW Lock const W = 1;
const R = 2;
volatile int lock=0; // LSB is writer flag!

void read_lock(lock_t lock) {
AtomicAdd(lock, R);
while(lock & W);

}

void write_lock(lock_t lock) {
while(!CAS(lock, 0, W));

}

void read_unlock(lock_t lock) {
AtomicAdd(lock, -R);

}

void write_unlock(lock_t lock) {
AtomicAdd(lock, -W);

}

spcl.inf.ethz.ch

@spcl_eth

▪ Allow threads to yield CPU and leave the OS run queue

▪ Other threads can get them back on the queue!

▪ cond_wait(cond, lock) – yield and go to sleep

▪ cond_signal(cond) – wake up sleeping threads

▪ Wait and signal are OS calls

▪ Often expensive, which one is more expensive?

Wait, because it has to perform a full context switch

51

Fighting CPU waste: Condition Variables

spcl.inf.ethz.ch

@spcl_eth

▪ Spinning consumes CPU cycles but is cheap

▪ “Steals” CPU from other threads

▪ Blocking has high one-time cost and is then free

▪ Often hundreds of cycles (trap, save TCB …)

▪ Wakeup is also expensive (latency)

Also cache-pollution

▪ Strategy:

▪ Poll for a while and then block

But what is a “while”??

52

When to Spin and When to Block?

spcl.inf.ethz.ch

@spcl_eth

▪ Optimal time depends on the future

▪ When will the active thread leave the CR?

▪ Can compute optimal offline schedule

Q: What is the optimal offline schedule (assuming we know the future, i.e., when the lock will become available)?

▪ Actual problem is an online problem

▪ Competitive algorithms

▪ An algorithm is c-competitive if for a sequence of actions x and a constant a holds:

C(x) ≤ c*Copt(x) + a

▪ What would a good spinning algorithm look like and what is the competitiveness?

53

When to Spin and When to Block?

spcl.inf.ethz.ch

@spcl_eth

▪ If T is the overhead to process a wait, then a locking algorithm that spins for time T before it
blocks is 2-competitive!

▪ Karlin, Manasse, McGeoch, Owicki: “Competitive Randomized Algorithms for Non-Uniform Problems”,
SODA 1989

▪ If randomized algorithms are used, then e/(e-1)-competitiveness (~1.58) can be achieved

▪ See paper above!

54

Competitive Spinning

spcl.inf.ethz.ch

@spcl_eth

▪ A locked method

▪ May deadlock (methods may never finish)

▪ A lock-free method

▪ Guarantees that infinitely often some method call finishes in a finite number of steps

▪ A wait-free method

▪ Guarantees that each method call finishes in a finite number of steps (implies lock-free)

▪ Synchronization instructions are not equally powerful!

▪ Indeed, they form an infinite hierarchy; no instruction (primitive) in level x can be used for lock-/wait-free
implementations of primitives in level z>x.

55

Remember: lock-free vs. wait-free

spcl.inf.ethz.ch

@spcl_eth

▪ Each level of the hierarchy has a “consensus number” assigned.

▪ Is the maximum number of threads for which primitives in level x can solve the consensus problem

▪ The consensus problem:

▪ Has single function: decide(v)

▪ Each thread calls it at most once, the function returns a value that meets two conditions:

consistency: all threads get the same value

validity: the value is some thread’s input

▪ Simplification: binary consensus (inputs in {0,1})

56

Concept: Consensus Number

spcl.inf.ethz.ch

@spcl_eth

▪ Can a particular class solve n-thread consensus wait-free?

▪ A class C solves n-thread consensus if there exists a consensus protocol using any number of objects of class C
and any number of atomic registers

▪ The protocol has to be wait-free (bounded number of steps per thread)

▪ The consensus number of a class C is the largest n for which that class solves n-thread consensus (may be infinite)

▪ Assume we have a class D whose objects can be constructed from objects out of class C. If class C has consensus
number n, what does class D have?

57

Understanding Consensus

spcl.inf.ethz.ch

@spcl_eth

▪ Binary consensus with two threads (A, B)!

▪ Each thread moves until it decides on a value

▪ May update shared objects

▪ Protocol state = state of threads + state of shared objects

▪ Initial state = state before any thread moved

▪ Final state = state after all threads finished

▪ States form a tree, wait-free property guarantees a finite tree

Example with two threads and two moves each!

58

Starting simple …

spcl.inf.ethz.ch

@spcl_eth

▪ Theorem [Herlihy’91]: Atomic registers have consensus number one

▪ i.e., they cannot be used to solve even two-thread consensus! Really?

▪ Proof outline:

▪ Assume arbitrary consensus protocol, thread A, B

▪ Run until it reaches critical state where next action determines outcome (show that it must have a critical state first)

▪ Show all options using atomic registers and show that they cannot be used to determine one outcome for all
possible executions!

1) Any thread reads (other thread runs solo until end)

2) Threads write to different registers (order doesn’t matter)

3) Threads write to same register (solo thread can start after each write)

59

Atomic Registers

spcl.inf.ethz.ch

@spcl_eth

▪ Theorem [Herlihy’91]: Atomic registers have consensus number one

▪ Corollary: It is impossible to construct a wait-free implementation of any object with
consensus number of >1 using atomic registers

▪ “perhaps one of the most striking impossibility results in Computer Science” (Herlihy, Shavit)

▪ →We need hardware atomics or Transactional Memory!

▪ Proof technique borrowed from:

▪ Very influential paper, always worth a read!

▪ Nicely shows proof techniques that are central to parallel and distributed computing!

60

Atomic Registers

spcl.inf.ethz.ch

@spcl_eth

▪ Simple RMW operations (Test&Set, Fetch&Op, Swap, basically all functions where the op
commutes or overwrites) have consensus number 2!

▪ Similar proof technique (bivalence argument)

▪ CAS and TM have consensus number ∞

▪ Constructive proof!

61

Other Atomic Operations

spcl.inf.ethz.ch

@spcl_eth

▪ CAS provides an infinite consensus number

▪ Machines providing CAS are asynchronous computation equivalents of the Turing Machine

▪ I.e., any concurrent object can be implemented in a wait-free manner (not necessarily fast!)

62

Compare and Set/Swap Consensus

const int first = -1
volatile int thread = -1;
int proposed[n];

int decide(v) {
proposed[tid] = v;
if(CAS(thread, first, tid))
return v; // I won!

else
return proposed[thread]; // thread won

}

spcl.inf.ethz.ch

@spcl_eth

▪ Not really … ;-)

▪ We’ll argue more about performance now!

▪ But you have all the tools for:

▪ Efficient locks

▪ Efficient lock-based algorithms

▪ Reasoning about parallelism!

▪ What now?

▪ Now you understand practice and will appreciate theory

Wasn’t that all too messy ☺?

▪ Focus on (parallel) performance, techniques, and algorithms

63

Now you know everything ☺

