ETHzurich e By S EAR R gt DINFK
TIMO SCHNEIDER <TIMOS@INF.ETHZ.CH>
Communication Models

“wewn ETHZzUrich

Project Presentations

" Next Monday (lecture) + Thursday (recitation)

" 10 min / Team (hard limit)

® Orderis randomized!!! = everyone needs to have their presentation ready on Monday

" Make sure to address comments from the 1:1 meetings

" Send your presentation by monday morning 10:00 to Timo, Subject [DPHPC Team XX Presentation]

" Report due on 12. January, 23:59, send by email to Timo, Tal and Markus on CC

" Subject [DPHPC Team XX Report]

" Page limit: 6 pages, see course website for template.

" Grade: 50% report + presentations, meeting) + 50% exam (2hrs, written, no notes)

“wewn ETHZzUrich

Why model communication performance?

" Making predictions, e.g., for algorithm selection.
" Performance debugging

spcl.inf.ethz.ch

What is communication performance?

" Bandwidth?

A high-performance homing pigeon flies 100 km/h and can carry 75g
" MicroSD Card: 400 GB, 0.25g

Pidgeon has BW of 266 Gb/s from Zurich to Bern (better than HPC network)

Problems?

3 @spcl_eth

ETH:zurich

“wewn ETHZzUrich

Model: PRAM

" All processors can work in parallel

" Communication is free

® Cost: Number of steps/instructions

" Many cool algorithms, i.e., find maximum of N numbers in O(1) steps

" Drawbacks of this model?

S. Fortune and J. Wyllie Parallelism in Random Access Machines, 1978

“wewn ETHZzUrich

Model: BSP

" All processors work in parallel for some time, then synchronize (superstep)
" In each superstep, processors can exchange h messages of size m
" Cost of superstep: m*h*1/g (g=Bandwidth)

“ Communication is not free any more!

" What is the cost of a Broadcast in this model?
" Drawbacks of this model?

L. G. Valiant A Bridging Model for Parallel Computation, 1990 6

“wewn ETHZzUrich

Alpha-Beta Model

Processor are not synchronized automatically, they exchange messages.
Time to send/receive message of size s: T(s)=alpha+s*beta

— Latency modelled by alpha
— Bandwidth is modelled by beta

While we are sending/receiving no other operations are possible

Cost of a broadcast in this model?

Bcast in Alpha-Beta

Root sends to P-1 others: T(s) = (P-1)(alpha+s*beta)
Most processes do nothing!

K-ary tree: T(s) = k*(alpha+s*beta)*log(k,P)
Optimal k? (assume s=1)

0= n(P)k d

In(k)

dk

__ In(P)In(k)=In(P)

»k=e=2.71...

InZ(k)

spcl.inf.ethz.ch
3 @spcl_eth

ETH:zurich

“wewn ETHZzUrich

Bcast in Alpha-Beta

The cost of a binary tree broadcast of a message of size s is

2(logy(p+1) = 1) - (a +5- 5)

The cost of a binomial tree broadcast of a message of size s is

logy (p+1) - (5 5)

Binary tree Binomial tree

a+sp
o+sP

a+sP

a+sP jl

spcl.inf.ethz.ch ..
venien ETHZzUrich

Bcast in Alpha-Beta

" Discussion: Is this optimal?

10

“wewn ETHZzUrich

Bcast in Alpha-Beta: Large s

" If sis large, our k-ary tree algorithm leaves injection bandwidth on the table.
" Idea: Pipelining - split message in segments of size z

" Processor isends to i+1

" Runtime =T(s) = (P-2+s/z)*(alpha+z*beta)

" For P=4, alpha=10, beta=1, s=10"6, z=1075 this is about 2x faster than binomial tree!
" Exercise: What is the optimal z?

11

“wewn ETHZzUrich

Alpha-Beta Model

Easy to work with, e.g., compute optimal tree radix, segment size, etc.
Matches the messaging paradigm, no hidden features we don’t have in practice, such as synchronization

No overlap between sending/receiving or communication and computation
Often does not match experimental result - NICs are complex!

12

spcl.inf.ethz.c N
veni e [ETHZzUrich

LogP Model

“ L=Latency

" o=host overhead on sending/receiving CPU
" g=gap between messages, imposed by NIC
" P=number of processors in the network

13

“wewn ETHZzUrich

LogP Model

" Sending a single message
- 2o+l

“ Round-Trip
— 4o+2L

" Sending n messages
— L+(n-1)max(g,0)+20

— often simplified in practice, i.e., assume o0>g, drop -1, etc.

14

“wewn ETHZzUrich

LogP Model: Realistic?

We can only send messages of a single size!

The idea was: networks use packets - but packets can vary in size, HW usually offloads packetizing

Idea: Add message size back into LogP!

15

ETH:zurich

3 @spcl_eth

<
2
N
&=
R
9
N
=
K]
Q
")

® P
: ; !
= w P
P
o
O |
o
J .
) H
..... i
!
n_..
‘ﬂ
. [
.._____.:__ ﬂm
: Jat)
7 pi !
,._..mun
: u..:.,m "
Pl
:)
s Ef 3
.___,._.L =
m.‘.ﬁhu] m
AR
LA
m___.___..._...n
.GL"H_uﬁﬁﬁ ” ...ﬂ-..... ‘.
S S
L ; :
ot H F I b
Y “_ s A
: : PR
3 L
: £ r ozl
AR
- Y RV
o = I I A
¥ PP Y Y]
AT AV AV —
N N A
PR EY AV Y AV
PRV BV AV NN
PN A R B A N
PV B B A

PO e
pre®

pgﬁmmmmmmmm“mmmmmmmmimmmmmmmmu“_““"

16

G is the inverse of bandwith (Cost per Byte)

L,0,g,P are the same as in LogP

LogGP

“wewn ETHZzUrich

LogGP

" Sending a single message of size s

- 20+L+(s-1)G
" Round trip of a single message of size s

- 4o+2L+2(s-1)G

" Sending n messages of size s

— L+(n-1)max(g,0)+n(s-1)G+20

17

“wewn ETHZzUrich

LogGP: Simple Observations

Assuming max(o,g) > G, sending large messages is good!

Splitting messages only helps when pipelining (cf. LogP)

18

“wewn ETHZzUrich

LogGP: Scatter

" Now instead of looking at Broadcast, let’s look at Scatter
" Scatter: Single root, different data (size s) for each of the P processors
" Simple idea: send a message to each P-1 processors

" Runtime: T(s) = g(P-2) + G(P-1)(s-1) +L
" Can we do better?

19

“wewn ETHZzUrich

LogGP: Scatter

" Root sends half the data to p1, other half to p2

p1 and p2 become new roots - problem is reduced to half the size

" T(s) =log2(P)(L+20) + (P-1)sG

20

“wewn ETHZzUrich

Message Passing - Implementations

" On MPI Send
— Either send data immediately - and buffer at receiver (EAGER Protocol)

= Or wait until receiver is ready (RENDEZVOUS Protocol)

. 90 ; t ; ; i
Open MPI - G*s+g * R
OpenlB - G*s+g * T
e OpenIB - O‘ o _+t__¢"_ -

£
i : o H i
b s it s den it famsniinn R Jiieis ey Tt T T T I T
: +1rf TS :
+ % £ : *

Time in microseconds
5B 88 8 8 3
T
¥

[0 T L R SO SO SUVNDIRN ; SR, S

0 10000 20000 30000 40000 50000 60000
Datasize in bytes (s)

21

“wewn ETHZzUrich

LogGPS

“ L,0,8,G,P same as in LogGP

" Sis the eager-threshold, if s>S add 2L+40

" Hard to use in algorithm design and lower-bound proofs
" Good for simulations

22

“wewn ETHZzUrich

LogGOPSIim

" Use a LogGPS model
" Reads MPI traces, can extrapolate, inject noise, change parameters, etc.

T T T T3
7000 koo ____________________ _____________________ N _

6000 |- s o - - o . Rank 7 = - : 3

O U N . i) . N :
5000 Odln (bmomlal predlcted Rank5 b Gl i

)

) ' Odin (binomial, measured) | R

4000 * Big Red (blnomlal predicted) - e —
.l) - o Al - H] » » =

Latency in Microseconds

22"t " \\ ‘rJ I FR) Y o
Rank 3 sl & ¥ o o N e
3000 = LS "l
o » . - ’ .[1 1\’; n.
"'l - 2 - ’ ¥ » .
et v ol A e gt TR
Rank 2 .- . . SC Sl T
s - . 4 ’ Al w
S . s T AT
2000 e e
=" k > s N + by *
s s T AN S P
Rank 1 s : . caT N g : W
pred > ; - G
\
;

Rank 0 v A & : o

1000
0

0 16 32 48 64 80 96 112 12¢
Number of Processes

Hoefler, Schneider, Lumsdaine: LogGOPSim - Simulating Large-Scale Applications in the LogGOPS Model

23

“wewn ETHZzUrich

LogGOPSim: Use cases

" Can simulate 100,000 processes of a real application in a day on my laptop

10000 N —— o
f {1 1e+08

1000 b é éw}gf é 5
; e 5 1 1e+07

100

Simulation Time (s)
Number of Messages

| : | 1 1e+06
1) — | T — ; ______________________________ R ¢

Time | —t—
Messages ----¢--
: ' 100000

10 100 1000 10000 100000
Number of Processes

Hoefler, Schneider, Lumsdaine: LogGOPSim - Simulating Large-Scale Applications in the LogGOPS Model

24

“wewn ETHZzUrich

LogGOPSim: Use cases

What happens to my application if...
14 - . J g 1

192 _ﬂixﬂf*‘x

—
o
]

:

i

F{DMA overlap s st

no overlap ----»¢---

10x less bandwidth - x -----
1Dx Iatency

co
T

Execution Time Change (%)

o NNk
|

20 40 60 80 100 12(
Number of Processes

Hoefler, Schneider, Lumsdaine: LogGOPSim - Simulating Large-Scale Applications in the LogGOPS Model

25

“wewn ETHZzUrich

Modeling: What did we miss?

" Can you think of anything important which we did not model?

" We always assume uniform bandwidth/latency across the network
" No congestion!

" Reality: Many different topologies to choose from (why?)

" Reality: Adaptive Routing is hard (why?)

[

maasurad = o

I

e

133.6 MIB's 1812 MiBis _ 281.2 MiBls 627 4 MiB/s

=] simulated =omm |

] EFH-——] ' SRR S TR
= E |

=1 E !

= | :

= 4 f -
B E

§°f

B 2}

8

E

=

=

Figure 4. Simulation and Benchmark Results . o
for a 512 node bisect Pattern with 1MiB mes- Hoeﬂer, Schne_lder, Lumsdaine: _
sages in the CHiC system Multistage Switches are not Crossbars: Effects of Static

Routing in High-Performance Networks 9y

“wewn ETHZzUrich

Can we get more accurate models than LogGOPSim?

Sure, next step is simulating packets/switch buffers

Useless for algorithm design, ok for simulations (LogGOPSim is faster than reality this is much slower)
What if we want to design switches / routing algorithms - good option

" Many tools available: OMNET++, Booksim, NS3, SST, etc.

But is there a step in between?

27

“wewn ETHZzUrich

Topologies: Linear Array

" Each PE has a small local storage

" How do we sort on this?

" What is the best sequential sorting algorithm (comparison based)?
" What is the parallel speedup using this approach?

28

“wewn ETHZzUrich

Recap

" PRAM: Communication is free (CRCW-PRAM) or modelled with unit costs

" BSP: Supersteps, too coarse for, e.g., collectives

" Alpha-Beta: Easy to prove things in, but no overlap of sending with anything else (recv or compute)
" LogP: Overlap, simple packetization, does not reflect higher bandwidth for bigger messages

" LogGP: Realistic packetization, much harder to prove optimality (many open problems), ignores
eager/rdvz

" LogGPS: Eager/Rdvz accounted for, even harder to use for analytical models, good for simulations
(LogGOPSim), but ignores congestion and topology

" Simulation of packets on wires buffers (OMNET++, Booksim, NS3, SST) - great detail, low speed

" Treating topology as graph: Can build specific models with analytical bounds, metrics such as bisection
ignore routing

29

