
spcl.inf.ethz.ch

@spcl_eth

TIMO SCHNEIDER <TIMOS@INF.ETHZ.CH>

Communication Models

spcl.inf.ethz.ch

@spcl_eth

 Next Monday (lecture) + Thursday (recitation)

 10 min / Team (hard limit)

 Order is randomized!!! → everyone needs to have their presentation ready on Monday

 Make sure to address comments from the 1:1 meetings

 Send your presentation by monday morning 10:00 to Timo, Subject [DPHPC Team XX Presentation]

 Report due on 12. January, 23:59, send by email to Timo, Tal and Markus on CC

 Subject [DPHPC Team XX Report]

 Page limit: 6 pages, see course website for template.

 Grade: 50% report + presentations, meeting) + 50% exam (2hrs, written, no notes)

2

Project Presentations

spcl.inf.ethz.ch

@spcl_eth

 Making predictions, e.g., for algorithm selection.

 Performance debugging

3

Why model communication performance?

spcl.inf.ethz.ch

@spcl_eth

 Bandwidth?

 A high-performance homing pigeon flies 100 km/h and can carry 75g

 MicroSD Card: 400 GB, 0.25g

 Pidgeon has BW of 266 Gb/s from Zurich to Bern (better than HPC network)

Problems?

4

What is communication performance?

spcl.inf.ethz.ch

@spcl_eth

 All processors can work in parallel

 Communication is free

 Cost: Number of steps/instructions

 Many cool algorithms, i.e., find maximum of N numbers in O(1) steps

 Drawbacks of this model?

S. Fortune and J. Wyllie Parallelism in Random Access Machines, 1978

5

Model: PRAM

spcl.inf.ethz.ch

@spcl_eth

 All processors work in parallel for some time, then synchronize (superstep)

 In each superstep, processors can exchange h messages of size m

 Cost of superstep: m*h*1/g (g=Bandwidth)

 Communication is not free any more!

 What is the cost of a Broadcast in this model?

 Drawbacks of this model?

L. G. Valiant A Bridging Model for Parallel Computation, 1990 6

Model: BSP

spcl.inf.ethz.ch

@spcl_eth

 Processor are not synchronized automatically, they exchange messages.

 Time to send/receive message of size s: T(s)=alpha+s*beta

– Latency modelled by alpha

– Bandwidth is modelled by beta

 While we are sending/receiving no other operations are possible

 Cost of a broadcast in this model?

7

Alpha-Beta Model

spcl.inf.ethz.ch

@spcl_eth

8

Bcast in Alpha-Beta

 Root sends to P-1 others: T(s) = (P-1)(alpha+s*beta)

 Most processes do nothing!

 K-ary tree: T(s) = k*(alpha+s*beta)*log(k,P)

 Optimal k? (assume s=1)



spcl.inf.ethz.ch

@spcl_eth

9

Bcast in Alpha-Beta

spcl.inf.ethz.ch

@spcl_eth

10

Bcast in Alpha-Beta

 Discussion: Is this optimal?

spcl.inf.ethz.ch

@spcl_eth

11

Bcast in Alpha-Beta: Large s

 If s is large, our k-ary tree algorithm leaves injection bandwidth on the table.

 Idea: Pipelining – split message in segments of size z

 Processor i sends to i+1

 Runtime = T(s) = (P-2+s/z)*(alpha+z*beta)



 For P=4, alpha=10, beta=1, s=10^6, z=10^5 this is about 2x faster than binomial tree!

 Exercise: What is the optimal z?

spcl.inf.ethz.ch

@spcl_eth

 Easy to work with, e.g., compute optimal tree radix, segment size, etc.

 Matches the messaging paradigm, no hidden features we don’t have in practice, such as synchronization

 No overlap between sending/receiving or communication and computation

 Often does not match experimental result – NICs are complex!

12

Alpha-Beta Model

spcl.inf.ethz.ch

@spcl_eth

 L=Latency

 o=host overhead on sending/receiving CPU

 g=gap between messages, imposed by NIC

 P=number of processors in the network

13

LogP Model

spcl.inf.ethz.ch

@spcl_eth

 Sending a single message

– 2o+L

 Round-Trip

– 4o+2L

 Sending n messages

– L+(n-1)max(g,o)+2o

– often simplified in practice, i.e., assume o>g, drop -1, etc.

14

LogP Model

spcl.inf.ethz.ch

@spcl_eth

 We can only send messages of a single size!

 The idea was: networks use packets – but packets can vary in size, HW usually offloads packetizing

 Idea: Add message size back into LogP!

15

LogP Model: Realistic?

spcl.inf.ethz.ch

@spcl_eth

 L,o,g,P are the same as in LogP

 G is the inverse of bandwith (Cost per Byte)

16

LogGP

spcl.inf.ethz.ch

@spcl_eth

 Sending a single message of size s

– 2o+L+(s-1)G

 Round trip of a single message of size s

– 4o+2L+2(s-1)G

 Sending n messages of size s

– L+(n-1)max(g,o)+n(s-1)G+2o

17

LogGP

spcl.inf.ethz.ch

@spcl_eth

 Assuming max(o,g) > G, sending large messages is good!

 Splitting messages only helps when pipelining (cf. LogP)



18

LogGP: Simple Observations

spcl.inf.ethz.ch

@spcl_eth

 Now instead of looking at Broadcast, let’s look at Scatter

 Scatter: Single root, different data (size s) for each of the P processors

 Simple idea: send a message to each P-1 processors

 Runtime: T(s) = g(P-2) + G(P-1)(s-1) + L

 Can we do better?

19

LogGP: Scatter

spcl.inf.ethz.ch

@spcl_eth

 Root sends half the data to p1, other half to p2

 p1 and p2 become new roots - problem is reduced to half the size

 T(s) = log2(P)(L+2o) + (P-1)sG

20

LogGP: Scatter

spcl.inf.ethz.ch

@spcl_eth

 On MPI Send

– Either send data immediately – and buffer at receiver (EAGER Protocol)

– Or wait until receiver is ready (RENDEZVOUS Protocol)



21

Message Passing - Implementations

spcl.inf.ethz.ch

@spcl_eth

 L,o,g,G,P same as in LogGP

 S is the eager-threshold, if s>S add 2L+4o

 Hard to use in algorithm design and lower-bound proofs

 Good for simulations

22

LogGPS

spcl.inf.ethz.ch

@spcl_eth

 Use a LogGPS model

 Reads MPI traces, can extrapolate, inject noise, change parameters, etc.

Hoefler, Schneider, Lumsdaine: LogGOPSim – Simulating Large-Scale Applications in the LogGOPS Model

23

LogGOPSim

spcl.inf.ethz.ch

@spcl_eth

 Can simulate 100,000 processes of a real application in a day on my laptop

Hoefler, Schneider, Lumsdaine: LogGOPSim – Simulating Large-Scale Applications in the LogGOPS Model
24

LogGOPSim: Use cases

spcl.inf.ethz.ch

@spcl_eth

 What happens to my application if...

Hoefler, Schneider, Lumsdaine: LogGOPSim – Simulating Large-Scale Applications in the LogGOPS Model
25

LogGOPSim: Use cases

spcl.inf.ethz.ch

@spcl_eth

 Can you think of anything important which we did not model?

 We always assume uniform bandwidth/latency across the network

 No congestion!

 Reality: Many different topologies to choose from (why?)

 Reality: Adaptive Routing is hard (why?)

26

Modeling: What did we miss?

Hoefler, Schneider, Lumsdaine:
Multistage Switches are not Crossbars: Effects of Static
Routing in High-Performance Networks

spcl.inf.ethz.ch

@spcl_eth

 Sure, next step is simulating packets/switch buffers

 Useless for algorithm design, ok for simulations (LogGOPSim is faster than reality this is much slower)

 What if we want to design switches / routing algorithms – good option

 Many tools available: OMNET++, Booksim, NS3, SST, etc.

 But is there a step in between?

27

Can we get more accurate models than LogGOPSim?

spcl.inf.ethz.ch

@spcl_eth

28

Topologies: Linear Array

 Each PE has a small local storage

 How do we sort on this?

 What is the best sequential sorting algorithm (comparison based)?

 What is the parallel speedup using this approach?

spcl.inf.ethz.ch

@spcl_eth

29

Recap

 PRAM: Communication is free (CRCW-PRAM) or modelled with unit costs

 BSP: Supersteps, too coarse for, e.g., collectives

 Alpha-Beta: Easy to prove things in, but no overlap of sending with anything else (recv or compute)

 LogP: Overlap, simple packetization, does not reflect higher bandwidth for bigger messages

 LogGP: Realistic packetization, much harder to prove optimality (many open problems), ignores
eager/rdvz

 LogGPS: Eager/Rdvz accounted for, even harder to use for analytical models, good for simulations
(LogGOPSim), but ignores congestion and topology

 Simulation of packets on wires buffers (OMNET++, Booksim, NS3, SST) – great detail, low speed

 Treating topology as graph: Can build specific models with analytical bounds, metrics such as bisection
ignore routing

