
spcl.inf.ethz.ch
@spcl_eth

NIKOLI DRYDEN (NDRYDEN@ETHZ.CH)

Parallelism in Training Deep Neural Networks
DPHPC Guest Lecture

WITH CONTRIBUTIONS FROM TAL BEN-NUN, TORSTEN HOEFLER, DAN ALISTARH,
AND OTHERS AT SPCL, LLNL, UIUC, IST AUSTRIA, AND TOKYO TECH

spcl.inf.ethz.ch
@spcl_eth

§ What is deep learning?

§ Some deep neural networks

§ Parallelizing and distributing training

§ Communication for training

§ Applications

2

Overview

spcl.inf.ethz.ch
@spcl_eth

§ Russell & Norvig, Artificial Intelligence: A Modern Approach

§ Goodfellow, Bengio, & Courville, Deep Learning
§ Freely available online: http://www.deeplearningbook.org/

§ Ben-Nun & Hoefler, Demystifying Parallel and Distributed Deep Learning
§ https://arxiv.org/abs/1802.09941

§ Many slides adapted from Tal Ben-Nun, Torsten Hoefler, Svetlana Lazebnik, and prior talks

3

Some General References

http://www.deeplearningbook.org/
https://arxiv.org/abs/1802.09941

spcl.inf.ethz.ch
@spcl_eth

What is Deep Learning good for?

2012 20171989

Digit Recognition

Image Captioning
GANs

Object Classification
Segmentation

2013 2014 2016

Gameplay AI
Translation

Neural Computers Language Models

20192018

Towards
Real Physics

RTS

A very active area of research!

Subject 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

cs.AI 380 479 789 1082 1768 1028 1106 1938 2820 4263 4371

cs.CV 148 286 385 577 852 1349 2262 3631 5704 8599 10353

cs.LG 231 333 469 1222 1418 1742 2485 3564 5225 10472 17267

stat.ML 164 256 439 1131 1203 1360 1827 2628 4021 8376 11551

Total 923 1354 2082 4012 5241 5479 7680 11761 17770 31710 43542

~130 papers/day so far!

spcl.inf.ethz.ch
@spcl_eth

5

Classes of AI Problems

CHAPTER 1. INTRODUCTION

AI

Machine learning

Representation learning

Deep learning

Example:
Knowledge

bases

Example:
Logistic

regression

Example:
Shallow

autoencodersExample:
MLPs

Figure 1.4: A Venn diagram showing how deep learning is a kind of representation learning,
which is in turn a kind of machine learning, which is used for many but not all approaches
to AI. Each section of the Venn diagram includes an example of an AI technology.

9

“Unsupervised representation learning”

§ Supervised learning
§ Learn mapping from labeled inputs

argmin'∈ℋ 𝔼+,-~𝒟 ℓ 𝑓 𝑥 , 𝑦

§ Unsupervised learning
§ Learn patterns in inputs

argmin'∈ℋ 𝔼+~𝒟 ℓ 𝑓 𝑥

§ Reinforcement learning
§ Learn policy to maximize reward

argmax5∈ℋ 𝔼6~7 𝑅(𝜋, 𝑂)

§ Many others…

Deep

spcl.inf.ethz.ch
@spcl_eth

6

A brief theory of supervised deep learning (mini-batch SGD)

1.00

0.00

0.00

0.00

0.00

0.00

Cat

Dog

Airplane

Truck

Horse

Banana

labeled samples 𝑥 ∈ 𝑋 ⊂ 𝒟

𝑓 𝑥 : 𝑋 → 𝑌

label domain 𝑌

network structure
(fixed)

weights 𝑤
(learned)

𝑤∗ = argminE∈ℝG 𝔼+~𝒟 ℓ 𝑤, 𝑥

true label 𝑙(𝑥)

ℓIJK 𝑤, 𝑥 = L0 𝑓 𝑥 = 𝑙(𝑥)
1 𝑓 𝑥 ≠ 𝑙(𝑥)

0.54

0.28

0.02

0.07

0.33

0.02

Cat

Dog

Airplane

Truck

Horse

Banana

𝑓(𝑥)

layer-wise parameter update
(backpropagation)

𝑓 𝑥 = 𝑓P 𝑓PJK 𝑓PJQ …𝑓K 𝑥 …

convolution 1

convolution 2

convolution 3

pooling

fully connected

𝑓K 𝑥 𝑓Q 𝑓K 𝑥 𝑓(𝑥)…

ℓST 𝑤, 𝑥 = −V
W

𝑙 𝑥 W ⋅ log
𝑒' + \

∑^ 𝑒' + _

ℓ`a 𝑤, 𝑥 = 𝑓 𝑥 − 𝑙 𝑥 Q

spcl.inf.ethz.ch
@spcl_eth

§ ”Backward propagation of errors” (Rumelhart, Hinton, & Williams 1986)

7

A brief digression on backpropagation

1.00

0.00

0.00

0.00

0.00

0.00

Cat

Dog

Airplane

Truck

Horse

Banana

0.54

0.28

0.02

0.07

0.33

0.02

Cat

Dog

Airplane

Truck

Horse

Banana

𝑓(𝑥)

layer-wise parameter update
(backpropagation)

convolution 1

convolution 2

convolution 3

pooling

fully connected
ℓST 𝑤, 𝑥 = −V

W

𝑙 𝑥 W ⋅ log
𝑒' + \

∑^ 𝑒' + _

𝑑ℓ
𝑑𝑦

𝑑ℓ
𝑑𝑥

𝑑ℓ
𝑑𝑤

𝑑ℓ
𝑑𝑤

𝑑ℓ
𝑑𝑤

𝑑ℓ
𝑑𝑤

𝑑ℓ
𝑑𝑥

𝑑ℓ
𝑑𝑥

𝑑ℓ
𝑑𝑥

Backpropagation is just the chain rule!

spcl.inf.ethz.ch
@spcl_eth

8

Stochastic Gradient Descent
convolution 1

convolution 2

𝑓K(𝑥)

𝑓Q 𝑓K 𝑥

§ Layer storage = 𝑤c + 𝑓c 𝑜cJK + 𝛻𝑤c + 𝛻𝑜c

𝑤∗ = argminE∈ℝG 𝔼+~𝒟 ℓ 𝑤, 𝑥

convolution 3

pooling

fully connected𝑓(𝑥)

…

T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, CSUR 2019

spcl.inf.ethz.ch
@spcl_eth

9

The scale of deep learning

1.00

0.00

0.00

0.00

0.00

0.00

Cat

Dog

Airplane

Truck

Horse

Banana

0.54

0.28

0.02

0.07

0.33

0.02

Cat

Dog

Airplane

Truck

Horse

Banana

𝑓(𝑥)

layer-wise parameter update

• ImageNet 1k: 150 GB
• ImageNet 22k: ~2 TB
• Industry: Much larger

• >100 layers deep
• ~25M – >10B parameters
• 0.1 – 40 GiB storage

Bianco et al.

• 10-22k labels
• Growing
• Weeks to train

OpenAI

Deep Learning is Supercomputing!

spcl.inf.ethz.ch
@spcl_eth

10

Trends in deep learning: hardware and multi-node
The field is moving fast – trying everything imaginable – survey results from 252 papers in the area of parallel deep learning

Hardware used Shared vs. distributed memory
Deep Learning is largely on distributed memory today!

T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, CSUR 2019

spcl.inf.ethz.ch
@spcl_eth

11

Trends in distributed deep learning: node count and communication

Deep Learning research is converging to MPI!

The field is moving fast – trying everything imaginable – survey results from 252 papers in the area of parallel deep learning

T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, CSUR 2019

Communication mode

spcl.inf.ethz.ch
@spcl_eth

12

Minibatch Stochastic Gradient Descent (SGD)

0.54

0.28

0.02

0.07

0.03

0.04

0.02

Cat

Dog

Airplane

Truck

Horse

Bicycle

1.00

0.00

0.00

0.00

0.00

0.00

0.00

Cat

Dog

Airplane

Truck

Horse

Bicycle

T. Ben-Nun, T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis, CSUR 2019

spcl.inf.ethz.ch
@spcl_eth

§ Fully-connected layers (multi-layer perceptrons)

§ Convolution

§ Many other moving parts:
§ Pooling
§ Batch normalization [Ioffe & Szegedy 2015]
§ ReLU activations [Glorot, Bordes, & Bengion 2011]
§ …

13

Ingredients of a neural network: Operators

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.2: Sparse connectivity, viewed from below: We highlight one input unit, x3,
and also highlight the output units in s that are affected by this unit. (Top)When s is
formed by convolution with a kernel of width 3, only three outputs are affected by x.
(Bottom)When s is formed by matrix multiplication, connectivity is no longer sparse, so
all of the outputs are affected by x3.

336

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.2: Sparse connectivity, viewed from below: We highlight one input unit, x3,
and also highlight the output units in s that are affected by this unit. (Top)When s is
formed by convolution with a kernel of width 3, only three outputs are affected by x.
(Bottom)When s is formed by matrix multiplication, connectivity is no longer sparse, so
all of the outputs are affected by x3.

336

spcl.inf.ethz.ch
@spcl_eth

14

Fully-connected layers

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.2: Sparse connectivity, viewed from below: We highlight one input unit, x3,
and also highlight the output units in s that are affected by this unit. (Top)When s is
formed by convolution with a kernel of width 3, only three outputs are affected by x.
(Bottom)When s is formed by matrix multiplication, connectivity is no longer sparse, so
all of the outputs are affected by x3.

336

Perceptron [Rosenblatt 1958]

𝑦 = 𝑤𝑥 + 𝑏

Learned weights and bias

CHAPTER 6. DEEP FEEDFORWARD NETWORKS

0 1

x1

0

1

x
2

Original x space

Figure 6.1: Solving the XOR problem by learning a representation. The bold numbers
printed on the plot indicate the value that the learned function must output at each point.
(Left) A linear model applied directly to the original input cannot implement the XOR
function. When x1 = 0, the model’s output must increase as x2 increases. When x1 = 1,
the model’s output must decrease as x2 increases. A linear model must apply a fixed
coefficient w2 to x2. The linear model therefore cannot use the value of x1 to change
the coefficient on x2 and cannot solve this problem. (Right) In the transformed space
represented by the features extracted by a neural network, a linear model can now solve
the problem. In our example solution, the two points that must have output 1 have been
collapsed into a single point in feature space. In other words, the nonlinear features have
mapped both x = [1, 0]> and x = [0, 1]> to a single point in feature space, h = [1, 0]>.
The linear model can now describe the function as increasing in h1 and decreasing in h2.
In this example, the motivation for learning the feature space is only to make the model
capacity greater so that it can fit the training set. In more realistic applications, learned
representations can also help the model to generalize.

169

Exclusive OR

Not linearly seperable!

𝑦 = 𝜎(𝑊𝑥 + 𝑏)

W
id

th

Depth

Multi-layer Perceptron

Universal!

spcl.inf.ethz.ch
@spcl_eth

15

Convolution
Filters Feature maps (activations)

𝑁

𝐶

𝐻

𝑊

𝐹

𝐹

𝐻

𝑊
Inputs

Translation invariance

Feature learning Classification

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.2: Sparse connectivity, viewed from below: We highlight one input unit, x3,
and also highlight the output units in s that are affected by this unit. (Top)When s is
formed by convolution with a kernel of width 3, only three outputs are affected by x.
(Bottom)When s is formed by matrix multiplication, connectivity is no longer sparse, so
all of the outputs are affected by x3.

336

spcl.inf.ethz.ch
@spcl_eth

16

Operators

…

Operators

spcl.inf.ethz.ch
@spcl_eth

17

A short history of (old) CNNs

LeNet-5 [LeCun, Bottou, Bengio, & Haffner 1998]

• Average pooling
• Sigmoid/tanh nonlinearites
• Fully-connected layers at end
• Trained on MNIST (60k samples)

spcl.inf.ethz.ch
@spcl_eth

18

A short history of (old) CNNs

AlexNet [Krizhevsky, Sutskever, & Hinton 2012]

• Max pooling
• ReLU nonlinearities
• Deeper, bigger model
• Dropout
• Trained on ImageNet (1.2M images)
• GPU implementation (2 GPUs for a week)

spcl.inf.ethz.ch
@spcl_eth

19

A short history of (old) CNNs

Inception module

GoogLeNet (AKA Inception) [Szegedy et al. 2015]

spcl.inf.ethz.ch
@spcl_eth

20

ResNet-50

ResNets [He, Zhang, Ren, & Sun, 2016]

7x
7

co
nv

, 6
4,

 /2

po
ol

, /
2

1x
1

co
nv

, 6
4

3x
3

co
nv

, 6
4

1x
1

co
nv

, 2
56

1x
1

co
nv

, 6
4

3x
3

co
nv

, 6
4

1x
1

co
nv

, 2
56

1x
1

co
nv

, 6
4

3x
3

co
nv

, 6
4

1x
1

co
nv

, 2
56

1x
1

co
nv

, 1
28

, /
2

3x
3

co
nv

, 1
28

1x
1

co
nv

, 5
12

1x
1

co
nv

, 1
28

3x
3

co
nv

, 1
28

1x
1

co
nv

, 5
12

1x
1

co
nv

, 1
28

3x
3

co
nv

, 1
28

1x
1

co
nv

, 5
12

1x
1

co
nv

, 1
28

3x
3

co
nv

, 1
28

1x
1

co
nv

, 5
12

1x
1

co
nv

, 2
56

, /
2

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 2
56

3x
3

co
nv

, 2
56

1x
1

co
nv

, 1
02

4

1x
1

co
nv

, 5
12

, /
2

3x
3

co
nv

, 5
12

1x
1

co
nv

, 2
04

8

1x
1

co
nv

, 5
12

3x
3

co
nv

, 5
12

1x
1

co
nv

, 2
04

8

1x
1

co
nv

, 5
12

3x
3

co
nv

, 5
12

1x
1

co
nv

, 2
04

8

av
er

ag
e

po
ol

fc
 1

00
0

(Up to 152 layers)1x
1

co
nv

, 1
28

3x
3

co
nv

, 1
28

1x
1

co
nv

, 5
12

3x
3

co
nv

, 1
28

ba
tc

hn
or

m

R
eL

U

spcl.inf.ethz.ch
@spcl_eth

§ Sequence-to-sequence models (like RNNs but with more parallelism)
§ Revolutionizing NLP like AlexNet &co. did for computer vision

21

GPT-2 (transformers)

Comparison: ResNet-50 is 26M parameters

spcl.inf.ethz.ch
@spcl_eth

22

GPT-2 (transformers)

Masked Multi-head Self-
attention

Input

Layer Normalization

Linear+GeLU

Linear

Layer Normalization

Decoder (w/o encoder)

St
ac

ke
d
𝑁

tim
es

Scaled Dot-product Attention Scaled Dot-product Attentionh heads

Linear LinearLinear Linear LinearLinear

Concatenate

Linear

K V Q

Multi-head attention

Q VK

Matmul (QKT)

Scale

Softmax

Matmul (softmax * V)

Scaled Dot-product Attention

(From Tensor2Tensor intro notebook)

Objective: “predict the next word”

Prompt (human-written):
Recycling is good for the world.
NO! YOU COULD NOT BE MORE WRONG!!

GPT-2-xlarge generated text:
Recycling is NOT good for the world. It is bad for the environment, it is bad for our health, and it is bad
for our economy. I’m not kidding. Recycling is not good for the environment. It is destructive to the earth
and it is a major contributor to global warming. Recycling is not good for our health. It contributes to
obesity and diseases like heart disease and cancer. Recycling is bad for our economy. It increases the
cost of a product, and in turn, the price of everything that is made with that product. Recycling is not
good for our nation. We pay a tremendous price for the privilege of having the world’s most advanced
and efficient recycling system. Recycling is a huge, colossal waste of time, energy, money, and resources.
And THAT is why we need to get back to basics and get back to basics in our recycling efforts. One of the
best ways to start is to look at the process of creating a paper product. When you make a paper product,
it is basically a long chain of materials. Everything from the raw materials (wood, cardboard, paper, etc.),
to the reagents (dyes, solvents, etc.) to the printing equipment (chemicals, glue, paper, ink, etc.), to the
packaging, to the packaging materials (mercury, chemicals, etc.) to the processing equipment (heating,
cooling, etc.), to the packaging materials, to the packaging materials that are shipped overseas and to
the packaging materials that are used in the United States. Each step along the way creates tons of
waste that we constantly have to clean up. The process of making a paper product is a very wasteful
one. But the end result is something that all of us need to consume. And if we want to keep the recycling
process running efficiently, then we really need to think about each and every step that goes into
making a paper product. https://openai.com/blog/better-language-models/#sample8

https://openai.com/blog/better-language-models/

spcl.inf.ethz.ch
@spcl_eth

23

Networks

…

Operators

Network

spcl.inf.ethz.ch
@spcl_eth

24

Training

…HDD

Dataset

Sampler

Optimizer

Executor

Operators

Network

Trainer

spcl.inf.ethz.ch
@spcl_eth

25

Distributed training

…HDD

Dataset

Sampler

OptimizerDist. Optimizer

Executor

Operators

Network

Trainer

Dist. Sampler

PFSPFS

PFSPFS

spcl.inf.ethz.ch
@spcl_eth

26

Optimizing parallel deep learning systems is a bit like navigating Tokyo by public transit
--- at first glance impossibly complex but eventually doable with the right guidelines ---

(Torsten Hoefler)

spcl.inf.ethz.ch
@spcl_eth

§ Dominated by matrix-matrix multiplication
§ Standard tricks: vectorize, tile, fusion, …

§ BLAS3 GEMM
§ cuBLAS, MKL, …

27

Operator implementations: fully-connected layers

𝑌 = 𝜎(𝑊𝑋 + 𝑏)

[Oyama et al.]

Performance is not consistent!

spcl.inf.ethz.ch
@spcl_eth

28

Operator implementations: convolution

𝑌 ,',W,n = V
SoI

pJK

V
qoJ6

6

V
roJ6

6

𝑋^,S,Wsq,nsr𝑤',S,qs6,rs6

IndirectDirect

𝑤 ℱ

ℱ

ℱJK
=

×
v𝑤

FFT
4 1 9 8
5 9 9 8
0 7 3 4
2 6 3 1

1 -1 0
0.1 -2 0
3 4 1.1*

21.9 59.3 53.9 43.9

-6.3 16.8 12.3 12

9.6 15.3 25.8 14

0.4 7.1 52.1 53.1

= WinogradDirect

im2col

𝐶WP

𝑁

Reshape

im2col

…

𝐶WP

𝐶wxy ⋅ 𝐶WP

𝐾-

𝐾+

𝑊

𝐻

𝐶 w
xy

𝐶WP ⋅ 𝐾- ⋅ 𝐾+

…

𝑁 ⋅ 𝐻{ ⋅ 𝑊′
𝐶 W
P
⋅𝐾

-
⋅𝐾

+

×

GEMM,
col2im

𝑊′

𝐻′

𝐶wxy

𝒘

𝑭(𝒎, 𝒓)
Winograd
Domain

Channel-wise
summation+

𝐴� ⋅ ⋅ 𝐴

𝐺 ⋅ ⋅ 𝐺�𝐵� ⋅ ⋅ 𝐵

Element-wise
product

𝑚×𝑚

𝑟×𝑟𝑚{×𝑚′

𝑚{ = 𝑚 + 𝑟 − 1

[Chellapilla et al. 2006; Mathieu et al. 2014; Lavin & Gray 2016; Liu et al. 2017]

spcl.inf.ethz.ch
@spcl_eth

§ In cuDNN there are ~16 convolution implementations
§ Performance depends on temporary memory (workspace) size
§ Key idea: segment minibatch into microbatches, reuse

workspace, use different algorithms
§ How to choose microbatch sizes and algorithms?

29[Oyama et al. 2018]

Dynamic Programming (Space Reuse)

Integer Linear Programming (Space Sharing)

Microbatching (µ-cuDNN) – how to implement layers best in practice?

Fast (up to 4.54x faster on DeepBench)Microbatching Strategy

none (undivided)

powers-of-two only

any (unrestricted)

spcl.inf.ethz.ch
@spcl_eth

§ Parameters can be distributed across processors
§ Mini-batch has to be copied to all processors
§ Backpropagation requires complex communication every layer

30

Model parallelism – limited by network size

… 1

…

3

[Forrest et al. 1987]

spcl.inf.ethz.ch
@spcl_eth

Idle Idle

31

Pipeline parallelism – limited by network size

§ Layers/parameters can be distributed across processors
§ Sparse communication pattern (only pipeline stages)
§ Mini-batch has to be copied through all processors
§ Consistent model introduces idle-time “bubble”

[Blelloch & Rosenberg 1987]

…

1 2 3
1 2 3

1 2 3 3 2 1
3 2 1

3 2 11
1

1 1
1

1Proc 1
Proc 2
Proc 3

Microbatching

spcl.inf.ethz.ch
@spcl_eth

32

Data parallelism – limited by batch-size

§ Simple and efficient solution, easy to implement
§ Duplicate parameters at all processors
§ Affects generalization

…
…

…

[Zhang et al. 1989]

spcl.inf.ethz.ch
@spcl_eth

33

Hybrid parallelism

[Krizhevsky 2014; Dean et al. 2012; Ben-Nun & Hoefler 2019]

§ Layers/parameters can be distributed across processors
§ Can distribute minibatch
§ Often specific to layer-types (e.g., distribute fc layers but handle conv layers data-parallel)

§ Enables arbitrary combinations of data, model, and pipeline parallelism – very powerful!

Model
Parallelism

Data
Parallelism

Layer (pipeline) Parallelism

…
…

…

spcl.inf.ethz.ch
@spcl_eth

§ All definitions are fuzzy (including this 🙂)

§ Data-, model-, pipeline-, hybrid-parallelism

§ Weak vs strong scaling
§ What do you keep the same vs what do change?
§ Mini-batch weak scaling: grow the mini-batch
§ Mini-batch model scaling: grow the model size (not so useful in general…)
§ Strong scaling: Fix everything, use more GPUs

§ For convolution: based on partitioned tensor dimensions
§ Sample-, spatial-, channel-, filter-parallelism

34

Other ways to think about parallelism

spcl.inf.ethz.ch
@spcl_eth

§ Make the mini-batch really big!

35

Large mini-batches

ResNet-50

ResNet-8/CIFAR-10 ResNet-50/ImageNet-1k

Transformer/LM1B Transformer/CC

[Goyal et al. 2017; Shallue et al. 2019]

ResNet-50/ImageNet-1k

Diminishing returns
to data parallelism

Mini-batch size must be carefully managed!

Some tricks:
• Linear scaling/warmup

• Square root scaling
• LARS, LARC, LAMB, …

Often requires retuning hyperparameters!

spcl.inf.ethz.ch
@spcl_eth

§ Certain communication patterns can be optimized
§ People keep reinventing MPI

§ Baidu Allreduce, NCCL, Gloo, Horovod, …

§ What we need (for this talk):

36

Collectives for deep learning

in0 in1 in2 in3

Rank 0 Rank 1 Rank 2 Rank 3

out out out out

out[i]	=	sum(inX[i])

in0 in1 in2 in3

Rank 0 Rank 1 Rank 2 Rank 3

out0
out1

out2
out3

outY[i]	=	sum(inX[Y*count+i])

in0
in1

in2
in3

Rank 0 Rank 1 Rank 2 Rank 3

out[Y*count+i]	=	inY[i]

out out out out

Allreduce Reduce-scatter Allgather

spcl.inf.ethz.ch
@spcl_eth

37

Reduce-scatter

in0 in1 in2 in3

Rank 0 Rank 1 Rank 2 Rank 3

out0
out1

out2
out3

outY[i]	=	sum(inX[Y*count+i])

Recursive-halving

Ring

𝛼 lg 𝑝 +
𝑝 − 1
𝑝 𝑛𝛽 +

𝑝 − 1
𝑝 𝑛𝛾

𝑝 − 1 𝛼 +
𝑝 − 1
𝑝

𝑛𝛽 +
𝑝 − 1
𝑝

𝑛𝛾

spcl.inf.ethz.ch
@spcl_eth

38

Allgather

in0
in1

in2
in3

Rank 0 Rank 1 Rank 2 Rank 3

out[Y*count+i]	=	inY[i]

out out out out

Recursive-doubling

Ring

𝛼 lg 𝑝 +
𝑝 − 1
𝑝 𝑛𝛽

𝑝 − 1 𝛼 +
𝑝 − 1
𝑝 𝑛𝛽

spcl.inf.ethz.ch
@spcl_eth

39

Allreduce

in0 in1 in2 in3

Rank 0 Rank 1 Rank 2 Rank 3

out out out out

out[i]	=	sum(inX[i])

Parameter Server

Tree (reduce/broadcast)

2𝑝𝛼 + 2𝑝𝑛𝛽 + 𝑝𝑛𝛾

2𝛼 lg 𝑝 + 2𝛽𝑛 lg 𝑝 + 𝛾𝑛 lg 𝑝

spcl.inf.ethz.ch
@spcl_eth

40

Allreduce
Parameter Server

Tree
2𝑝𝛼 + 2𝑝𝑛𝛽 + 𝑝𝑛𝛾

2𝛼 lg 𝑝 + 2𝛽𝑛 lg 𝑝 + 𝛾𝑛 lg 𝑝

Butterfly (doubling)

Rabenseifner (half/double)

Ring

𝛼 lg 𝑝 + 𝛽𝑛 lg 𝑝 + 𝛾𝑛 lg 𝑝

2𝛼 lg 𝑝 + 2
𝑝 − 1
𝑝 𝑛𝛽 +

𝑝 − 1
𝑝 𝑛𝛾

2 𝑝 − 1 𝛼 + 2
𝑝 − 1
𝑝 𝑛𝛽 +

𝑝 − 1
𝑝 𝑛𝛾

Implementation matters!

spcl.inf.ethz.ch
@spcl_eth

41

Distributed data-parallelism

convolution 1

convolution 2

convolution 3

pooling

fully connected

𝑑ℓ
𝑑𝑦

𝑑ℓ
𝑑𝑥

𝑑ℓ
𝑑𝑤

𝑑ℓ
𝑑𝑤

𝑑ℓ
𝑑𝑤

𝑑ℓ
𝑑𝑤

𝑑ℓ
𝑑𝑥

𝑑ℓ
𝑑𝑥

𝑑ℓ
𝑑𝑥

convolution 1

convolution 2

convolution 3

pooling

fully connected

𝑑ℓ
𝑑𝑦

𝑑ℓ
𝑑𝑥

𝑑ℓ
𝑑𝑤

𝑑ℓ
𝑑𝑤

𝑑ℓ
𝑑𝑤

𝑑ℓ
𝑑𝑤

𝑑ℓ
𝑑𝑥

𝑑ℓ
𝑑𝑥

𝑑ℓ
𝑑𝑥

convolution 1

convolution 2

convolution 3

pooling

fully connected

convolution 1

convolution 2

convolution 3

pooling

fully connected

Allreduce!

spcl.inf.ethz.ch
@spcl_eth

42

Distributed data-parallelism

convolution 1

convolution 2

convolution 3

pooling

fully connected

𝑑ℓ
𝑑𝑦

𝑑ℓ
𝑑𝑥

𝑑ℓ
𝑑𝑤

𝑑ℓ
𝑑𝑤

𝑑ℓ
𝑑𝑤

𝑑ℓ
𝑑𝑤

𝑑ℓ
𝑑𝑥

𝑑ℓ
𝑑𝑥

𝑑ℓ
𝑑𝑥

Overlapping Fusion and algorithm selection

3x
3

co
nv

, 1
28

ba
tc

hn
or

m

R
eL

U

Very small!

Fuse!

Strong scaling Weak scaling

spcl.inf.ethz.ch
@spcl_eth

§ Trades off “statistical performance” for “hardware performance”

43

Parameter (and model) consistency - centralized

Synchronous Stale Synchronous / Bounded Asynchronous Asynchronous

𝑤 K

𝑤 K

Time

Parameter Server

Synchronization

𝑤 Q

𝑤 Q

Agent 1

Agent m

. . . 𝑤 �𝑤 I …

Sync.

Time

Parameter Server

Agent 1

Agent m
. . . 𝑤 �𝑤 I …

𝑤 K,� 𝑤 Q,�

𝑤 Q,K𝑤 K,K 𝑤 �,K

𝑤 �,�

Max. Staleness

Time

Agent 1

Agent m

. . .

𝑤 K,K

𝑤 K,� 𝑤 Q,�

𝑤 Q,K 𝑤 �,K 𝑤 �,K

Parameter Server𝑤 I 𝑤 �…

Sync.

§ Parameter exchange frequency can be controlled, while still attaining convergence:

Inconsistent

Ensemble
Learning

Synchronous
SGD

Consistent

Stale-Synchronous
SGD

Model
Averaging

(e.g., elastic)

Asynchronous
SGD (HOGWILD!)

[Dean et al. 2012; Niu et al. 2011]

spcl.inf.ethz.ch
@spcl_eth

§ Parameter exchange frequency can be controlled, while still
attaining convergence:

§ May also consider limited/slower distribution – gossip [Jin et al. 2016]

44

Synchronous Stale Synchronous / Bounded Asynchronous Asynchronous

Time

All-
Reduce

Agent 1

Agent m

. . .

…

…

.

.

. M
er

ge

𝑤 K,K

𝑤 K,� 𝑤 Q,�

Max. Staleness

𝑤(I) 𝑤(�)

𝑤 Q,K 𝑤 �,K 𝑤 �,K

All-
Reduce

𝑤 K

Time

𝑤(I) All-
Reduce

𝑤 �𝑤 Q

𝑤 Q

Agent 1

Agent m

. . .

𝑤 K

𝑤 �

…

…

All-
Reduce

Time

Agent 1

Agent m 𝑤 K,� 𝑤 Q,�

𝑤 Q,K𝑤 K,K 𝑤 �,K

𝑤 �,�

Agent r

Agent k

𝑤 K,� 𝑤 Q,� 𝑤 �,� 𝑤 �,� 𝑤 �,�

𝑤 K,^ 𝑤 Q,^ 𝑤 �,^

Parameter (and model) consistency - decentralized

Inconsistent

Ensemble
Learning

Synchronous
SGD

Consistent

Stale-Synchronous
SGD

Model
Averaging

(e.g., elastic)

Asynchronous
SGD (HOGWILD!)

spcl.inf.ethz.ch
@spcl_eth

45

Parameter consistency in deep learning

Inconsistent

Ensemble
Learning

Synchronous
SGD

Consistent

Stale-Synchronous
SGD

Model
Averaging

(e.g., elastic)

Asynchronous
SGD (HOGWILD!)

𝑤 ysK,W = 𝑤 y,W − 𝜂𝛻𝑤 y,W − 𝛼 𝑤 y,W − �𝑤y

�𝑤ysK = 1−𝛽 �𝑤y +
𝛽
𝑚V

WoK

�

𝑤 y,W

𝑤 K,K

Time

Parameter Server

Agent 1

Agent m

. . . 𝑤 �𝑤 I …

Sync.

𝑤 Q,K 𝑤 �,K 𝑤 �,K 𝑤 �,K 𝑤 �,K

𝑤 K,� 𝑤 Q,� 𝑤 �,� 𝑤 �,� 𝑤 �,� 𝑤 �,�
Elastic
Average

[Zhang et al. 2015]

Using physical forces between
different versions of 𝑤:

spcl.inf.ethz.ch
@spcl_eth

46

Parameter consistency in deep learning

Inconsistent

Ensemble
Learning

Synchronous
SGD

Consistent

Stale-Synchronous
SGD

Model
Averaging

(e.g., elastic)

Asynchronous
SGD (HOGWILD!)

Avg.

0.54

0.28

0.02

0.07

0.33

0.04

0.02

Cat

Dog

Airplane

Truck

Horse

Bicycle

[Dietterich 2000]

spcl.inf.ethz.ch
@spcl_eth

§ Lossy compression: trade off latency (local compute) for bandwidth
§ Sufficient factor broadcasting
§ Quantization:

§ 16-bit (IEEE FP16, bfloat16) becoming standard
§ QSGD (stochastic rounding) [Alistarh et al. 2016]
§ 1-bit SGD [Seide et al. 2014; Dryden et al. 2016]
§ Error feedback is important!

§ Sparsification:
§ Top-k SGD [Renggli et al. 2019]
§ Skip small weight updates

47

Communication optimization parameter server (sharded) 𝑤’ = 𝑢(𝑤, 𝛻𝑤)

𝑤𝛻𝑤

Training Agent Training Agent Training Agent Training Agent

spcl.inf.ethz.ch
@spcl_eth

48

SparCML – Quantized sparse allreduce
𝛻𝑤K 𝛻𝑤Q 𝛻𝑤� 𝛻𝑤�

+ +

+ +

[Renggli et al. 2019]

Microsoft Speech Production Workload Results – 2 weeks à 2 days!

Six epochs, 60 million params

spcl.inf.ethz.ch
@spcl_eth

§ When does data parallelism break down?

§ Communication overheads
§ Hyperparameter tuning

§ Memory for one sample
§ More GPUs than samples in a mini-batch

49

The limits to data parallelism

Need to strong scale!

spcl.inf.ethz.ch
@spcl_eth

§ Just a distributed matrix-matrix multiplication!

50

Distributed-memory fully-connected layers

𝑌 = 𝜎(𝑊𝑋 + 𝑏)

Step 2: Map computation to
the process grid

domain
per

process

divide

by p1/3

A C

B

Step 1: Find the process grid
"Top-down" (e.g., 3D)

I/O
between
domains
required!

Use SUMMA [Van Essen et al. 2015]

no reuse

domain per
processor
products

A

B

C

Step 1: Sequential schedule

Step 2: Parallel schedule
Minimize crossing

series
of outer

products

"Bottom-up" (COSMA)

No I/O
between
domains

New: COSMA [Kwasniewski et al. 2019]

spcl.inf.ethz.ch
@spcl_eth

§ Observation: Convolution is just a funny stencil operation
§ Domain decomposition with a halo exchange!

51

Spatial parallelism [Dryden et al. 2019]

P0 P1

P2 P3

P0 P1

P2 P3

P0 P1

P2 P3

max max max

max

max

Convolution dependencies Halo exchange “Push” exchange for pooling

spcl.inf.ethz.ch
@spcl_eth

52

Spatial parallelism [Dryden et al. 2019]

Filters

H/2

C
W

Input

H/2

W
F

Activations

H/2

H/2

Gradients
W

C

Error Signal

H/2

H/2

Input Error Signal

W
F

H/2

H/2

Strong scaling with fixed minibatch

Decreasing work to hide allreduces

spcl.inf.ethz.ch
@spcl_eth

§ Family of algorithms for jointly partitioning channels and filters in convolution

53

Channel/filter parallelism [Dryden et al. 2019]

Reduce-scatter
Allgather

Segmented allreduce

spcl.inf.ethz.ch
@spcl_eth

54

Stationary-𝑥: Forward

𝑥 𝑤 𝑇K 𝑦
𝐹I 𝐹K

GP
U

 0
GP

U
 1

GP
U

 2
GP

U
 3

Sa
m

pl
e

0
Sa

m
pl

e
1

Reduce-scatter

Reduce-scatter

spcl.inf.ethz.ch
@spcl_eth

55

Stationary-𝒙: Backward
𝑑𝐿
𝑑𝑥

𝑑𝐿
𝑑𝑤

𝑑𝐿
𝑑𝑦

𝑑𝐿
𝑑𝑦

GP
U

 0
GP

U
 1

GP
U

 2
GP

U
 3

Sa
m

pl
e

0
Sa

m
pl

e
1

𝐹I 𝐹K

Allgather

Allgather

Segmented
Allreduce

spcl.inf.ethz.ch
@spcl_eth

56

Segmented allreduce
Al
lre
du
ce Al
lre
du
ce

Allreduce

Data Parallelism Segmented Allreduce

spcl.inf.ethz.ch
@spcl_eth

57

Stationary-𝑦: Forward

GP
U

 0
GP

U
 1

GP
U

 2
GP

U
 3

Sa
m

pl
e

0
Sa

m
pl

e
1

𝑥 𝑥 𝑤

𝐹I

𝐹K

𝑦

Allgather

Allgather

𝐹I

𝐹K

spcl.inf.ethz.ch
@spcl_eth

58

Stationary-𝑦: Backward

GP
U

 0
GP

U
 1

GP
U

 2
GP

U
 3

Sa
m

pl
e

0
Sa

m
pl

e
1

𝑑𝐿
𝑑𝑦

𝑑𝐿
𝑑𝑤

𝑇Q
𝑑𝐿
𝑑𝑥

𝐹I

𝐹K

𝐹I

𝐹K

Segmented
Allreduce

Reduce-scatter

Reduce-scatter

spcl.inf.ethz.ch
@spcl_eth

59

Stationary-𝒘: Forward

GP
U

 0
GP

U
 1

GP
U

 2
GP

U
 3

𝑥 𝑤 𝑇K 𝑦𝑥

Allgather

Allgather

Reduce-scatter

Reduce-scatter

𝐹I 𝐹K

𝐹Q 𝐹�

𝐹I 𝐹K

𝐹Q 𝐹�

spcl.inf.ethz.ch
@spcl_eth

60

Stationary-𝒘: Backward

GP
U

 0
GP

U
 1

GP
U

 2
GP

U
 3

𝐹I 𝐹K

𝐹Q 𝐹�
Allgather

Allgather

Reduce-scatter

Reduce-scatter

𝑑𝐿
𝑑𝑦

𝑑𝐿
𝑑𝑤𝑇Q

𝑑𝐿
𝑑𝑥

𝑑𝐿
𝑑𝑦

𝐹I 𝐹K

𝐹Q 𝐹�

spcl.inf.ethz.ch
@spcl_eth

§ Provide a variety of options to enable and improve strong and weak scaling
§ Support a full spectrum of data and model types

61

General distributed convolution

Allreduce
Halo

Exchange

Allreduce

Reduce-scatter
Allgather

Segmented allreduce

Data parallelism Spatial parallelism Channel/filter parallelism

𝑁 𝐻×𝑊 𝐶×𝐹
~100-1000 GPUs ~10 GPUs ~10 GPUs

Model/Algorithm Mini-batch Top-1 Top-5 Runtime (min)

ResNet-50 (data)
8192 77.3% 93.6%

34.1

+ spatial + 4-way 𝑥, 𝑦 19.9 (1.7x)

WRN-50-2 (data)
4096 78.4% 94.3%

106.9

+ spatial + 8-way 𝑥, 𝑦 45.5 (2.3x)

WRN-50-4 (data)
2048 80.0% 95.1%

432.3

+ spatial + 4×2 𝑤 105.0 (4.1x)

spcl.inf.ethz.ch
@spcl_eth

62

Specialized hardware

ANNA [1991] TPU v1(inference); v2-3(training)
[2016-today]

Cerebrus CS-1 [2019]

Literally hundreds of other startups in this space

These form large supercomputers

spcl.inf.ethz.ch
@spcl_eth

§ Use techniques from compiler construction: DNN à Graph à IR à Transformations à HW Mapping

63

DNN Compilers

TensorFlow XLA Facebook Glow
TVM StackIntel nGraph

spcl.inf.ethz.ch
@spcl_eth

64

How to not do this

“Twelve ways to fool the masses when reporting performance of deep learning workloads”
(A humorous guide to floptimize deep learning)

https://htor.inf.ethz.ch/blog/index.php/2018/11/08/twelve-ways-to-fool-the-masses-when-reporting-performance-of-deep-learning-workloads/

spcl.inf.ethz.ch
@spcl_eth

§ Pretty cool idea isn’t it? Hyperparameters sometimes conflict
So always tune the to show the best result, whatever the result shall be!

65

8) Show performance when enabling option set A and show accuracy when
enabling option set B!

spcl.inf.ethz.ch
@spcl_eth

66

Some big deep learning applications

UQ for weather prediction [Grönquist et al. 2019] Predicting mesh tangling [Dryden et al. 2019]

Cosmology [Oyama et al. 2019]
Code comprehension [Ben-Nun et al. 2018]

Big seq2seq models

And many more!

spcl.inf.ethz.ch
@spcl_eth

67

Research opportunities

https://spcl.inf.ethz.ch/SeMa/
ndryden@ethz.ch

https://spcl.inf.ethz.ch/SeMa/

spcl.inf.ethz.ch
@spcl_eth

§ Deep learning is HPC – very similar – mainly dense linear algebra
§ Amenable to our usual set of tricks, sometimes with a twist

§ Main bottleneck is communication – reduction by trading off

§ Strong scaling requires effort
§ Very different environment from traditional HPC

§ Trade-off accuracy for performance!
§ Performance-centric view in HPC can be harmful for accuracy!

68

Parallelism in training DNNs – Summary

• Bounded synchronous SGD
• Central vs. distributed parameter server
• EASGD to ensemble learning

Parameter Consistency
• Lossless compression of gradient updates
• Quantization of gradient updates
• Sparsification of gradient updates

Parameter Accuracy

