
© Markus Püschel
Computer Science

DPHPC
Spring 2019

Design of Parallel and High-Performance
Computing
Fall 2019
Lecture: Cache Coherency

Instructor: Tal Ben-Nun & Markus Püschel

TA: Timo Schneider

Cache Read

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set

• Check if any line in set
has matching tag

• Yes + line valid: hit

• Locate data starting
at offset

E = 2e lines per set 
E = associativity, E = 1: direct mapped

2



© Markus Püschel
Computer Science

DPHPC
Spring 2019

What about writes?

 What to do on a write-hit?

 Write-through: write immediately to memory

 Write-back: defer write to memory until replacement of line

 What to do on a write-miss?

 Write-allocate: load into cache, update line in cache

 No-write-allocate: writes immediately to memory

Write-back/write-allocate (Most common)

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

1: load

2: updateupdate

Write-through/no-write-allocate

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

1: update

2: update update

3

Put on board

Cache Architectures

 Multi level caches (L1, L2, …, common today)

 Multi-port vs. single port

 Shared vs. private (in multicore computers, see next slide)

 Inclusive vs. exclusive (usually inclusive = content of smaller caches is 
in larger caches in the hierarchy)

 Write back vs. write through (usually write-back)

 Victim cache to reduce conflict misses

 …

4



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Caches in a Multicore Computer (Example)

5

CPU1 CPU2 CPU3 CPU4

L1 L1 L1 L1

L2 L2 L2 L2

L3

Memory

Private cache

Shared cache

Many Variants Possible

6

Problem? Coherence!



© Markus Püschel
Computer Science

DPHPC
Spring 2019

DPHPC Overview

7

Today: Cache Coherence

 Motivation

 Terminology, snooped-based vs. directory-based

 Snooped based: MESI protocol

 MOESI

 Directory-based coherence

8



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Write-Back Cache

9

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

3. CPU0 writes X=1
• stores X=1 in its cache

4. CPU1 writes X =2 
• stores X=2 in its cache

5. CPU1 writes back cache line
• stores X=2 in in memory

6. CPU0 writes back cache line
• stores X=1 in memory
Later (!) store X=2 from CPU1 lost

Requires write serialization!

CPU0 CPU1

WB-Cache

Memory

WB-Cache

X = 0X = 0

X = 1 X = 2

X = 2X = 1

X = 0

Write-Through Cache

10

Requires write propagation!

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

3. CPU0 writes X=1
• stores X=1 in its cache
• stores X=1 in memory

4. CPU1 reads X from its cache
• loads X=0 from its cache
Incoherent value for X on CPU1

CPU0 CPU1

WT-Cache

Memory

WT-Cache

X = 0X = 0

X = 1X = 1

X = 0



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Another Example

 The issue in the previous examples was shared access including writes

 Assume C99:

 Two threads:

 Thread 0: writes to a

 Thread 1: writes to b

 The timeline is not specified

 Assume non-coherent write-back cache

 What may end up in main memory?

 False sharing: two threads access different data in the same cache line

11

struct twoint {

int a;

int b;

}

Cache Coherence

 Basic problem: threads on different cores with private caches access the 
same data, including with writes

 Cache coherence requirements

A memory system is coherent if it guarantees the following:

 Write propagation: updates are eventually visible to all readers

 Write serialization: writes to the same location must be observed in order

Everything else: memory model issues (later)

12



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Cache Coherence Protocol

 Programmer cannot deal with unpredictable behavior!

 Hardware mechanism to ensure coherence: 
Cache controller executes protocol to maintain coherence

Fundamental Mechanisms

 Snooping

 Shared bus or (broadcast) network 

 Directory-based 

 Record (in a memory) information necessary to maintain coherence
E.g., owner and state of a line etc.

13

Cache Coherence Approaches

 Snooping

 Shared bus or (broadcast) network

 Cache controller snoops all transactions

 Monitors and changes state data in cache

 Works at small scale, challenging at large-scale

 Example: Intel Xeon etc.

 Directory-based

 Record information necessary to maintain coherence
E.g., owner and state of cache lines

 Central or distributed directory

 Scalable but more complex/expensive

 Example: Intel Xeon Phi

14
Source: Intel



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Cache Coherence Parameters

 Concerns/Goals

 Performance

 Implementation cost (chip space)

 Correctness

 (Memory model side effects)

 Issues

 Detection (when does a controller need to act)

 Enforcement (how does a controller guarantee coherence)

 Granularity of block sharing (typically cache block size)

15

Cache Coherence

 Basic problem: threads on different cores with private caches access the 
same data, including with writes

 Cache coherence requirements

A memory system is coherent if it guarantees the following:

 Write propagation: updates are eventually visible to all readers

 Write serialization: writes to the same location must be observed in order

Everything else: memory model issues (later)

16



© Markus Püschel
Computer Science

DPHPC
Spring 2019

An Engineering Approach: Empirical start

 Problem 1: stale reads

 Cache 1 holds value that was already modified in cache 2

 Solution:

Disallow this state

Invalidate all remote copies before allowing a write to complete

 Problem 2: lost update

 Incorrect write back of modified line writes main memory in different 
order from the order of the write operations or overwrites neighboring 
data

 Solution:

Disallow more than one modified copy

17

Invalidation vs. update

 Invalidation-based:

 Write to a shared line has to invalidate copies in other caches

 Subsequent writes by the same thread to the same cache line are efficient

 Update-based:

 Local write updates copies in other caches

 All sharers continue to hit cache line after one core writes

 Supports producer-consumer pattern well

 Many writes cause many updates

 Hybrid forms are possible!

 MESI (next): Invalidation-based

18



© Markus Püschel
Computer Science

DPHPC
Spring 2019

 Most common hardware implementation of coherence

aka. “Illinois protocol”

Each cache line has one of the following states (added as bits to line):

 Modified (M)

 Local copy has been modified, no copies in other caches

 Memory is stale

 Exclusive (E)

 No copies in other caches

 Memory is up to date

 Shared (S)

 Unmodified copies may exist in other caches 

 Memory is up to date

 Invalid (I)

 Line is not in cache

MESI Cache Coherence

19

Put on board

 Draw 4 cores with private caches, memory, bus

20



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Terminology

 Clean line:

 Content of cache line and main memory is identical (memory is up to date)

 Can be evicted without write-back

 Dirty line:

 Content of cache line and main memory differ (memory is stale)

 Needs to be written back eventually
Time depends on protocol details

 Bus transaction:

 A signal on the bus that can be observed by all caches

 Usually blocking (only one signal at a time)

 Local (private) read/write:

 A load/store operation originating at a core connected to the cache

21

Transitions in Response to Local Reads

 State is M

 No bus transaction, same state

 State is E

 No bus transaction, same state

 State is S

 No bus transaction, same state

 State is I

 Generate bus read (BusRd)
May force other cache operations (see later)

 Other cache(s) signal “shared” if they hold a copy

 If “shared” was signaled, go to state S

 Otherwise, go to state E

22

M E

S I

BusRd(!shared)

BusRd(shared)



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Transitions in Response to Local Writes

 State is M

 No bus transaction

 State is E

 No bus transaction

 Go to state M

 State is S

 Line already local & clean

 There may be other copies

 Generate bus read for upgrade to exclusive ownership (BusRdX*)
May force other cache operations (see later)

 Go to state M

 State is I

 Generate bus read for exclusive ownership (BusRdX)
May force other cache operations (see later)

 Go to state M
23

M E

S I

BusRdX* BusRdX

Transitions in Response to Snooped BusRd

 State is M

 Write cache line back to main memory

 Signal “shared”

 Go to state S 

 State is E

 Signal “shared”

 Go to state S

 State is S

 Signal “shared”

 State is I

 Ignore

24

M E

S I

Write back
Signal “shared”

Signal “shared”

Signal “shared”



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Transitions in Response to Snooped BusRdX

 State is M

 Write cache line back to memory

 Go to I (discard line)

 State is E

 Go to I (discard line)

 State is S

 Go to I (discard line)

 State is I

 Ignore

 BusRdX* is handled like BusRdX!

25

M E

S I

Write back

MESI State Diagram (FSM)

M E

IS

BusRd/FlushOpt

PrRd/-
PrWr/-

PrWr/BusRdX*

BusRd/Writeback

PrWr/BusRdX

BusRdX/Writeback

PrWr/-

PrRd/-
BusRd/FlushOpt

PrRd/BusRd(shared)

BusRdX/FlushOpt

BusRdX/FlushOpt

PrRd/BusRd(!shared)

PrRd/-

26

Additional detail: FlushOpt = processor (may) send its copy of cache line on bus for 
possible faster read by other processor. On writebacks the cacheline is always on the 
bus for possible reading.

BusRd/-
BusRdX/-



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Small Exercise

 Initially: all in I state

27

Action P1 state P2 state P3 state Bus action Data from

P1 reads x

P2 reads x

P1 writes x

P1 reads x

P3 writes x

Small Exercise

 Initially: all in I state

Action P1 state P2 state P3 state Bus action Data from

P1 reads x E I I BusRd Memory

P2 reads x S S I BusRd Memory or 
Cache of P1 
(FlushOpt)

P1 writes x M I I BusRdX* Cache

P1 reads x M I I - Cache

P3 writes x I I M BusRdX Memory or 
Cache of P1 
(FlushOpt)

28



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Related Protocols: MOESI (AMD)

 Extended MESI protocol (What could be improved?)

 Cache-to-cache transfer of modified cache lines

 Cache in M or (new) O state always transfers cache line to requesting cache

 No need to contact (slow) main memory

 Avoids write back when another process accesses cache line

 Good when cache-to-cache performance is higher than cache-to-memory

E.g., shared last level cache!

29

Related Protocols: MOESI (AMD)
 Modified (M): Modified Exclusive

 No copies in other caches, local copy dirty

 Memory is stale, cache supplies copy (reply to BusRd*)

 Owner (O): Modified Shared

 Exclusive right to make changes

 Other S copies may exist (“dirty sharing”)

 Memory is stale, cache supplies copy (reply to BusRd*)

 Exclusive (E):

 Same as MESI (one local copy, up to date memory)

 Shared (S):

 Unmodified copy may exist in other caches

 Memory is up to date unless an O copy exists in another cache

 Invalid (I):

 Same as MESI

30



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Multi-level caches

 Most systems have multi-level caches (here assume 2)

 Problem: only “last level cache” is connected to bus or network

 Yet, snoop requests are relevant for inner-levels of cache (L1)

 Modifications of L1 data may not be visible at L2 (and thus the bus)

 L1/L2 modifications

 On BusRd check if line is in M state in L1

It may be in E or S in L2!

 On BusRdX(*) send invalidations to L1

 Everything else can be handled in L2

31

Directory-based cache coherence

 Snooping does not scale

 Bus transactions must be globally visible

 Implies broadcast

 Typical solution: tree-based (hierarchical) snooping

 Root becomes a bottleneck

 Directory-based schemes are more scalable

 Directory (one entry for each cache line) keeps track of all owning caches

 Point-to-point update to involved processors

No broadcast

Can use specialized (high-bandwidth) network, e.g., HT, QPI …

32



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Basic Scheme (Sketch)

 System with N processors Pi

 For each memory block (size: cache block) maintain a directory entry

 N presence bits
i-th bit set = block is in cache of Pi

 1 dirty bit (red)

 First proposed by 
Censier and Feautrier (1978)

P0

Main Memory

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 1 0 1

X = 0

Cache block containing x
(and adjacent data)!

33

Presence bits

Dirty bit

Main Memory

Directory-based CC: Read miss

 P0 intends to read, misses 

 If dirty bit (in directory) is off

 Read from main memory

 Set presence[i]

 Supply data to reader

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

X = 7

Read X

X = 71

34



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Main Memory

Directory-based CC: Read miss

 P0 intends to read, misses 

 If dirty bit is on

 Recall cache line from Pj

(determine by presence[])

 Update memory

 Unset dirty bit, block is shared

 Set presence[i]

 Supply data to reader

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0

Read X

X = 0

1

X = 0

0

35

Main Memory

Directory-based CC: Write miss

 P0 intends to write, misses 

 If dirty bit (in directory) is off

 Send invalidations to all Pj

with presence[j] turned on

 Unset presence bit for all processors

 Set dirty bit

 Set presence[i], owner Pi

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

1

X = 7

0 1

X = 0

36



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Main Memory

Directory-based CC: Write miss

 P0 intends to write, misses 

 If dirty bit is on

 Recall cache line from owner Pj, 
invalidate there

 Write to cache

 Unset presence[j]

 Set presence[i]

 Dirty bit stays on

 Acknowledge to writer

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

1

X = 1

0

X = 0

37

Read hit and Write hit

 Not shown, think about it at home

38



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Discussion

 Scaling of memory bandwidth

 No centralized memory

 Directory-based approaches scale with restrictions

 Require presence bit for each cache 

 Number of bits determined at design time

 Directory requires memory (size scales linearly)

 Shared vs. distributed directory

 Software emulation

 Distributed shared memory (DSM)

 Emulate cache coherence in software (e.g., TreadMarks)

39

Example Fast Fourier Transform

40

Input 
(here: 16 values)

Output

Each stage has 8 butterflies

permutation

butterfly: one add, one sub, 
one mult (not shown)



© Markus Püschel
Computer Science

DPHPC
Spring 2019

Example: Fast Fourier Transform

41

Six-step FFT

Input (16 values)Output

Assume: Cache line 
can hold 2 values

Multi-core FFT

Open Problems (for projects, theses, research)

 Tune algorithms to cache-coherence schemes

 What is the optimal parallel algorithm for a given scheme?

 Parameterize for an architecture

 Measure and classify hardware 

 Read Maranget et al. “A Tutorial Introduction to the ARM and POWER 
Relaxed Memory Models” and have fun!

 RDMA consistency is not well understood!

 GPU memories are not well understood!

Huge potential for new insights!

 Can we program (easily) without cache coherence?

 How to fix the problems with inconsistent values?

 Compiler support (issues with arrays)?

42


