Design of Parallel and High-Performance

Computing
Fall 2019
Lecture: Cache Coherency

Instructor: Tal Ben-Nun & Markus Plischel
TA: Timo Schneider

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

* Locate set

* Check if any line in set
caChe Read has matching tag
E = 2¢ lines per set

E = associativity, E = 1: direct mapped
A * Locate data starting

- at offset

* Yes + line valid: hit

Address of word:
S=Zssets< | ” | \{ | | t bits | s bits | b bits |

tag set block
index offset

| I - | |

\
data begins at this offset
[v] (e] [o]1]2]---- [54]
valid bit | ~—
B = 2" bytes per cache block (the data) 2
© Markus Piischel ETH DPHPC

Computer Science = Spring 2019

© Markus Piischel ETH
Computer Science

What about writes? Put on board

= What to do on a write-hit?
= Write-through: write immediately to memory
= Write-back: defer write to memory until replacement of line

= What to do on a write-miss?
" Write-allocate: load into cache, update line in cache
" No-write-allocate: writes immediately to memory

Write-back/write-allocate (Most common) Write-through/no-write-allocate

update

1: update

cru cru ()

Write-hit Write-miss Write-hit Write-miss

Cache Architectures

m Multi level caches (L1, L2, ..., common today)
m Multi-port vs. single port
m Shared vs. private (in multicore computers, see next slide)

m Inclusive vs. exclusive (usually inclusive = content of smaller caches is
in larger caches in the hierarchy)

m Write back vs. write through (usually write-back)

m Victim cache to reduce conflict misses

DPHPC
Spring 2019

© Markus Piischel ETH
Computer Science swi

Caches in a Multicore Computer (Example)

)

cru, | | cry,

-

1 | | u

2 | | L

Private cache

]7 Shared cache

Many Variants Possible

[cru, | | cru, | [cpu, | [cpu,
1 [ua | [u | u
(2 (e | [e | [2
l 13 J

e

Problem? Coherence!

[cru, | [cru, [cpu, | [cru, |

[| [u | [u | [u]

|' L | LIZ ‘I

l B J

—

DPHPC
Spring 2019

© Markus Piischel ETH
Computer Science s

DPHPC Overview

DPHPC
® locality parallelism
2 L
=] T
= -caches vector ISA shared memory distributed memory
£ - memory hierarchy,
o I cache coherency i
o I 1
i (_memory distributed
3 " “models ' " algorithms '
[&]
= locks group commu-
=} lock free nications
wait free
linearizability

| Amdahl's and Gustafson's law |

I L
2 . memory _— PRAM - LogP |
o I L | L]
2 o P

1/0 complexity

balance principles | balance principles I

Little's Law

scheduling

Today: Cache Coherence

= Motivation

m Terminology, snooped-based vs. directory-based

m Snooped based: MESI protocol

= MOESI

m Directory-based coherence

DPHPC
Spring 2019

© Markus Piischel ETH
Idger chn

Computer Science s

Write-Back Cache

WB-Cache WB-Cache
X=1 X=2

CPU,reads X from memory

* loads X=0 into its cache
CPU, reads X from memory

* loads X=0 into its cache
CPU, writes X=1

e stores X=1in its cache
CPU, writes X =2

e stores X=2 in its cache
CPU, writes back cache line

e stores X=2 in in memory
CPU, writes back cache line

e stores X=1in memory

Later (!) store X=2 from CPU, lost

Requires write serialization!

Write-Through Cache

WT-Cache
X=1

CPU,reads X from memory

* loads X=0 into its cache
CPU, reads X from memory

* loads X=0 into its cache
CPU, writes X=1

* stores X=1in its cache

* stores X=1 in memory
CPU, reads X from its cache

* loads X=0 from its cache

Incoherent value for X on CPU,

Requires write propagation!

10

DPHPC
Spring 2019

© Markus Piischel ETH
Computer Science s

Another Example

The issue in the previous examples was shared access including writes

Assume C99: struct twoint {
int a;
int b;

Two threads:
® Thread O: writes to a
" Thread 1: writes to b
" The timeline is not specified

Assume non-coherent write-back cache

® What may end up in main memory?

False sharing: two threads access different data in the same cache line

11

Cache Coherence

m Basic problem: threads on different cores with private caches access the

same data, including with writes

m Cache coherence requirements

A memory system is coherent if it guarantees the following:

= Write propagation: updates are eventually visible to all readers

= Write serialization: writes to the same location must be observed in order
Everything else: memory model issues (later)

12

DPHPC
Spring 2019

© Markus Piischel ETH
Computer Science s

Cache Coherence Protocol

= Programmer cannot deal with unpredictable behavior!

= Hardware mechanism to ensure coherence:
Cache controller executes protocol to maintain coherence

Fundamental Mechanisms

= Snooping
® Shared bus or (broadcast) network

m Directory-based

= Record (in a memory) information necessary to maintain coherence

E.g., owner and state of a line etc.

13

Cache Coherence Approaches

. Gy

®m Snooping
= Shared bus or (broadcast) network - [

® Cache controller snoops all transactions o

" Monitors and changes state data in cache
= Works at small scale, challenging at large-scale
= Example: Intel Xeon etc.

m Directory-based

= Record information necessary to maintain coherence
E.g., owner and state of cache lines

= Central or distributed directory

QP! PCle

-8

= Scalable but more complex/expensive
sofoparsve (T T T T
= Example: Intel Xeon Phi wowle| | [[T eee
rr-o it
\

»

o

Source: Intel

14

idgenassische Technische Hochschule Zurich
i3 Federal Institute of Technology Zuric

DPHPC
Spring 2019

© Markus Piischel ETH
Computer Science s

Cache Coherence Parameters

m Concerns/Goals
= Performance
" |Implementation cost (chip space)
= Correctness
= (Memory model side effects)

m lIssues
= Detection (when does a controller need to act)
= Enforcement (how does a controller guarantee coherence)
® Granularity of block sharing (typically cache block size)

Cache Coherence

m Basic problem: threads on different cores with private caches access the
same data, including with writes
m Cache coherence requirements
A memory system is coherent if it guarantees the following:
= Write propagation: updates are eventually visible to all readers
= Write serialization: writes to the same location must be observed in order
Everything else: memory model issues (later)

16

DPHPC
Spring 2019

© Markus Piischel ETH
Computer Science s

An Engineering Approach: Empirical start

= Problem 1: stale reads
® Cache 1 holds value that was already modified in cache 2
= Solution:
Disallow this state
Invalidate all remote copies before allowing a write to complete

m Problem 2: lost update
" |ncorrect write back of modified line writes main memory in different
order from the order of the write operations or overwrites neighboring
data
= Solution:
Disallow more than one modified copy

17

Invalidation vs. update

= Invalidation-based:
= Write to a shared line has to invalidate copies in other caches
" Subsequent writes by the same thread to the same cache line are efficient

Update-based:
" Local write updates copies in other caches

= All sharers continue to hit cache line after one core writes
® Supports producer-consumer pattern well
= Many writes cause many updates

Hybrid forms are possible!

m MESI (next): Invalidation-based

18

DPHPC
Spring 2019

© Markus Piischel ETH
Computer Science =

MESI Cache Coherence

m Most common hardware implementation of coherence
aka. “lllinois protocol”

Each cache line has one of the following states (added as bits to line):

m Modified (M)
® |ocal copy has been modified, no copies in other caches
" Memory is stale

m Exclusive (E)

= No copies in other caches

= Memory is up to date Put on board
= Shared (S)

= Unmodified copies may exist in other caches
= Memory is up to date

= Invalid (1)
" Lineis notin cache 19

m Draw 4 cores with private caches, memory, bus

20

DPHPC
Spring 2019

© Markus Piischel ETH
Computer Science s

Terminology

m Clean line:

® Content of cache line and main memory is identical (memory is up to date)
® Can be evicted without write-back

Dirty line:
= Content of cache line and main memory differ (memory is stale)

= Needs to be written back eventually
Time depends on protocol details

Bus transaction:

= Asignal on the bus that can be observed by all caches
= Usually blocking (only one signal at a time)

Local (private) read/write:

= A load/store operation originating at a core connected to the cache

21

Transitions in Response to Local Reads

m StateisM
" No bus transaction, same state

m StateisE
" No bus transaction, same state

BusRd(!shared)
m Stateis S

= No bus transaction, same state

m Stateis|

® Generate bus read (BusRd)

May force other cache operations (see later)
= Other cache(s) signal “shared” if they hold a copy
= |f “shared” was signaled, go to state S

BusRd(shared)

= Otherwise, go to state E

22

DPHPC
Spring 2019

Transitions in Response to Local Writes

m Stateis M
® No bus transaction
m StateisE
" No bus transaction
* Go to state M BusRdx
m StateisS
® line already local & clean
= There may be other copies
" Generate bus read for upgrade to exclusive ownership (BusRdX*)
May force other cache operations (see later)
" GotostateM
m Stateis|

® Generate bus read for exclusive ownership (BusRdX)
May force other cache operations (see later)

" Gotostate M .

Transitions in Response to Snooped BusRd

m Stateis M
= Write cache line back to main memory
= Signal “shared”
" GotostateS

Write back
m StateisE Signal “shared”

= Signal “shared”
" GotostateS

Signal “shared”

m StateisS

= Signal “shared”
Signal “shared”

m Stateis|
" |gnore

24

© Markus Pischel ETH DPHPC
Computer Science s Spring 2019

© Markus Piischel ETH

. g
Computer Science s

Transitions in Response to Snooped BusRdX

m Stateis M
" Write cache line back to memory
" Goto |l (discard line)
m StateisE
® Go tol (discard line) Write back
m StateisS
" Goto |l (discard line)
m Stateis|

" |gnore

m BusRdX* is handled like BusRdX!

MESI State Diagram (FSM)

PrRd/-
PrWwr/-

PrWwr/-

BusRd/FlushOpt

~ 1
1
BusRdX/FlushOpt

1

1
PrWr/BusRdX* 1
1
1
1

PrRd/BusRd(!shared)

\
vk_ PrRd/BusRd(shared) _ ! Busrd/-

BusRdX/-

PrRd/-
BusRd/FlushOpt

Additional detail: FlushOpt = processor (may) send its copy of cache line on bus for
possible faster read by other processor. On writebacks the cacheline is always on the
bus for possible reading. 26

DPHPC
Spring 2019

© Markus Piischel ETH

Small Exercise

m Initially: all in | state

““ . i

P2 reads x

P1 writes x

P1 reads x

27
Small Exercise
= Initially: all in | state
“
E | | BusRd Memory
P2 reads x S S | BusRd Memory or
Cache of P1
(FlushOpt)
M | | BusRdX* Cache
| | M BusRdX Memory or
Cache of P1
(FlushOpt)
28

ische Technische Hachschule Zirich

COMPULET SCIENCE St tesetissesre o crsotop sonch

DPHPC
Spring 2019

Related Protocols: MOESI (AMD)

m Extended MESI protocol (What could be improved?)

m Cache-to-cache transfer of modified cache lines
® Cache in M or (new) O state always transfers cache line to requesting cache
" No need to contact (slow) main memory

m Avoids write back when another process accesses cache line
® Good when cache-to-cache performance is higher than cache-to-memory
E.g., shared last level cache!

29

Related Protocols: MOESI (AMD)

= Modified (M): Modified Exclusive
= No copies in other caches, local copy dirty

= Memory is stale, cache supplies copy (reply to BusRd*) (o — L'”““:"D
) . el s D) .&,,.
= Owner (0): Modified Shared C
= Exclusive right to make changes
= QOther S copies may exist (“dirty sharing”)

= Memory is stale, cache supplies copy (reply to BusRd*)

m Exclusive (E):
= Same as MESI (one local copy, up to date memory)

m Shared (S):

= Unmodified copy may exist in other caches e

= Memory is up to date unless an O copy exists in another cache

m Invalid (I):
= Same as MESI

30

© Markus Piischel ETH

Computer Science s

idgenassische Technische Hochschule Zurich
i3 Federal Institute of Technology Zurich

DPHPC
Spring 2019

Multi-level caches

m Most systems have multi-level caches (here assume 2)
® Problem: only “last level cache” is connected to bus or network
" Yet, snoop requests are relevant for inner-levels of cache (L1)
= Modifications of L1 data may not be visible at L2 (and thus the bus)

= L1/L2 modifications
® On BusRd check if line is in M state in L1
It may be in EorSin L2!
® On BusRdX(*) send invalidations to L1
= Everything else can be handled in L2

31

Directory-based cache coherence

= Snooping does not scale
® Bus transactions must be globally visible
® Implies broadcast

m Typical solution: tree-based (hierarchical) snooping
® Root becomes a bottleneck

m Directory-based schemes are more scalable
= Directory (one entry for each cache line) keeps track of all owning caches
® Point-to-point update to involved processors
No broadcast
Can use specialized (high-bandwidth) network, e.g., HT, QPI ...

32

© Markus Pischel ETH DPHPC
Computer Science s Spring 2019

© Markus Piischel ETH
Computer Science s

Basic Scheme (Sketch)

m System with N processors P,

m For each memory block (size: cache block) maintain a directory entry

= N presence bits
i-th bit set = block is in cache of P,

= 1 dirty bit (red) Po &

m First proposed by
Censier and Feautrier (1978)

Main Memory

Directory

i | | JEY Dirty bit
—

Presence bits

Cache block containing x

(and adjacent data)!
33

Directory-based CC: Read miss

m P, intends to read, misses

m If dirty bit (in directory) is off
= Read from main memory
= Set presenceli]
® Supply data to reader

Main Memory

Directory

34

DPHPC
Spring 2019

© Markus Piischel ETH
Computer Science .

Directory-based CC: Read miss

m P, intends to read, misses

m If dirty bitis on

® Recall cache line from P,
(determine by presence[])

= Update memory
= Unset dirty bit, block is shared
= Set presenceli]

Main Memory

Directory

® Supply data to reader

35

Directory-based CC: Write miss

m P, intends to write, misses

m If dirty bit (in directory) is off

® Send invalidations to all P,
with presence[j] turned on

® Unset presence bit for all processors
= Set dirty bit
= Set presence[i], owner P

Main Memory

Directory

36

DPHPC
Spring 2019

© Markus Piischel ETH
Computer Science .

Directory-based CC: Write miss

m P, intends to write, misses
Write X=0

m If dirty bitis on

® Recall cache line from owner P,
invalidate there

= Write to cache
= Unset presencelj] Main Memory
= Set presenceli]

Directory

= Dirty bit stays on

= Acknowledge to writer

37

Read hit and Write hit

m Not shown, think about it at home

38

DPHPC
Spring 2019

© Markus Piischel ETH
Computer Science s

Discussion

m Scaling of memory bandwidth

" No centralized memory

m Directory-based approaches scale with restrictions

= Require presence bit for each cache

® Number of bits determined at design time

® Directory requires memory (size scales linearly)

® Shared vs. distributed directory

m Software emulation

® Distributed shared memory (DSM)
® Emulate cache coherence in software (e.g., TreadMarks)

39

Example Fast Fourier Transform

Stage3

Stage 2

Stagel

Stage0 Bit reversal

\ Y/ N\ | |
\W// -
\\V/// -
] AN ||
Output — —
L v —
[\ -
AN (|
[/A\ -
T W /N ||

N /) permutation

v

Each stage has 8 butterflies

Yo

W

o
T

butterfly: one add, one sub,
one mult (not shown)

Input
% (here: 16 values)

40

DPHPC
Spring 2019

© Markus Piischel ETH
Computer SCience s

Example: Fast Fourier Transform

Communication Paralel OFTs Communication Parallel OFTs Communication

Six-step FFT

LLLJ

Output

LLLJ

E Input (16 values)

L

LI
I
[
[TTT

Assume: Cache line
Socecnge maado sesesese resworn mascwee CAN hOld 2 values

Multi-core FFT

N,

7\

1]
I
[TTTTT

[
[TTTT

|
L

41

Open Problems (for projects, theses, research)

= Tune algorithms to cache-coherence schemes
® What is the optimal parallel algorithm for a given scheme?
® Parameterize for an architecture

m Measure and classify hardware

® Read Maranget et al. “A Tutorial Introduction to the ARM and POWER
Relaxed Memory Models” and have fun!

= RDMA consistency is not well understood!
= GPU memories are not well understood!
Huge potential for new insights!

m Can we program (easily) without cache coherence?
" How to fix the problems with inconsistent values?
= Compiler support (issues with arrays)?

42

DPHPC
Spring 2019

