
© Markus Püschel
Computer Science

DPHPC
Spring 2019

Design of Parallel and High-Performance
Computing
Fall 2019
Lecture: Cache Coherency

Instructor: Tal Ben-Nun & Markus Püschel

TA: Timo Schneider

Cache Read

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set

• Check if any line in set
has matching tag

• Yes + line valid: hit

• Locate data starting
at offset

E = 2e lines per set 
E = associativity, E = 1: direct mapped

2



© Markus Püschel
Computer Science

DPHPC
Spring 2019

What about writes?

 What to do on a write-hit?

 Write-through: write immediately to memory

 Write-back: defer write to memory until replacement of line

 What to do on a write-miss?

 Write-allocate: load into cache, update line in cache

 No-write-allocate: writes immediately to memory

Write-back/write-allocate (Most common)

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

1: load

2: updateupdate

Write-through/no-write-allocate

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

1: update

2: update update

3

Put on board

Cache Architectures

 Multi level caches (L1, L2, …, common today)

 Multi-port vs. single port

 Shared vs. private (in multicore computers, see next slide)

 Inclusive vs. exclusive (usually inclusive = content of smaller caches is 
in larger caches in the hierarchy)

 Write back vs. write through (usually write-back)

 Victim cache to reduce conflict misses

 …

4



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Caches in a Multicore Computer (Example)

5

CPU1 CPU2 CPU3 CPU4

L1 L1 L1 L1

L2 L2 L2 L2

L3

Memory

Private cache

Shared cache

Many Variants Possible

6

Problem? Coherence!



© Markus Püschel
Computer Science

DPHPC
Spring 2019

DPHPC Overview

7

Today: Cache Coherence

 Motivation

 Terminology, snooped-based vs. directory-based

 Snooped based: MESI protocol

 MOESI

 Directory-based coherence

8



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Write-Back Cache

9

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

3. CPU0 writes X=1
• stores X=1 in its cache

4. CPU1 writes X =2 
• stores X=2 in its cache

5. CPU1 writes back cache line
• stores X=2 in in memory

6. CPU0 writes back cache line
• stores X=1 in memory
Later (!) store X=2 from CPU1 lost

Requires write serialization!

CPU0 CPU1

WB-Cache

Memory

WB-Cache

X = 0X = 0

X = 1 X = 2

X = 2X = 1

X = 0

Write-Through Cache

10

Requires write propagation!

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

3. CPU0 writes X=1
• stores X=1 in its cache
• stores X=1 in memory

4. CPU1 reads X from its cache
• loads X=0 from its cache
Incoherent value for X on CPU1

CPU0 CPU1

WT-Cache

Memory

WT-Cache

X = 0X = 0

X = 1X = 1

X = 0



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Another Example

 The issue in the previous examples was shared access including writes

 Assume C99:

 Two threads:

 Thread 0: writes to a

 Thread 1: writes to b

 The timeline is not specified

 Assume non-coherent write-back cache

 What may end up in main memory?

 False sharing: two threads access different data in the same cache line

11

struct twoint {

int a;

int b;

}

Cache Coherence

 Basic problem: threads on different cores with private caches access the 
same data, including with writes

 Cache coherence requirements

A memory system is coherent if it guarantees the following:

 Write propagation: updates are eventually visible to all readers

 Write serialization: writes to the same location must be observed in order

Everything else: memory model issues (later)

12



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Cache Coherence Protocol

 Programmer cannot deal with unpredictable behavior!

 Hardware mechanism to ensure coherence: 
Cache controller executes protocol to maintain coherence

Fundamental Mechanisms

 Snooping

 Shared bus or (broadcast) network 

 Directory-based 

 Record (in a memory) information necessary to maintain coherence
E.g., owner and state of a line etc.

13

Cache Coherence Approaches

 Snooping

 Shared bus or (broadcast) network

 Cache controller snoops all transactions

 Monitors and changes state data in cache

 Works at small scale, challenging at large-scale

 Example: Intel Xeon etc.

 Directory-based

 Record information necessary to maintain coherence
E.g., owner and state of cache lines

 Central or distributed directory

 Scalable but more complex/expensive

 Example: Intel Xeon Phi

14
Source: Intel



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Cache Coherence Parameters

 Concerns/Goals

 Performance

 Implementation cost (chip space)

 Correctness

 (Memory model side effects)

 Issues

 Detection (when does a controller need to act)

 Enforcement (how does a controller guarantee coherence)

 Granularity of block sharing (typically cache block size)

15

Cache Coherence

 Basic problem: threads on different cores with private caches access the 
same data, including with writes

 Cache coherence requirements

A memory system is coherent if it guarantees the following:

 Write propagation: updates are eventually visible to all readers

 Write serialization: writes to the same location must be observed in order

Everything else: memory model issues (later)

16



© Markus Püschel
Computer Science

DPHPC
Spring 2019

An Engineering Approach: Empirical start

 Problem 1: stale reads

 Cache 1 holds value that was already modified in cache 2

 Solution:

Disallow this state

Invalidate all remote copies before allowing a write to complete

 Problem 2: lost update

 Incorrect write back of modified line writes main memory in different 
order from the order of the write operations or overwrites neighboring 
data

 Solution:

Disallow more than one modified copy

17

Invalidation vs. update

 Invalidation-based:

 Write to a shared line has to invalidate copies in other caches

 Subsequent writes by the same thread to the same cache line are efficient

 Update-based:

 Local write updates copies in other caches

 All sharers continue to hit cache line after one core writes

 Supports producer-consumer pattern well

 Many writes cause many updates

 Hybrid forms are possible!

 MESI (next): Invalidation-based

18



© Markus Püschel
Computer Science

DPHPC
Spring 2019

 Most common hardware implementation of coherence

aka. “Illinois protocol”

Each cache line has one of the following states (added as bits to line):

 Modified (M)

 Local copy has been modified, no copies in other caches

 Memory is stale

 Exclusive (E)

 No copies in other caches

 Memory is up to date

 Shared (S)

 Unmodified copies may exist in other caches 

 Memory is up to date

 Invalid (I)

 Line is not in cache

MESI Cache Coherence

19

Put on board

 Draw 4 cores with private caches, memory, bus

20



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Terminology

 Clean line:

 Content of cache line and main memory is identical (memory is up to date)

 Can be evicted without write-back

 Dirty line:

 Content of cache line and main memory differ (memory is stale)

 Needs to be written back eventually
Time depends on protocol details

 Bus transaction:

 A signal on the bus that can be observed by all caches

 Usually blocking (only one signal at a time)

 Local (private) read/write:

 A load/store operation originating at a core connected to the cache

21

Transitions in Response to Local Reads

 State is M

 No bus transaction, same state

 State is E

 No bus transaction, same state

 State is S

 No bus transaction, same state

 State is I

 Generate bus read (BusRd)
May force other cache operations (see later)

 Other cache(s) signal “shared” if they hold a copy

 If “shared” was signaled, go to state S

 Otherwise, go to state E

22

M E

S I

BusRd(!shared)

BusRd(shared)



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Transitions in Response to Local Writes

 State is M

 No bus transaction

 State is E

 No bus transaction

 Go to state M

 State is S

 Line already local & clean

 There may be other copies

 Generate bus read for upgrade to exclusive ownership (BusRdX*)
May force other cache operations (see later)

 Go to state M

 State is I

 Generate bus read for exclusive ownership (BusRdX)
May force other cache operations (see later)

 Go to state M
23

M E

S I

BusRdX* BusRdX

Transitions in Response to Snooped BusRd

 State is M

 Write cache line back to main memory

 Signal “shared”

 Go to state S 

 State is E

 Signal “shared”

 Go to state S

 State is S

 Signal “shared”

 State is I

 Ignore

24

M E

S I

Write back
Signal “shared”

Signal “shared”

Signal “shared”



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Transitions in Response to Snooped BusRdX

 State is M

 Write cache line back to memory

 Go to I (discard line)

 State is E

 Go to I (discard line)

 State is S

 Go to I (discard line)

 State is I

 Ignore

 BusRdX* is handled like BusRdX!

25

M E

S I

Write back

MESI State Diagram (FSM)

M E

IS

BusRd/FlushOpt

PrRd/-
PrWr/-

PrWr/BusRdX*

BusRd/Writeback

PrWr/BusRdX

BusRdX/Writeback

PrWr/-

PrRd/-
BusRd/FlushOpt

PrRd/BusRd(shared)

BusRdX/FlushOpt

BusRdX/FlushOpt

PrRd/BusRd(!shared)

PrRd/-

26

Additional detail: FlushOpt = processor (may) send its copy of cache line on bus for 
possible faster read by other processor. On writebacks the cacheline is always on the 
bus for possible reading.

BusRd/-
BusRdX/-



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Small Exercise

 Initially: all in I state

27

Action P1 state P2 state P3 state Bus action Data from

P1 reads x

P2 reads x

P1 writes x

P1 reads x

P3 writes x

Small Exercise

 Initially: all in I state

Action P1 state P2 state P3 state Bus action Data from

P1 reads x E I I BusRd Memory

P2 reads x S S I BusRd Memory or 
Cache of P1 
(FlushOpt)

P1 writes x M I I BusRdX* Cache

P1 reads x M I I - Cache

P3 writes x I I M BusRdX Memory or 
Cache of P1 
(FlushOpt)

28



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Related Protocols: MOESI (AMD)

 Extended MESI protocol (What could be improved?)

 Cache-to-cache transfer of modified cache lines

 Cache in M or (new) O state always transfers cache line to requesting cache

 No need to contact (slow) main memory

 Avoids write back when another process accesses cache line

 Good when cache-to-cache performance is higher than cache-to-memory

E.g., shared last level cache!

29

Related Protocols: MOESI (AMD)
 Modified (M): Modified Exclusive

 No copies in other caches, local copy dirty

 Memory is stale, cache supplies copy (reply to BusRd*)

 Owner (O): Modified Shared

 Exclusive right to make changes

 Other S copies may exist (“dirty sharing”)

 Memory is stale, cache supplies copy (reply to BusRd*)

 Exclusive (E):

 Same as MESI (one local copy, up to date memory)

 Shared (S):

 Unmodified copy may exist in other caches

 Memory is up to date unless an O copy exists in another cache

 Invalid (I):

 Same as MESI

30



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Multi-level caches

 Most systems have multi-level caches (here assume 2)

 Problem: only “last level cache” is connected to bus or network

 Yet, snoop requests are relevant for inner-levels of cache (L1)

 Modifications of L1 data may not be visible at L2 (and thus the bus)

 L1/L2 modifications

 On BusRd check if line is in M state in L1

It may be in E or S in L2!

 On BusRdX(*) send invalidations to L1

 Everything else can be handled in L2

31

Directory-based cache coherence

 Snooping does not scale

 Bus transactions must be globally visible

 Implies broadcast

 Typical solution: tree-based (hierarchical) snooping

 Root becomes a bottleneck

 Directory-based schemes are more scalable

 Directory (one entry for each cache line) keeps track of all owning caches

 Point-to-point update to involved processors

No broadcast

Can use specialized (high-bandwidth) network, e.g., HT, QPI …

32



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Basic Scheme (Sketch)

 System with N processors Pi

 For each memory block (size: cache block) maintain a directory entry

 N presence bits
i-th bit set = block is in cache of Pi

 1 dirty bit (red)

 First proposed by 
Censier and Feautrier (1978)

P0

Main Memory

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 1 0 1

X = 0

Cache block containing x
(and adjacent data)!

33

Presence bits

Dirty bit

Main Memory

Directory-based CC: Read miss

 P0 intends to read, misses 

 If dirty bit (in directory) is off

 Read from main memory

 Set presence[i]

 Supply data to reader

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

X = 7

Read X

X = 71

34



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Main Memory

Directory-based CC: Read miss

 P0 intends to read, misses 

 If dirty bit is on

 Recall cache line from Pj

(determine by presence[])

 Update memory

 Unset dirty bit, block is shared

 Set presence[i]

 Supply data to reader

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0

Read X

X = 0

1

X = 0

0

35

Main Memory

Directory-based CC: Write miss

 P0 intends to write, misses 

 If dirty bit (in directory) is off

 Send invalidations to all Pj

with presence[j] turned on

 Unset presence bit for all processors

 Set dirty bit

 Set presence[i], owner Pi

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

1

X = 7

0 1

X = 0

36



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Main Memory

Directory-based CC: Write miss

 P0 intends to write, misses 

 If dirty bit is on

 Recall cache line from owner Pj, 
invalidate there

 Write to cache

 Unset presence[j]

 Set presence[i]

 Dirty bit stays on

 Acknowledge to writer

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

1

X = 1

0

X = 0

37

Read hit and Write hit

 Not shown, think about it at home

38



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Discussion

 Scaling of memory bandwidth

 No centralized memory

 Directory-based approaches scale with restrictions

 Require presence bit for each cache 

 Number of bits determined at design time

 Directory requires memory (size scales linearly)

 Shared vs. distributed directory

 Software emulation

 Distributed shared memory (DSM)

 Emulate cache coherence in software (e.g., TreadMarks)

39

Example Fast Fourier Transform

40

Input 
(here: 16 values)

Output

Each stage has 8 butterflies

permutation

butterfly: one add, one sub, 
one mult (not shown)



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Example: Fast Fourier Transform

41

Six-step FFT

Input (16 values)Output

Assume: Cache line 
can hold 2 values

Multi-core FFT

Open Problems (for projects, theses, research)

 Tune algorithms to cache-coherence schemes

 What is the optimal parallel algorithm for a given scheme?

 Parameterize for an architecture

 Measure and classify hardware 

 Read Maranget et al. “A Tutorial Introduction to the ARM and POWER 
Relaxed Memory Models” and have fun!

 RDMA consistency is not well understood!

 GPU memories are not well understood!

Huge potential for new insights!

 Can we program (easily) without cache coherence?

 How to fix the problems with inconsistent values?

 Compiler support (issues with arrays)?

42


