
spcl.inf.ethz.ch

@spcl_eth

M. PUESCHEL, T. BEN-NUN

Lecture 4: Memory Models



spcl.inf.ethz.ch

@spcl_eth

▪ Team/project proposals are due today

▪ CPU and GPU servers for experimentation

▪ Use Euler for most of your experiments, be careful when experimenting on Leonhard!

▪ Talk to us about larger-scale GPU tests first

▪ Questions?

2

Administration



spcl.inf.ethz.ch

@spcl_eth

▪ Architecture case studies 

▪ Memory performance is often the bottleneck

▪ Parallelism grows with compute performance

▪ Caching is important 

▪ Several issues to address for parallel systems

▪ Cache Coherence

▪ Hardware support to aid programmers

▪ Two guarantees:

Write propagation (updates are eventually visible to all readers)

Write serialization (writes to the same location are observed in global order)

▪ Two major mechanisms:

Snooping (MESI, MOESI)

Directory-based

3

Review of last lectures



spcl.inf.ethz.ch

@spcl_eth

4

DPHPC Overview



spcl.inf.ethz.ch

@spcl_eth

▪ Cache-coherence is not enough

▪ Many more subtle issues for parallel programs

▪ Memory Models

▪ Sequential consistency

▪ Why threads cannot be implemented as a library

▪ Relaxed consistency models

▪ GPU/SIMT Model

▪ Linearizability

▪ More complex objects

6

Goals of this lecture



spcl.inf.ethz.ch

@spcl_eth

Is Coherence Everything?

P2P1▪ Coherence is concerned with behavior 
of individual locations

▪ Consider the program (initial X,Y,Z = 0)

▪ What value will Z on P2 have?

▪ Y=10 does not need to have completed 
before X=2 is visible to P2!

▪ This allows P2 to exit the loop and read Y=0

▪ This may not be the intent of the programmer!

▪ This may be due to congestion (imagine X is pushed to a remote cache while Y misses to main memory) and or due 
to write buffering, or …

▪ Exercise: what happens when Y and X are on the same cache line (assume MESI and no write buffer)?

7

P1

Y=10
X=2

P2

while (X==0);
Z=Y

WT L1

L2

Y = 0X = 0

WB L1WB

Y = 10X = 2

X = 0

Read X

X = 2

X = 2

Read Y

Y = 0

Z = 0



spcl.inf.ethz.ch

@spcl_eth

▪ Need to define what it means to “read a location” and “to write a location” and the respective ordering!

▪ What values should be seen by a processor

▪ First thought: extend the abstractions seen by a sequential processor:

▪ Compiler and hardware maintain data and control dependencies at all levels:

8

Memory Models

Y=10

….

T = 14

Y=15

Y = 5

X = 5

T = 3

Y = 3

if (X==Y)

Z = 5

….

Two operations to 
the same location

One operation controls
execution of others



spcl.inf.ethz.ch

@spcl_eth

▪ Correctness condition:

▪ The result of the execution is the same as if the operations had been executed in the order specified by the program

“program order”

▪ A read returns the value last written to the same location

“last” is determined by program order!

▪ Consider only memory operations (e.g., a trace)

▪ N Processors

▪ P1, P2, …., PN

▪ Operations

▪ Read, Write on shared variables (initial state: most often all 0)

▪ Notation:

▪ P1: R(x):3 P1 reads x and observes the value 3

▪ P2: W(x,5) P2 writes 5 to variable x

9

Sequential Processor



spcl.inf.ethz.ch

@spcl_eth

▪ Program order

▪ Deals with a single processor

▪ Per-processor order of memory accesses, determined by program’s Control flow

▪ Often represented as trace

▪ Visibility/memory order

▪ Deals with operations on all processors

▪ Order of memory accesses observed by one or more processors

▪ e.g., “every read of a memory location returns the value that was written last”

Defined by memory model

10

Terminology



spcl.inf.ethz.ch

@spcl_eth

▪ Extension of sequential processor model

▪ The execution happens as if

1. The operations of all processes were executed in some sequential order (atomicity requirement), and

2. The operations of each individual processor appear in this sequence in the order specified by the program (program 
order requirement)

▪ Applies to all layers!

▪ Disallows many compiler optimizations (e.g., reordering of any memory instruction)

▪ Disallows many hardware optimizations (e.g., store buffers, nonblocking reads, invalidation buffers)

11

Sequential Consistency



spcl.inf.ethz.ch

@spcl_eth

▪ Globally consistent view of memory operations (atomicity)

▪ Strict ordering in program order

12

Illustration of Sequential Consistency
Processors issue in 
program order

The “switch” selects 
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

Read
B

Read
B

Read
B

Read
B

Write
A

Write
A

Write
A

Write
A



spcl.inf.ethz.ch

@spcl_eth

“The result of any execution is the same as if the operations of all the  processes were 
executed in some sequential order and the operations of each individual process appear in 
this sequence in the order specified by its program”

(Lamport, 1979) 

13

Original SC Definition

Good read: Gharachorloo et al.: “Memory consistency and event ordering in scalable shared-memory multiprocessors.”



spcl.inf.ethz.ch

@spcl_eth

▪ Textbook: Hennessy/Patterson Computer Architecture

▪ A sequentially consistent system maintains three invariants:

1. A load L from memory location A issued by processor Pi obtains the value of the previous store to A by Pi, unless 
another processor stored a value to A in between

2. A load L from memory location A obtains the value of a store S to A by another processor Pk if S and L are 
“sufficiently separated in time” and if no other store occurred between S and L

3. Stores to the same location are serialized (defined as in (2))

▪ “Sufficiently separated in time” not precise

▪ Works but is not formal (a formalization must include all possibilities)

14

Alternative SC Definition



spcl.inf.ethz.ch

@spcl_eth

▪ Contract at each level between programmer and processor

15

Memory Models

Programmer

High-level language (API/PL)

Compiler Frontend

Intermediate Language (IR)

Compiler Backend/JIT

Machine code (ISA)

Processor

Optimizing transformations

Reordering

Operation overlap
OOO Execution
VLIW, Vector ISA



spcl.inf.ethz.ch

@spcl_eth
H

ar
d

w
ar

e
C

o
m

p
ile

r

▪ Recap: “normal” sequential assumption:

▪ Compiler and hardware can reorder instructions as long as control and data dependencies are met 

▪ Examples:

▪ Register allocation

▪ Code motion

▪ Common subexpression elimination

▪ Loop transformations

▪ Pipelining

▪ Multiple issue (OOO)

▪ Write buffer bypassing

▪ Nonblocking reads

16

Operation Reordering



spcl.inf.ethz.ch

@spcl_eth

▪ Initially, all values are zero

▪ Assume P1 and P2 are compiled separately!

▪ What optimizations can a compiler perform for P1?

Register allocation or even replace with constant, or

Switch statements

▪ What happens?

P2 may never terminate, or

Compute with wrong input

17

Simple compiler optimization

P1

input = 23

ready = 1

P2

while (ready == 0) {}

compute(input)



spcl.inf.ethz.ch

@spcl_eth

▪ Relying on program order: Dekker’s algorithm

▪ Initially, all zero

▪ What can happen at compiler and hardware level?

18

Sequential Consistency Examples

P1

a = 1
if(b == 0)
critical section
a = 0

P2

b = 1
if(a == 0)
critical section
b = 0

P1 P2

P1: W(a,1) P2: W(b,1)

Time

P1: R(b): 1

P2: R(a): 1

Nobody enters the critical section.

Without SC, both writes may have gone to a
write buffer, in which case both Ps would
read 0 and enter the critical section together.



spcl.inf.ethz.ch

@spcl_eth

▪ Relying on single sequential order (atomicity): 
three sharers

▪ What can be printed if visibility is not atomic?

19

Sequential Consistency Examples

P1

a = 5
a = 1

P2

if (a == 1)
b = 1

P3

if (b == 1)
print(a)

P1 P2 P3

What each P thinks the order is:

P1: W(a,5)

P1: W(a,1)

P1: W(a,5)

P1: W(a,1)

P1: W(a,5)

P2: R(a): 1

P2: W(b,1)P2: W(b,1)

P3: R(b): 1

P3: R(a): 5

P1: W(a,1)

PRINT(5)
P3 has not seen                     yet!P1: W(a,1)



spcl.inf.ethz.ch

@spcl_eth

▪ Analyzing P1 and P2 in isolation!

▪ Compiler can reorder

▪ Hardware can reorder, assume writes of a,b go to write buffer or speculation

20

Optimizations violating program order

P1

a = 1

if(b == 0)

critical section

a = 0

P2

b = 1

if(a == 0)

critical section

b = 0

P1

if(b == 0)

critical section

a = 0

else 

a = 1

P2

if(a == 0)

critical section

b = 0

else

b = 1 

P1

a = 1

if(b == 0)

critical section

a = 0

P2

b = 1

if(a == 0)

critical section

b = 0

P1

if(b == 0)

a = 1

critical section

a = 0

P2

if(a == 0)

b = 1

critical section

b = 0



spcl.inf.ethz.ch

@spcl_eth

21

Board



spcl.inf.ethz.ch

@spcl_eth

▪ Define partial order on memory requests A → B

▪ If Pi issues two requests A and B and A is issued before B in program order, then A → B

▪ A and B are issued to the same variable, and A is issued first, then A → B (on all processors)

▪ These partial orders can be interleaved, define a total order

▪ Many total orders are sequentially consistent!

▪ Example:

▪ P1: W(a), R(b), W(c)

▪ P2: R(a), W(a), R(b)

▪ Are the following schedules (total orders) sequentially consistent?

1. P1:W(a), P2:R(a), P2:W(a), P1:R(b), P2:R(b), P1:W(c)

2. P1:W(a), P2:R(a), P1:R(b), P2:R(b), P1:W(c), P2:W(a)

3. P2:R(a), P2:W(a), P1:R(b), P1:W(a), P1:W(c), P2:R(b)

22

Considerations



spcl.inf.ethz.ch

@spcl_eth

▪ Write buffer

▪ Absorbs writes faster than the next cache → prevents stalls

▪ Aggregates writes to the same cache line → reduces cache traffic

23

Write buffer example

CPU

L1 I-cache L1 D-cache

L2 cache



spcl.inf.ethz.ch

@spcl_eth

▪ Reads can bypass previous writes for faster completion

▪ If read and write access different locations

▪ No order between write and following read (W → R)

24

Write buffer example

P2P1

L1

L2

X = 0

WB L1WB

a = 0 b = 0

W(a,1)R(b)

b = 0

b = 0

W(b,1)R(a)

a = 0

a = 0

a = 1 b = 1: 0 : 0



spcl.inf.ethz.ch

@spcl_eth

▪ W →W: OK

▪ R →W, R → R: No order between read and following read/write

25

Nonblocking read example

P2P1

L1

L2

L1

R(y)

y = 0x = 0

x = 0

Cache miss!

R(x)

x = 0

:0

y = 0x = 0

W(x,1)x = 1

x = 1

W(y,2)y = 2

y = 2

y = 2

y = 2

:2



spcl.inf.ethz.ch

@spcl_eth

▪ Programmer’s view:

▪ Prefer sequential consistency

▪ Easiest to reason about

▪ Compiler/hardware designer’s view:

▪ Sequential consistency disallows many optimizations!

▪ Substantial speed difference

➢ Most architectures and compilers don’t adhere to sequential consistency!

▪ Solution: synchronized programming

▪ Access to shared data (aka. “racing accesses”) are ordered by synchronization operations

▪ Synchronization operations guarantee memory ordering (aka. fence)

▪ More later!

26

Discussion



spcl.inf.ethz.ch

@spcl_eth

▪ Varying definitions!

▪ Cache coherence: a mechanism that propagates writes to other processors/caches if needed, recap:

▪ Writes are eventually visible to all processors

▪ Writes to the same location are observed in (one) order

▪ Memory models: define the bounds on when the value is propagated to other processors

▪ E.g., sequential consistency requires all reads and writes to be ordered in program order

27

Cache Coherence vs. Memory Model

Good read: McKenney: “Memory Barriers: a Hardware View for Software Hackers”



spcl.inf.ethz.ch

@spcl_eth

▪ Sequential consistency

▪ R→R, R→W, W→R, W→W (all orders guaranteed)

▪ Relaxed consistency (varying terminology):

▪ Processor consistency (aka. Total Store Ordering)

Relaxes W→R

▪ Partial write (store) order (aka. Partial Store Ordering)

Relaxes W→R, W→W

▪ Weak consistency and release consistency (aka. Relaxed Memory Order)

Relaxes R→R, R→W, W→R, W→W

▪ Other combinations/variants possible

There are even more types of orders (above is a simplification)

28

The fun begins: Relaxed Memory Models

Implemented (loosely)
on the GPU, ARM



spcl.inf.ethz.ch

@spcl_eth

29

Architectures

Source: wikipedia



spcl.inf.ethz.ch

@spcl_eth

▪ Intel® 64 and IA-32 Architectures Software Developer's Manual

▪ Volume 3A: System Programming Guide

▪ Chapter 8.2 Memory Ordering

▪ http://www.intel.com/products/processor/manuals/

▪ Google Tech Talk: IA Memory Ordering

▪ Richard L. Hudson

http://www.youtube.com/watch?v=WUfvvFD5tAA

30

Case Study: Memory ordering on Intel (x86) 

http://www.intel.com/products/processor/manuals/
http://www.youtube.com/watch?v=WUfvvFD5tAA


spcl.inf.ethz.ch

@spcl_eth

▪ Total lock order (TLO)

▪ Instructions with “lock” prefix enforce total order across all processors

▪ Implicit locking: xchg (locked compare and exchange)

▪ Causal consistency (CC)

▪ Write visibility is transitive

▪ Eight principles

▪ After some revisions ☺

31

x86 Memory model: TLO + CC



spcl.inf.ethz.ch

@spcl_eth

1. “Reads are not reordered with other reads.” (R→R)

2. “Writes are not reordered with other writes.” (W→W)

3. “Writes are not reordered with older reads.” (R→W)

4. “Reads may be reordered with older writes to different locations but not with older writes to the same 
location.” (NO W→R!)

5. “In a multiprocessor system, memory ordering obeys causality.“ (memory ordering respects transitive 
visibility)

6. “In a multiprocessor system, writes to the same location have a total order.” (implied by cache 
coherence)

7. “In a multiprocessor system, locked instructions have a total order.“ (enables synchronized 
programming!)

8. “Reads and writes are not reordered with locked instructions. “ (enables synchronized programming!)

32

The Eight x86 Principles



spcl.inf.ethz.ch

@spcl_eth

Reads are not reordered with other reads. (R→R)

Writes are not reordered with other writes. (W→W)

33

Principle 1 and 2
P1

a = 1
b = 2

P2

r1 = b
r2 = a

All values zero initially. r1 and r2 are registers.

P1

P2

Memory

W(a,1)

If r1 == 2, then r2 must be 1!
Not allowed: r1 == 2, r2 == 0

W(b,2)

R(a)R(b)

Order: from left to right

Reads and writes observed in program order.
Cannot be reordered!

Question: is r1=0, r2=1 allowed?



spcl.inf.ethz.ch

@spcl_eth

Writes are not reordered with older reads. (R→W)

34

Principle 3 P1

r1 = a
b = 1

P2

r2 = b
a = 1

All values zero initially

If r1 == 1, then P2:W(a) → P1:R(a), thus r2 must be 0!
If r2 == 1, then P1:W(b) → P1:R(b), thus r1 must be 0!

P1

P2

Memory

R(a) W(b,1)

W(a,1)R(b)

Question: is r1==1 and r2==1 allowed?

Question: is r1==0 and r2==0 allowed?



spcl.inf.ethz.ch

@spcl_eth

Reads may be reordered with older writes to different locations 
but not with older writes to the same location. (NO W→R!)

35

Principle 4
P1

a = 1
r1 = b

P2

b = 1
r2 = a

All values zero initially

Allowed: r1=0, r2=0.
Sequential consistency can be enforced with mfence.
Attention: this rule may allow reads to move into 
critical sections!

P1

P2

Memory

W(a,1) R(b)

R(a)W(b,1)

Question: is r1=1, r2=0 allowed?

OK

OK



spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, memory ordering obeys causality 
(memory ordering respects transitive visibility). 

36

Principle 5
P1

a = 1

P2

r1 = a
b = 1

P3

r2 = b
r3 = a

If r1 == 1 and r2==1, then r3 must read 1.
Not allowed: r1 == 1, r2 == 1, and r3 == 0.
Provides some form of atomicity.

P1

P3

Memory

W(a,1)

R(a)R(b)

Question: is r1==1, r2==0, r3==1 allowed?

P2R(a) W(b,1)

All values zero initially



spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, writes to the same location 
have a total order (implied by cache coherence).

37

Principle 6
P1

a=1

P2

a=2

P3

r1 = a
r2 = a

P4

r3 = a
r4 = a

All values zero initially

P1

P4

Memory

W(a,1)

R(a)

Question: is r1=0, r2=2, r3=0, r4=1 allowed?

P3R(a)

P2W(a,2)

R(a)

R(a)

• Not allowed: r1 == 1, r2 == 2, r3 == 2, r4 == 1
• If P3 observes P1’s write before P2’s write, then P4 will also 
see P1’s write before P2’s write 
• Provides some form of atomicity



spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, locked instructions have a 
total order. (enables synchronized programming!)

38

Principle 7
P1

xchg(a,r1)

P2

xchg(b,r2)

P3

r3 = a
r4 = b

P4

r5 = b
r6 = a

All values zero initially, registers r1==r2==1

• Not allowed: r3 == 1, r4 == 0, r5 == 1, r6 ==0
• If P3 observes ordering P1:xchg → P2:xchg, 

then P4 observes the same ordering
• (xchg has implicit lock)

P1

P4

X(a,r1)

R(b)

Question: is r3=1, r4=0, r5=0, r6=1 allowed?

P3R(a)

P2X(b,r2)

R(b)

R(a)

Memory



spcl.inf.ethz.ch

@spcl_eth

Reads and writes are not reordered with locked instructions.

(enables synchronized programming!)

39

Principle 8
P1

xchg(a,r1)
r2 = b

P2

xchg(b,r3)
r4 = a

All values zero initially but r1 = r3 = 1

• Not allowed: r2 == 0, r4 == 0
• Locked instructions have total order, so P1 and P2 agree on 

the same order
• If volatile variables use locked instructions → practical 

sequential consistency (more later)

P1

P2

X(a,r1)

X(b,r3) R(a)

Memory

R(b)



spcl.inf.ethz.ch

@spcl_eth

▪ Sewell el al.: “x86-TSO: A Rigorous and Usable Programmer’s Model for x86 Multiprocessors”, CACM May 
2010

“[…] real multiprocessors typically do not provide the sequentially consistent memory that is assumed by 
most work on semantics and verification. Instead, they have relaxed memory models, varying in subtle ways 
between processor families, in which different hardware threads may have only loosely consistent views of a 
shared memory. Second, the public vendor architectures, supposedly specifying what programmers can rely 
on, are often in ambiguous informal prose (a particularly poor medium for loose specifications), leading to 
widespread confusion. [...] We present a new x86-TSO programmer’s model that, to the best of our 
knowledge, suffers from none of these problems. It is mathematically precise (rigorously defined in HOL4) but 
can be presented as an intuitive abstract machine which should be widely accessible to working 
programmers.  […]”

40

An Alternative View: x86-TSO

Newer RMA systems: A. Dan, P. Lam, TH, A. Vechev: Modeling and Analysis of Remote Memory Access Programming, ACM OOPSLA’16

scale



spcl.inf.ethz.ch

@spcl_eth

41

Meanwhile, on GPUs…

https://www.youtube.com/watch?v=VogqOscJYvk

Published September 28, 2019

https://www.youtube.com/watch?v=VogqOscJYvk


spcl.inf.ethz.ch

@spcl_eth

▪ GPUs devote more hardware to computations

▪ Not as general-purpose as a CPU

▪ Used as an accelerator to a host system

▪ Device is built from Streaming Multiprocessors (SMs)

▪ Scalable caching mechanism (not all coherent!)

▪ Communication with host system via PCIe bus

▪ Or NVLINK

42

GPU Hardware Model 

SM SM SM SM SM SM SM SM SM SM SM SM

SM SM SM SM SM SM SM SM SM SM SM SM

SM SM SM SM SM SM SM SM SM SM SM SM

SM SM SM SM SM SM SM SM SM SM SM SM

L2 Cache

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

Figures and code courtesy of nvidia.com

http://www.nvidia.com/


spcl.inf.ethz.ch

@spcl_eth

▪ ALUs divided into specific functions

▪ Can run concurrently

▪ Hardware can fast-switch between active “threads” to hide latency

▪ Multiple levels of instruction and data caching

▪ “L0” cache for instructions

▪ Scratch-pad (“shared”) memory controlled by the programmer

▪ Specialized units for specific operations

▪ Example – Tensor Cores:

43

GPU Hardware Model – The SM

Figures and code courtesy of nvidia.com

http://www.nvidia.com/


spcl.inf.ethz.ch

@spcl_eth

▪ CUDA, OpenCL, ROCm

▪ CUDA is for NVIDIA GPUs, ROCm for AMD, OpenCL for both (but slower)

▪ Highly documented in the CUDA Programming Guide

▪ https://docs.nvidia.com/cuda/cuda-c-programming-guide/

44

GPU Programming Model

https://docs.nvidia.com/cuda/cuda-c-programming-guide/


spcl.inf.ethz.ch

@spcl_eth

▪ Memory explicitly allocated on the GPU

▪ Managed memory exists, but slower

▪ Data copied from host → GPU explicitly

▪ DMA if data is pinned on the host, or on 
another GPU

▪ Question: Are memory writes to pinned 
memory visible to the GPU?

▪ Answer: Not necessarily without fences and the 
volatile keyword

45

GPU Programming Model – Memory 

int main() { 
float *A = new float[N];
float *gpuA;
float *pinnedB;
cudaMalloc(&gpuA, N * sizeof(float));
cudaMallocHost(&pinnedB, N * sizeof(float));

cudaMemcpyAsync(gpuA, A, N*sizeof(float),
cudaMemcpyHostToDevice);

// ...

cudaMemcpy(A, gpuA, N*sizeof(float), 
cudaMemcpyDeviceToHost);

cudaFreeHost(pinnedB);
cudaFree(gpuA);
delete[] A;

}



spcl.inf.ethz.ch

@spcl_eth

▪ GPU-compiled functions written separately from 
host code

▪ Both can coexist in .cu files, no GPU code in .c/.cpp files

▪ NVIDIA CUDA is (mostly) compatible with C++14

▪ Code is asynchronously executed

▪ Streams act as “command queues” to the GPU

▪ Events can be queued onto the stream for 
synchronization

▪ Logical division: threads and thread-blocks

▪ threadIdx.{x,y,z}

▪ blockIdx.{x,y,z}

▪ blockDim.{x,y,z}

46

GPU Programming Model – Execution 

__global__ void VecAdd(float* A, float* B, float* C) { 
int i = threadIdx.x; 
C[i] = A[i] + B[i]; 

} 

int main() { 
... 
// Kernel invocation with M thread-blocks, 
// each with N threads
VecAdd<<<M, N>>>(A, B, C); 
... 

}

Figures and code courtesy of nvidia.com

http://www.nvidia.com/


spcl.inf.ethz.ch

@spcl_eth

47

What does this kernel do?

__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C) { 
// Each thread computes one element of C
// by accumulating results into Cvalue
float Cvalue = 0; 
int row = blockIdx.y * blockDim.y + threadIdx.y; 
int col = blockIdx.x * blockDim.x + threadIdx.x; 

for (int e = 0; e < A.width; ++e) 
Cvalue += A.data[row * A.width + e] * B.data[e * B.width + col]; 

C.data[row * C.width + col] = Cvalue; 
}



spcl.inf.ethz.ch

@spcl_eth

48

Example GPU Execution Trace

CPU

GPU

Break-
down

Stream 23 waits for event queued on 17



spcl.inf.ethz.ch

@spcl_eth

▪ A warp keeps a single PC and stack

▪ Composed of 32 “threads”

▪ Thread-blocks are composed of multiple warps

▪ Always lie in the same SM

▪ Warps execute the same instruction, but on different data

▪ Same register name is mapped to a different actual register

▪ Warp divergence can cause 32x slowdown (and more):

49

Single Instruction, Multiple Threads (SIMT)

Figures and code courtesy of nvidia.com

IMAD.MOV.U32 R0, RZ, RZ, R6 ;                    
ISETP.GT.U32.AND P0, PT, R0, 0x7f, PT ;          
CS2R R6, SRZ ;                                   
MOV R8, 0x5 ;                                    
SEL R8, R8, 0x1, P0 ;                            

@P0 BRA 0x2c00 ;                                     
CS2R R6, SRZ ;                                   

@P0 BRA 0x2a10 ;                                     
@!PT SHFL.IDX PT, RZ, RZ, RZ, RZ ;                    

IMAD.SHL.U32 R2, R0, 0x8, RZ ;                   
LDS.U.64 R16, [R2] ;                             
DSETP.GEU.AND P0, PT, |R16|, c[0x2][0x8], PT ;   
DADD R4, -RZ, |R16| ; 

http://www.nvidia.com/


spcl.inf.ethz.ch

@spcl_eth

▪ Memory accesses of aligned elements (e.g., LDG.<X>) can be shared across threads in a warp 

50

Memory Coalescing

Figures and code courtesy of nvidia.com

http://www.nvidia.com/

