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What about writes? Put on board

=  What to do on a write-hit?
= Write-through: write immediately to memory
= Write-back: defer write to memory until replacement of line

= What to do on a write-miss?
" Write-allocate: load into cache, update line in cache
" No-write-allocate: writes immediately to memory

Write-back/write-allocate (Most common) Write-through/no-write-allocate

update

1: update

cru cru ()

Write-hit Write-miss Write-hit Write-miss

Cache Architectures

m  Multi level caches (L1, L2, ..., common today)
m Multi-port vs. single port
m Shared vs. private (in multicore computers, see next slide)

m Inclusive vs. exclusive (usually inclusive = content of smaller caches is
in larger caches in the hierarchy)

m  Write back vs. write through (usually write-back)

m Victim cache to reduce conflict misses
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Caches in a Multicore Computer (Example)
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DPHPC Overview

DPHPC
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Today: Cache Coherence

= Motivation

m Terminology, snooped-based vs. directory-based

m Snooped based: MESI protocol

= MOESI

m Directory-based coherence
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Write-Back Cache

WB-Cache WB-Cache
X=1 X=2

CPU,reads X from memory

* loads X=0 into its cache
CPU, reads X from memory

* loads X=0 into its cache
CPU, writes X=1

e stores X=1in its cache
CPU, writes X =2

e stores X=2 in its cache
CPU, writes back cache line

e stores X=2 in in memory
CPU, writes back cache line

e stores X=1in memory

Later (!) store X=2 from CPU, lost

Requires write serialization!

Write-Through Cache

WT-Cache
X=1

CPU,reads X from memory

* loads X=0 into its cache
CPU, reads X from memory

* loads X=0 into its cache
CPU, writes X=1

* stores X=1in its cache

* stores X=1 in memory
CPU, reads X from its cache

* loads X=0 from its cache

Incoherent value for X on CPU,

Requires write propagation!

10
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Another Example

The issue in the previous examples was shared access including writes

Assume C99: struct twoint {
int a;
int b;

Two threads:
® Thread O: writes to a
" Thread 1: writes to b
" The timeline is not specified

Assume non-coherent write-back cache

® What may end up in main memory?

False sharing: two threads access different data in the same cache line

11

Cache Coherence

m Basic problem: threads on different cores with private caches access the

same data, including with writes

m Cache coherence requirements

A memory system is coherent if it guarantees the following:

= Write propagation: updates are eventually visible to all readers

= Write serialization: writes to the same location must be observed in order
Everything else: memory model issues (later)

12
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Cache Coherence Protocol

= Programmer cannot deal with unpredictable behavior!

= Hardware mechanism to ensure coherence:
Cache controller executes protocol to maintain coherence

Fundamental Mechanisms

= Snooping
® Shared bus or (broadcast) network

m Directory-based

= Record (in a memory) information necessary to maintain coherence

E.g., owner and state of a line etc.

13

Cache Coherence Approaches

. Gy

®m Snooping
= Shared bus or (broadcast) network - [

® Cache controller snoops all transactions o

" Monitors and changes state data in cache
= Works at small scale, challenging at large-scale
= Example: Intel Xeon etc.

m Directory-based

= Record information necessary to maintain coherence
E.g., owner and state of cache lines

= Central or distributed directory

QP! PCle

-8

= Scalable but more complex/expensive
sofoparsve (T T T T
= Example: Intel Xeon Phi wowle| | [ [T eee
rr-o it
\

»

o

Source: Intel
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Cache Coherence Parameters

m Concerns/Goals
= Performance
" |Implementation cost (chip space)
= Correctness
= (Memory model side effects)

m lIssues
= Detection (when does a controller need to act)
= Enforcement (how does a controller guarantee coherence)
® Granularity of block sharing (typically cache block size)

Cache Coherence

m Basic problem: threads on different cores with private caches access the
same data, including with writes
m Cache coherence requirements
A memory system is coherent if it guarantees the following:
= Write propagation: updates are eventually visible to all readers
= Write serialization: writes to the same location must be observed in order
Everything else: memory model issues (later)

16

DPHPC
Spring 2019



© Markus Piischel ETH
Computer Science s

An Engineering Approach: Empirical start

= Problem 1: stale reads
® Cache 1 holds value that was already modified in cache 2
= Solution:
Disallow this state
Invalidate all remote copies before allowing a write to complete

m Problem 2: lost update
" |ncorrect write back of modified line writes main memory in different
order from the order of the write operations or overwrites neighboring
data
= Solution:
Disallow more than one modified copy

17

Invalidation vs. update

= Invalidation-based:
= Write to a shared line has to invalidate copies in other caches
" Subsequent writes by the same thread to the same cache line are efficient

Update-based:
" Local write updates copies in other caches

= All sharers continue to hit cache line after one core writes
® Supports producer-consumer pattern well
= Many writes cause many updates

Hybrid forms are possible!

m  MESI (next): Invalidation-based

18
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MESI Cache Coherence

m  Most common hardware implementation of coherence
aka. “lllinois protocol”

Each cache line has one of the following states (added as bits to line):

m  Modified (M)
® |ocal copy has been modified, no copies in other caches
" Memory is stale

m Exclusive (E)

= No copies in other caches

= Memory is up to date Put on board
= Shared (S)

= Unmodified copies may exist in other caches
= Memory is up to date

= Invalid (1)
" Lineis notin cache 19

m Draw 4 cores with private caches, memory, bus

20
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Terminology

m Clean line:

® Content of cache line and main memory is identical (memory is up to date)
® Can be evicted without write-back

Dirty line:
= Content of cache line and main memory differ (memory is stale)

= Needs to be written back eventually
Time depends on protocol details

Bus transaction:

= Asignal on the bus that can be observed by all caches
=  Usually blocking (only one signal at a time)

Local (private) read/write:

= A load/store operation originating at a core connected to the cache

21

Transitions in Response to Local Reads

m StateisM
" No bus transaction, same state

m StateisE
" No bus transaction, same state

BusRd(!shared)
m Stateis S

= No bus transaction, same state

m Stateis|

®  Generate bus read (BusRd)

May force other cache operations (see later)
= Other cache(s) signal “shared” if they hold a copy
= |f “shared” was signaled, go to state S

BusRd(shared)

= Otherwise, go to state E

22
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Transitions in Response to Local Writes

m Stateis M
® No bus transaction
m StateisE
" No bus transaction
* Go to state M BusRdx
m StateisS
® line already local & clean
= There may be other copies
" Generate bus read for upgrade to exclusive ownership (BusRdX*)
May force other cache operations (see later)
" GotostateM
m Stateis|

® Generate bus read for exclusive ownership (BusRdX)
May force other cache operations (see later)

" Gotostate M .

Transitions in Response to Snooped BusRd

m Stateis M
= Write cache line back to main memory
= Signal “shared”
" GotostateS

Write back
m StateisE Signal “shared”

= Signal “shared”
" GotostateS

Signal “shared”

m StateisS

= Signal “shared”
Signal “shared”

m Stateis|
" |gnore

24
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Transitions in Response to Snooped BusRdX

m Stateis M
" Write cache line back to memory
" Goto |l (discard line)
m StateisE
® Go tol (discard line) Write back
m StateisS
" Goto |l (discard line)
m Stateis|

" |gnore

m BusRdX* is handled like BusRdX!

MESI State Diagram (FSM)

PrRd/-
PrWwr/-

PrWwr/-

BusRd/FlushOpt

~ 1
1
BusRdX/FlushOpt

1

1
PrWr/BusRdX* 1
1
1
1

PrRd/BusRd(!shared)

\
vk_ PrRd/BusRd(shared)  _ ! Busrd/-

BusRdX/-

PrRd/-
BusRd/FlushOpt

Additional detail: FlushOpt = processor (may) send its copy of cache line on bus for
possible faster read by other processor. On writebacks the cacheline is always on the
bus for possible reading. 26
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Small Exercise

m Initially: all in | state

““ . i

P2 reads x

P1 writes x

P1 reads x

27
Small Exercise
= Initially: all in | state
“
E | | BusRd Memory
P2 reads x S S | BusRd Memory or
Cache of P1
(FlushOpt)
M | | BusRdX* Cache
| | M BusRdX Memory or
Cache of P1
(FlushOpt)
28
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Related Protocols: MOESI (AMD)

m Extended MESI protocol (What could be improved?)

m Cache-to-cache transfer of modified cache lines
® Cache in M or (new) O state always transfers cache line to requesting cache
" No need to contact (slow) main memory

m Avoids write back when another process accesses cache line
® Good when cache-to-cache performance is higher than cache-to-memory
E.g., shared last level cache!

29

Related Protocols: MOESI (AMD)

= Modified (M): Modified Exclusive
= No copies in other caches, local copy dirty

= Memory is stale, cache supplies copy (reply to BusRd*) (o — L'”““:"D
) . el s D ) .&,,.
= Owner (0): Modified Shared C
= Exclusive right to make changes
= QOther S copies may exist (“dirty sharing”)

= Memory is stale, cache supplies copy (reply to BusRd*)

m Exclusive (E):
= Same as MESI (one local copy, up to date memory)

m Shared (S):

= Unmodified copy may exist in other caches e

= Memory is up to date unless an O copy exists in another cache

m Invalid (I):
= Same as MESI

30

© Markus Piischel ETH

Computer Science s

idgenassische Technische Hochschule Zurich
i3 Federal Institute of Technology Zurich

DPHPC
Spring 2019



Multi-level caches

m Most systems have multi-level caches (here assume 2)
® Problem: only “last level cache” is connected to bus or network
" Yet, snoop requests are relevant for inner-levels of cache (L1)
= Modifications of L1 data may not be visible at L2 (and thus the bus)

= L1/L2 modifications
® On BusRd check if line is in M state in L1
It may be in EorSin L2!
® On BusRdX(*) send invalidations to L1
= Everything else can be handled in L2

31

Directory-based cache coherence

= Snooping does not scale
® Bus transactions must be globally visible
® Implies broadcast

m Typical solution: tree-based (hierarchical) snooping
® Root becomes a bottleneck

m Directory-based schemes are more scalable
= Directory (one entry for each cache line) keeps track of all owning caches
® Point-to-point update to involved processors
No broadcast
Can use specialized (high-bandwidth) network, e.g., HT, QPI ...

32
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Basic Scheme (Sketch)

m System with N processors P,

m For each memory block (size: cache block) maintain a directory entry

= N presence bits
i-th bit set = block is in cache of P,

= 1 dirty bit (red) Po &

m First proposed by
Censier and Feautrier (1978)

Main Memory

Directory

i | | JEY Dirty bit
—

Presence bits

Cache block containing x

(and adjacent data)!
33

Directory-based CC: Read miss

m P, intends to read, misses

m If dirty bit (in directory) is off
= Read from main memory
= Set presenceli]
® Supply data to reader

Main Memory

Directory

34
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Directory-based CC: Read miss

m P, intends to read, misses

m If dirty bitis on

® Recall cache line from P,
(determine by presence[])

= Update memory
= Unset dirty bit, block is shared
= Set presenceli]

Main Memory

Directory

® Supply data to reader

35

Directory-based CC: Write miss

m P, intends to write, misses

m If dirty bit (in directory) is off

® Send invalidations to all P,
with presence[j] turned on

® Unset presence bit for all processors
= Set dirty bit
= Set presence[i], owner P

Main Memory

Directory

36
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Directory-based CC: Write miss

m P, intends to write, misses
Write X=0

m If dirty bitis on

® Recall cache line from owner P,
invalidate there

= Write to cache
= Unset presencelj] Main Memory
= Set presenceli]

Directory

= Dirty bit stays on

= Acknowledge to writer

37

Read hit and Write hit

m Not shown, think about it at home

38
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Discussion

m Scaling of memory bandwidth

" No centralized memory

m Directory-based approaches scale with restrictions

= Require presence bit for each cache

® Number of bits determined at design time

® Directory requires memory (size scales linearly)

® Shared vs. distributed directory

m Software emulation

® Distributed shared memory (DSM)
® Emulate cache coherence in software (e.g., TreadMarks)

39

Example Fast Fourier Transform

Stage3

Stage 2

Stagel

Stage0 Bit reversal
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Output — —
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Each stage has 8 butterflies

Yo

W

o
T

butterfly: one add, one sub,
one mult (not shown)

Input
% (here: 16 values)
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Example: Fast Fourier Transform

Communication Paralel OFTs Communication Parallel OFTs Communication

Six-step FFT

LLLJ

Output

LLLJ

E Input (16 values)

L
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Multi-core FFT
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[
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|
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Open Problems (for projects, theses, research)

= Tune algorithms to cache-coherence schemes
® What is the optimal parallel algorithm for a given scheme?
® Parameterize for an architecture

m Measure and classify hardware

® Read Maranget et al. “A Tutorial Introduction to the ARM and POWER
Relaxed Memory Models” and have fun!

= RDMA consistency is not well understood!
= GPU memories are not well understood!
Huge potential for new insights!

m Can we program (easily) without cache coherence?
" How to fix the problems with inconsistent values?
= Compiler support (issues with arrays)?

42
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