
spcl.inf.ethz.ch

@spcl_eth

M. PUESCHEL, T. BEN-NUN

Lecture 5: Languages and Locks

spcl.inf.ethz.ch

@spcl_eth

▪ Massively parallel

▪ 84x256 ALUs

▪ Composed of SMs

▪ Separate L1/scratch-pad caches

▪ CUDA programming model

▪ Create as many threads as there are data

▪ Execution follows SIMT

▪ 32-thread lock-step

2

GPUs: Recap

spcl.inf.ethz.ch

@spcl_eth

▪ Directive-based programming

▪ Implicitly wrap for loops

▪ Advantages:

Code can run without #pragmas

Loop construct clearer than kernel

▪ Portable across platforms

▪ …but has to be tuned for each platform separately

▪ Directives nest into each other for increased control

▪ Disadvantage: It’s possible to have more #pragmas than code

3

High-Level Languages: OpenMP and OpenACC

Source: Gayatri and Yang, Optimizing Large Reductions in BerkeleyGW on GPUs Using
OpenMP and OpenACC

spcl.inf.ethz.ch

@spcl_eth

4

Scratch-pad (shared) memory

spcl.inf.ethz.ch

@spcl_eth

5

Matrix Multiplication with Shared Memory

__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C) {
int blockRow = blockIdx.y; int blockCol = blockIdx.x;
Matrix Csub = GetSubMatrix(C, blockRow, blockCol);
float Cvalue = 0;
int row = threadIdx.y; int col = threadIdx.x;

for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) {
Matrix Asub = GetSubMatrix(A, blockRow, m);
Matrix Bsub = GetSubMatrix(B, m, blockCol);
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
As[row][col] = Asub.data[row][col];
Bs[row][col] = Bsub.data[row][col];

__syncthreads();

for (int e = 0; e < BLOCK_SIZE; ++e)
Cvalue += As[row][e] * Bs[e][col];

__syncthreads();
}
Csub.data[row][col] = Cvalue;

}

Figures and code courtesy of nvidia.com

http://www.nvidia.com/

spcl.inf.ethz.ch

@spcl_eth

▪ Across warps – No need

▪ Across thread-blocks – __syncthreads()

▪ Across grid

▪ Simplest solution: Queue another kernel

▪ Less simple: Grid barriers

▪ Across GPU (multiple streams), multiple GPUs

▪ Paired synchronization (event + stream-wait-event)

▪ Between host and GPU

▪ cuda{Stream,Event,Device}Synchronize()

▪ cudaMemcpy() – Not async (also not recommended).

6

GPU Synchronization

CPU 1 CPU 2

RAM RAM

PCI-Express Switch

FSB Lanes FSB Lanes

Dual Board

Tesla

Dual Board

Tesla

P2P

GPU 1 GPU 2 GPU 3 GPU 4

Dual Board

Tesla

Dual Board

Tesla

P2P

GPU 5 GPU 6 GPU 7 GPU 8

spcl.inf.ethz.ch

@spcl_eth

▪ How do we define a memory model for GPUs?

▪ Things to remember: Different memory spaces, logical thread hierarchy,
SMs, cache model

▪ Can GPUs guarantee SC? Should they?

▪ Open research question: Can we port the benefits of GPU fast
thread-switching to CPUs?

7

Class Discussion

spcl.inf.ethz.ch

@spcl_eth

▪ Memory models

▪ Ordering between accesses to different variables

▪ Sequential consistency – nice but unrealistic

Demonstrate how it prevents compiler and architectural optimizations

▪ Practical memory models

▪ Overview of various models (TSO, PSO, RMO, … existing CPUs)

▪ Case study of x86 (8 principles, TLO + CC)

▪ Case study of NVIDIA GPUs (continuing today)

8

Review of last lecture

spcl.inf.ethz.ch

@spcl_eth

9

DPHPC Overview

spcl.inf.ethz.ch

@spcl_eth

▪ Recap: Correctness in parallel programs

▪ Covered in PP, here a slimmed down version to make the DPHPC lecture self-contained

Watch for the green bar on the right side

▪ Languages and Memory Models

▪ Java/C++ definition

▪ Races (now in practice)

▪ Synchronization variables (now in practice)

▪ Mutual exclusion

▪ Recap – simple lock properties

▪ Proving correctness in SC and memory models (x86)

▪ Locks in practice – performance overhead of memory models!

10

Goals of this lecture

spcl.inf.ethz.ch

@spcl_eth

▪ We discussed so far:

▪ Read/write of the same location

Cache coherence (write serialization and atomicity)

▪ Read/write of multiple locations

Memory models (visibility order of updates by cores)

▪ Now one level up: objects (variables/fields with invariants defined on them)

▪ Invariants “tie” variables together

▪ Sequential objects

▪ Concurrent objects

11

Notions of Correctness

spcl.inf.ethz.ch

@spcl_eth

▪ Each object has a type

▪ A type is defined by a class

▪ Set of fields forms the state of an object

▪ Set of methods (or free functions) to manipulate the state

▪ Remark

▪ An Interface is an abstract type that defines behavior

A class implementing an interface defines several types

12

Sequential Objects

spcl.inf.ethz.ch

@spcl_eth

Running Example: FIFO Queue

▪ Insert elements at tail

▪ Remove elements from head

▪ Initial: head = tail = 0

▪ enq(x)

▪ enq(y)

▪ deq() [x]

▪ …

13

head tail

0

2

1

5 4

3

yx

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

14

Sequential Queue

class Queue {
private:
int head, tail;
std::vector<Item> items;

public:
Queue(int capacity) {
head = tail = 0;
items.resize(capacity);

}

// ...

};

head tail

0

2

1

5 4

3

yx

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

15

Sequential Queue

class Queue {
// ...

public:
void enq(Item x) {
if((tail+1)%items.size() == head) {
throw FullException;

}
items[tail] = x;
tail = (tail+1)%items.size();

}

Item deq() {
if(tail == head) {
throw EmptyException;

}
Item item = items[head];
head = (head+1)%items.size();
return item;

}
};

head tail

0

2

1

5 4

3

yx

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

▪ (The) one process executes
operations one at a time

▪ Sequential ☺

▪ Semantics of operation
defined by specification
of the class

▪ Preconditions and postconditions

e.g., Hoare logic

16

Sequential Execution head tail

0

2

1

5 4

3

y

7

6

P

Time

enq(x) enq(y) deq()

spcl.inf.ethz.ch

@spcl_eth

▪ Preconditions:

▪ Specify conditions that must
hold before method executes

▪ Involve state and arguments
passed

▪ Specify obligations a client
must meet before calling a
method

▪ Example: enq()

▪ Queue must not be full!

17

Design by Contract!

class Queue {
// ...
void enq(Item x) {
assert((tail+1)%items.size() != head);
// ...

}
};

head tail

0

2

1

5 4

3

yx

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

▪ Postconditions:

▪ Specify conditions that must
hold after method executed

▪ Involve previous state, state, and
arguments passed

▪ Example: enq()

▪ Queue must contain element!

18

Design by Contract!

class Queue {
// ...
void enq(Item x) {
// ...
assert(
(tail == (old_tail + 1)%items.size()) &&
(items[old_tail] == x));

}
};

head tail

0

2

1

5 4

3

yx

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

▪ if(precondition)

▪ Object is in a specified state

▪ then(postcondition)

▪ The method returns a particular value or

▪ Throws a particular exception and

▪ Leaves the object in a specified state

▪ Invariants

▪ Specified conditions (e.g., object state) must hold anytime a client could invoke an object’s method!

19

Sequential specification

spcl.inf.ethz.ch

@spcl_eth

▪ State between method calls is defined

▪ Enables reasoning about objects

▪ Interactions between methods captured by side effects on object state

▪ Enables reasoning about each method in isolation

▪ Contracts for each method

▪ Local state changes global state

▪ Adding new methods

▪ Only reason about state changes that the new method causes

▪ If invariants are kept: no need to check old methods

▪ Modularity!

20

Advantages of sequential specification

spcl.inf.ethz.ch

@spcl_eth

▪ Concurrent threads invoke methods on possibly shared objects

▪ At overlapping time intervals!

21

Concurrent execution - State

Property Sequential Concurrent

State Meaningful only between
method executions

Overlapping method executions →
object may never be “between
method executions”

Each method execution
takes some non-zero
amount of time!

P1

Time

P2

P3

q.enq(y)

q.enq(x)

q.deq()

spcl.inf.ethz.ch

@spcl_eth

▪ Reasoning must now include all possible interleavings

▪ Of changes caused by methods themselves

22

Concurrent execution - Reasoning

Property Sequential Concurrent

Reasoning Consider each method in
isolation; invariants on state
before/after execution.

Need to consider all possible
interactions; all intermediate states
during execution

Each method execution
takes some non-zero
amount of time!

P1

Time

P2

P3

q.enq(y)

q.enq(x)

q.deq()

That is, now we have to consider
what will happen if we execute:
• enq() concurrently with enq()
• deq() concurrently with deq()
• deq() concurrently with enq()

spcl.inf.ethz.ch

@spcl_eth

▪ Reasoning must now include all possible interleavings

▪ Of changes caused by and methods themselves

▪ Consider adding a method that returns the last item enqueued

▪ If peek() and enq() run concurrently: what if tail has not yet been incremented?

▪ If peek() and deq() run concurrently: what if last item is being dequeued?

23

Concurrent execution - Method addition

Property Sequential Concurrent

Add Method Without affecting other
methods; invariants on state
before/after execution.

Everything can potentially interact
with everything else

Item peek() {
if(tail == head) throw EmptyException;
return items[head];

}

void enq(Item x) {
items[tail] = x;
tail = (tail+1) % items.size();

}

Item deq() {
Item item = items[head];
head = (head+1) % items.size();

}

spcl.inf.ethz.ch

@spcl_eth

▪ How do we describe one?

▪ No pre-/postconditions

▪ How do we implement one?

▪ Plan for quadratic or exponential number of interactions and states

▪ How do we tell if an object is correct?

▪ Analyze all quadratic or exponential interactions and states

24

Concurrent objects

Is it time to panic for (parallel) software engineers?
Who has a solution?

spcl.inf.ethz.ch

@spcl_eth

25

Lock-based queue

class Queue {
private:
int head, tail;
std::vector<Item> items;
std::mutex lock;

public:
Queue(int capacity) {
head = tail = 0;
items.resize(capacity);

}
// ...

};

We can use the lock to
protect Queue’s fields.

head tail

0

2

1

5 4

3

yx

7

6

spcl.inf.ethz.ch

@spcl_eth

class Queue {
// ...

public:
void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
throw FullException;

}
items[tail] = x;
tail = (tail+1)%items.size();

}

Item deq() {
std::lock_guard<std::mutex> l(lock);
if(tail == head) {
throw EmptyException;

}
Item item = items[head];
head = (head+1)%items.size();
return item;

}
};

26

Lock-based queue

One of C++’s ways of implementing a critical section

head tail

0

2

1

5 4

3

yx

7

6

Class question: how is the
lock ever unlocked?

spcl.inf.ethz.ch

@spcl_eth

▪ RAII – suboptimal name

▪ Can be used for locks (or any other resource acquisition)

▪ Constructor grabs resource

▪ Destructor frees resource

▪ Behaves as if

▪ Implicit unlock at end of block!

▪ Main advantages

▪ Always unlock/free lock at exit

▪ No “lost” locks due to exceptions
or strange control flow (goto☺)

▪ Very easy to use

27

C++ Resource Acquisition is Initialization

template <typename mutex_impl>
class lock_guard {

mutex_impl& _mtx; // ref to the mutex

public:
lock_guard(mutex_impl& mtx) : _mtx(mtx) {

_mtx.lock(); // lock mutex in constructor
}

~lock_guard() {
_mtx.unlock(); // unlock mutex in destructor

}
};

spcl.inf.ethz.ch

@spcl_eth

28

Example execution

void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
throw FullException;

}
items[tail] = x;
tail = (tail+1)%items.size();

}

Item deq() {
std::lock_guard<std::mutex> l(lock);

if(tail == head) {
throw EmptyException;

}
Item item = items[head];
head = (head+1)%items.size();
return item;

}

enq() is calledThe lock is acquireddeq() is called by another threaddeq() has to wait for the lock to be releasedenq() releases the lock; deq() acquires it and proceeds.deq() releases the lock

enq(x)

deq()

Methods effectively execute one after another, sequentially.

spcl.inf.ethz.ch

@spcl_eth

▪ Is the locked queue correct?

▪ Yes, only one thread has access if locked correctly

▪ Allows us again to reason about pre- and postconditions

▪ Smells a bit like sequential consistency, no?

▪ Class question: What is the problem with this approach?

▪ Same as for SC ☺

30

Correctness – end of interlude

It does not scale!
What is the solution here?

spcl.inf.ethz.ch

@spcl_eth

▪ Which transformations/reorderings can be applied to a program

▪ Affects platform/system

▪ Compiler, (VM), hardware

▪ Affects programmer

▪ What are possible semantics/output

▪ Which communication between threads is legal?

▪ Without memory model

▪ Impossible to even define “legal” or “semantics” when data is accessed concurrently

▪ A memory model is a contract

▪ Between platform and programmer

31

Back to memory models: Language Memory Models

spcl.inf.ethz.ch

@spcl_eth

▪ Java’s original memory model was broken [1]

▪ Difficult to understand => widely violated

▪ Did not allow reorderings as implemented in standard VMs

▪ Final fields could appear to change value without synchronization

▪ Volatile writes could be reordered with normal reads and writes

=> counter-intuitive for most developers

▪ Java memory model was revised [2]

▪ Java 1.5 (JSR-133)

▪ Still some issues (operational semantics definition [3])

▪ C/C++ didn’t even have a memory model until much later

▪ Not able to make any statement about threaded semantics!

▪ Introduced in C++11 and C11

▪ Based on experience from Java, much more conservative

32

History of Memory Models

[1] Pugh: “The Java Memory Model is Fatally Flawed”, CCPE 2000
[2] Manson, Pugh, Adve: “The Java memory model”, POPL’05
[3] Aspinall, Sevcik: “Java memory model examples: Good, bad and ugly”, VAMP’07

spcl.inf.ethz.ch

@spcl_eth

▪ Language constructs for synchronization

▪ Java: volatile, synchronized, …

▪ C++: atomic, (NOT volatile!), mutex, …

▪ Without synchronization (defined language-specific)

▪ Compiler, (VM), architecture

▪ Reorder and appear to reorder memory operations

▪ Maintain sequential semantics per thread

▪ Other threads may observe any order (have seen examples before)

33

Everybody wants to optimize

spcl.inf.ethz.ch

@spcl_eth

▪ Relaxed memory model

▪ No global visibility ordering of operations

▪ Allows for standard compiler optimizations

▪ But

▪ Program order for each thread (sequential semantics)

▪ Partial order on memory operations (with respect to synchronizations)

▪ Visibility function defined

▪ Correctly synchronized programs

▪ Guarantee sequential consistency

▪ Incorrectly synchronized programs

▪ Java: maintain safety and security guarantees

Type safety etc. (require behavior bounded by causality)

▪ C++: undefined behavior

No safety (anything can happen/change)

34

Java and C++ High-level overview

spcl.inf.ethz.ch

@spcl_eth

▪ Not guaranteed unless by:

▪ Synchronization

▪ Volatile/atomic variables

▪ Specialized functions/classes (e.g., java.util.concurrent, …)

35

Communication between threads: Intuition

x = 10
y = 5
flag = true

if(flag)
print(x+y)

synchronization

Thread 1

Thread 2

Flag is a synchronization variable
(atomic in C++, volatile in Java),

i.e., all memory written by T1
must be visible to T2 after it
reads the value true for flag!

spcl.inf.ethz.ch

@spcl_eth

▪ Abstract relation between threads and memory

▪ Local thread view!

▪ Does not talk about classes, objects, methods, …

▪ Linearizability is a higher-level concept!

36

Recap: Memory Model (Intuition)

When are values transferred?

Abstraction
of caches and
registers.

P2P1

Working
Memory

Main Memory

Working
Memory

P3

Working
Memory

spcl.inf.ethz.ch

@spcl_eth

37

Locks synchronize threads and memory!

▪ Java

▪ Synchronized methods as
syntactic sugar

 C++ (RAII)

▪ Many flexible variants

synchronized (lock) {
// critical region

}

{
unique_lock<mutex> l(lock);
// critical region

}

 Semantics:
▪mutual exclusion
▪ at most one thread may hold a lock at a time
▪ a thread B trying to acquire a lock held by thread A blocks until thread A

releases the lock
▪ note: threads may wait forever (no progress guarantee!)

spcl.inf.ethz.ch

@spcl_eth

▪ Similar to synchronization variables

▪ All memory accesses before an unlock …

▪ are ordered before and are visible to …

▪ any memory access after a matching lock!

38

Memory model semantics of locks

x = 10
…
y = 5
…
unlock(m)

lock(m)
print(x+y)

Thread 1

Thread 2

spcl.inf.ethz.ch

@spcl_eth

▪ Variables can be declared volatile (Java) or atomic (C++)

▪ Reads and writes to synchronization variables

▪ Are totally ordered with respect to all threads

▪ Must not be reordered with normal reads and writes

▪ Compiler

▪ Must not allocate synchronization variables in registers

▪ Must not swap variables with synchronization variables

▪ May need to issue memory fences/barriers

▪ …

39

Memory model semantics of synchronization variables

spcl.inf.ethz.ch

@spcl_eth

▪ Write to a synchronization variable

▪ Similar memory semantics as unlock (no process synchronization!)

▪ Read from a synchronization variable

▪ Similar memory semantics as lock (no process synchronization!)

40

Memory model semantics of synchronization variables

class example {
int x = 0;
atomic<bool> v = false;

public void writer() {
x = 42;
v = true;

}

public void reader() {
if(v) {
print(x);
}

}

Thread 1

Thread 2

Without atomic or
volatile, a platform may
reorder these accesses!

spcl.inf.ethz.ch

@spcl_eth

▪ Java/C++: Correctly synchronized programs will execute sequentially consistent

▪ Correctly synchronized = data-race free

▪ iff all sequentially consistent executions are free of data races

▪ Two accesses to a shared memory location form a data race in the execution of a program if

▪ The two accesses are from different threads

▪ At least one access is a write and

▪ The accesses are not synchronized

41

Intuitive memory model rules

int x = 10

T1 T2 T3

read read
write

spcl.inf.ethz.ch

@spcl_eth

▪ (recap) two memory accesses conflict if they can happen at the same time (in happens-before) and one of
them is a write (store)

▪ Such a code is said to have a “race condition”

▪ Also data-race

▪ Trivia around races:

The Therac-25 killed three people
due to a race

A data-race lead to a large blackout
in 2003, leaving 55 million people
without power causing $1bn damage

▪ Can be avoided by critical regions

▪ Mutually exclusive access to a set of operations

42

Conflicting Accesses

spcl.inf.ethz.ch

@spcl_eth

▪ Among the simplest concurrency constructs

▪ Yet, complex enough to illustrate many optimization principles

▪ Goal 1: You understand locks in detail

▪ Requirements / guarantees

▪ Correctness / validation

▪ Performance / scalability

Why you do not want to use them in many cases!

▪ Goal 2: Acquire the ability to design your own locks (and other constructs)

▪ Understand techniques and weaknesses/traps

▪ Extend to other concurrent algorithms

Issues are very much the same

▪ Goal 3: Understand the complexity of shared memory!

▪ Memory models in realistic settings

43

Case Study: Implementing locks - lecture goals

spcl.inf.ethz.ch

@spcl_eth

▪ All code examples are in C/C++ style

▪ Neither C (<11) nor C++ (<11) had a clear memory model

▪ C++ is one of the languages of choice in HPC

▪ Consider source as exemplary (and pay attention to the memory model)!

In fact, many/most textbook examples are incorrect in anything but sequential consistency!

In fact, you’ll most likely not need those algorithms, but the principles will be useful!

▪ x86 is really only used because it is common

▪ This does not mean that we consider the ISA or memory model elegant!

▪ We assume atomic memory (or registers)!

Usually given on x86 (easy to enforce)

▪ Number of threads/processes is p, tid is the thread id

44

Preliminary Comments

spcl.inf.ethz.ch

@spcl_eth

▪ Multi-threaded execution!

▪ Demo: value of a for p=1?

▪ Demo: value of a for p>1?

Why? Isn’t it a single instruction?

45

Recap Concurrent Updates

const int n=1000;
volatile int a=0;
for (int i=0; i<n; ++i)
a++;

gcc -O3

movl $1000, %eax // i=n=1000
.L2:

movl (%rdx), %ecx // ecx = *a
addl $1, %ecx // ecx++
subl $1, %eax // i--
movl %ecx, (%rdx) // *a = ecx
jne .L2 // loop if i>0

movl $1000, %eax // i=n=1000
movl $0, -24(%rsp) // a = 0
mfence // a is visible!

.L2:
lock addl $1 , -24(%rsp) // (*a)++
subl $1, %eax // i--
jne .L2 // loop if i>0

const int n=1000;
std::atomic<int> a;
a=0;
for (int i=0; i<n; ++i)
a++;

g++ -O3

spcl.inf.ethz.ch

@spcl_eth

▪ Run with larger n (108)

▪ Compiler: gcc version 7.3.0 (enabled c++11 support, -O3)

▪ Single-threaded execution only!

46

One instruction less! Performance!?

const int n = 1e8;
volatile int a=0;
for (int i=0; i<n; ++i)
a++;

const int n = 1e8;
std::atomic<int> a;
a=0;
for (int i=0; i<n; ++i)
a++;

Demo: 0.17s

Guess! Demo: 0.55s

Schweizer, Besta, Hoefler: “Evaluating the Cost of Atomic Operations on Modern Architectures”, ACM PACT’15

spcl.inf.ethz.ch

@spcl_eth

48

Some Statistics

spcl.inf.ethz.ch

@spcl_eth

▪ Control access to a critical region

▪ Memory accesses of all processes happen in program order (a partial order, many interleavings)

An execution history defines a total order of memory accesses

▪ Some subsets of memory accesses (issued by the same process) need to happen atomically (thread a’s memory
accesses may not be interleaved with other thread’s accesses)

To achieve linearizability!

We need to restrict the valid executions

▪ → Requires synchronization of some sort

▪ Many possible techniques (e.g., TM, CAS, T&S, …)

▪ We first discuss locks which have wait semantics

49

More formal: Mutual Exclusion

movl $1000, %eax // i=1000
.L2:

movl (%rdx), %ecx // ecx = *a
addl $1, %ecx // ecx++
subl $1, %eax // i--
movl %ecx, (%rdx) // *a = ecx
jne .L2 // loop if i>0

spcl.inf.ethz.ch

@spcl_eth

50

Fixing it with locks

▪ What must the functions lock and unlock guarantee?

▪ #1: prevent two threads from simultaneously entering CR

i.e., accesses to CR must be mutually exclusive!

▪ #2: ensure consistent memory

i.e., stores must be globally visible before new lock is granted!

▪ Any performance guesses (remember, 0.17s → 0.55s for atomics)

▪ 2.26s

const int n=1000;
volatile int a=0;
omp_lock_t lck;
for (int i=0; i<n; ++i) {
omp_set_lock(&lck);
a++;
omp_unset_lock(&lck);

}

gcc -O3

movl $1000, %ebx // i=1000
.L2:

movq 0(%rbp), %rdi // (SystemV CC)
call omp_set_lock // get lock
movq 0(%rbp), %rdi // (SystemV CC)
movl (%rax), %edx // edx = *a
addl $1, %edx // edx++
movl %edx, (%rax) // *a = edx
call omp_unset_lock // release lock
subl $1, %ebx // i—
jne .L2 // repeat if i>0

spcl.inf.ethz.ch

@spcl_eth

▪ Lock/unlock or acquire/release

▪ Lock/acquire: before entering CR

▪ Unlock/release: after leaving CR

▪ Semantics:

▪ Lock/unlock pairs must match

▪ Between lock/unlock, a thread holds the lock

51

Lock Overview

spcl.inf.ethz.ch

@spcl_eth

?

▪ Mutual exclusion
▪ Only one thread is in the critical region

▪ Consistency
▪ Memory operations are visible when critical region is left

▪ Progress
▪ If any thread a is not in the critical region, it cannot prevent another thread b from entering

▪ Starvation-freedom (implies deadlock-freedom)
▪ If a thread is requesting access to a critical region, then it will eventually be granted access

▪ Fairness
▪ A thread a requested access to a critical region before thread b. Was it also granted access to this

region before b?

▪ Performance
▪ Scaling to large numbers of contending threads

52

Desired Lock Properties

spcl.inf.ethz.ch

@spcl_eth

▪ Time defined by precedence (a total order on events)

▪ Events are instantaneous (linearizable)

▪ Threads produce sequences of events a0,a1,a2,…

▪ Program statements may be repeated, denote i-th instance of a as ai

▪ Event a occurs before event b: a → b

▪ An interval (a,b) is the duration between events a → b

▪ Interval I1=(a,b) precedes interval I2=(c,d) iff b → c

▪ Critical regions

▪ A critical region CR is an interval (a,b), where a is the first operation in the CR and b the last

▪ Mutual exclusion

▪ Critical regions CRA and CRB are mutually exclusive if:

Either CRA → CRB or CRB → CRA for all valid executions!

▪ Assume atomic registers (for now)

53

Simplified Notation (cf. Histories)

spcl.inf.ethz.ch

@spcl_eth

▪ A first simple spinlock

54

Simple Two-Thread Locks

Why does this not guarantee
mutual exclusion?

volatile int flag=0;

void lock() {
while(flag);
flag = 1;

}

void unlock() {
flag = 0;

}

Busy-wait to acquire lock (spinning)

Is this lock correct?

spcl.inf.ethz.ch

@spcl_eth

▪ Another two-thread spin-lock: LockOne

56

Simple Two-Thread Locks

volatile int flag[2];

void lock() {
int j = 1 - tid;
flag[tid] = true;
while (flag[j]) {} // wait

}

void unlock() {
flag[tid] = false;

}

When and why does this
guarantee mutual exclusion?

spcl.inf.ethz.ch

@spcl_eth

▪ In sequential consistency!

▪ Intuitions:

▪ Situation: both threads are ready to enter

▪ Show that situation that allows both to enter leads to a schedule violating sequential consistency

Using transitivity of program and synchronization orders

57

Correctness Proof

spcl.inf.ethz.ch

@spcl_eth

▪ Another two-thread spin-lock: LockOne

58

Simple Two-Thread Locks

volatile int flag[2];

void lock() {
int j = 1 - tid;
flag[tid] = true;
while (flag[j]) {} // wait

}

void unlock() {
flag[tid] = false;

}

When and why does this
guarantee mutual exclusion?

Does it work in practice?

spcl.inf.ethz.ch

@spcl_eth

▪ A third attempt at two-thread locking: LockTwo

59

Simple Two-Thread Locks

volatile int victim;

void lock() {
victim = tid; // grant access
while (victim == tid) {} // wait

}

void unlock() {}

Does this guarantee
mutual exclusion?

spcl.inf.ethz.ch

@spcl_eth

▪ Intuition:

▪ Victim is only written once per lock()

▪ A can only enter after B wrote

▪ B cannot enter in any sequentially consistent schedule

60

Correctness Proof

spcl.inf.ethz.ch

@spcl_eth

▪ A third attempt at two-thread locking: LockTwo

61

Simple Two-Thread Locks

volatile int victim;

void lock() {
victim = tid; // grant access
while (victim == tid) {} // wait

}

void unlock() {}

Does this guarantee
mutual exclusion?

Does it work in practice?

spcl.inf.ethz.ch

@spcl_eth

▪ The last two locks provide mutual exclusion

▪ LockOne succeeds iff lock attempts do not overlap

▪ LockTwo succeeds iff lock attempts do overlap

▪ Combine both into one locking strategy!

▪ Peterson’s lock (1981)

62

Simple Two-Thread Locks

spcl.inf.ethz.ch

@spcl_eth

▪ Combines the first lock (request access) with the second lock (grant access)

63

Peterson’s Two-Thread Lock (1981)

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1; // I’m interested
victim = tid; // other goes first
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = 0; // I’m not interested

}

spcl.inf.ethz.ch

@spcl_eth

▪ Intuition:

▪ Victim is written once

▪ Pick thread that wrote victim last

▪ Show thread must have read flag==0

▪ Show that no sequentially consistent schedule permits that

64

Proof Correctness

spcl.inf.ethz.ch

@spcl_eth

▪ (recap) definition: Every thread that calls lock() eventually
gets the lock.

▪ Implies deadlock-freedom!

▪ Is Peterson’s lock
starvation-free?

65

Starvation Freedom

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1; // I’m interested
victim = tid; // other goes first
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = 0; // I’m not interested

}

spcl.inf.ethz.ch

@spcl_eth

▪ Intuition:

▪ Threads can only wait/starve in while()

Until flag==0 or victim==other

▪ Other thread enters lock() → sets victim to other

Will definitely “unstuck” first thread

▪ So other thread can only be stuck in lock()

Will wait for victim==other, victim cannot block both threads → one must leave!

66

Proof Starvation Freedom

spcl.inf.ethz.ch

@spcl_eth

▪ Starvation freedom provides no guarantee on how long a thread waits or if it is “passed”!

▪ To reason about fairness, we define two sections of each lock algorithm:

▪ Doorway D (bounded # of steps)

▪ Waiting W (unbounded # of steps)

▪ FIFO locks:

▪ If TA finishes its doorway before TB then CRA → CRB

▪ Implies fairness

70

Lock Fairness

void lock() {
int j = 1 - tid;
flag[tid] = true; // I’m interested
victim = tid; // other goes first
while (flag[j] && victim == tid) {};

}

spcl.inf.ethz.ch

@spcl_eth

▪ Is a FIFO lock (and thus fair)

▪ Each thread takes a number in the doorway and threads enter in the order of their number!

71

Lamport’s Bakery Algorithm (1974)

volatile int flag[n] = {0,0,…,0};
volatile int label[n] = {0,0,….,0};

void lock() {
flag[tid] = 1; // request
label[tid] = max(label[0], ...,label[n-1]) + 1; // take ticket
while ((∃k != tid)(flag[k] && (label[k],k) <* (label[tid],tid))) {};

}
public void unlock() {

flag[tid] = 0;
}

spcl.inf.ethz.ch

@spcl_eth

▪ Advantages:

▪ Elegant and correct solution

▪ Starvation free, even FIFO fairness

▪ Not used in practice!

▪ Why?

▪ Needs to read/write N memory locations for synchronizing N threads

▪ Can we do better?

Using only atomic registers/memory

72

Lamport’s Bakery Algorithm (1974)

spcl.inf.ethz.ch

@spcl_eth

▪ Theorem 5.1 in [1]: “If S is a [atomic] read/write system with at least two processes and S solves mutual
exclusion with global progress [deadlock-freedom], then S must have at least as many variables as
processes”

▪ So we’re doomed! Optimal locks are available and they’re fundamentally non-scalable. Or not?

[1] J. E. Burns and N. A. Lynch. Bounds on shared memory for mutual exclusion. Information and
Computation, 107(2):171–184, December 1993

78

A Lower Bound to Memory Complexity

