
© Torsten Höfler & Markus Püschel
Computer Science

Design of Parallel and High Performance Computing

Fall 2013

Design of Parallel and High-Performance
Computing
Fall 2019
Lecture: Organization

Instructor: Tal Ben-Nun & Markus Püschel

TA: Timo Schneider

Course Name

 Design of Parallel and High-Performance Computing 

 Design of Parallel and High-Performance Computing Platforms?

 Design of Parallel and High-Performance Computing Applications?

 Design of Parallel and High-Performance Computing Systems?

 Design of Parallel and High-Performance Computing:
Understand principal issues involved in software and system development for 
parallel computing

2



© Torsten Höfler & Markus Püschel
Computer Science

Design of Parallel and High Performance Computing

Fall 2013

The Team

 Professors: Tal Ben-Nun & Markus Püschel

 TA: Timo Schneider
& Others

 Guest lecturer: maybe

 Possibly consultants for projects

 Course website: http://spcl.inf.ethz.ch/Teaching/2019-dphpc/

3

Administrative

 Lecture: Mo 13:15 – 16:00

 Recitation: Do 13:15 – 15:00

 Takes place as announced on website

 Sometimes used as lecture or swapped with lecture

 Room was changed to CHN C 14

 Help: 

 Email Timo: timo.schneider@inf.ethz.ch

4

http://spcl.inf.ethz.ch/Teaching/2019-dphpc/
mailto:timo.schneider@inf.ethz.ch


© Torsten Höfler & Markus Püschel
Computer Science

Design of Parallel and High Performance Computing

Fall 2013

Administrative

 Website: http://spcl.inf.ethz.ch/Teaching/2019-dphpc/

 Will contain all material (slides, homeworks, schedule, etc.)

 Mailing list: https://spcl.inf.ethz.ch/cgi-bin/mailman/listinfo/dphpc-2019 

 Background material:

 Maurice Herlihy and Nir Shavit: The Art of Multiprocessor Programming. 
Morgan Kaufmann, 2012

 Papers as mentioned

5

Work and Grading

 Work during semester:

 Regular homeworks

 Project

 Grade:

 50% Project

 50% Written exam (120 minutes, in exam period as usual)

6

http://spcl.inf.ethz.ch/Teaching/2019-dphpc/


© Torsten Höfler & Markus Püschel
Computer Science

Design of Parallel and High Performance Computing

Fall 2013

Project: Rules

 Each project is done in teams of four.

 You can use the mailing-list dphpc-forum-2019 (everybody is 
subscribed inititally) to find project partners, offer a project etc.

 Once you have a team (even without project) email the TA and we 
will take you off the list

 Ideas for projects: see below. Projects have to be approved by the 
TAs/lecturers (see next slide)

 We will track progress during the semester

Project: Timeline

 Before October 11: Find team (let TA know names). Find project. If you 
have a suggestion send email with topic and rough plan and references 
to TAs and lecturer for approval. Note that this may take more than 
one iteration.

 October 11: You have a team and an approved project.

 During semester: We will check progress in some way. Procedure and 
possible dates to come.

 End of semester: Project presentations during lecture/recitation hours.

 January 17: Project reports due (6 pages, conference style, information 
on web).

8



© Torsten Höfler & Markus Püschel
Computer Science

Design of Parallel and High Performance Computing

Fall 2013

Projects: Performance Optimization

 Pick an important algorithm/application

 Develop a parallel implementation that scales well on multicore

 Includes thorough benchmarking and experimental evaluation

 You are in charge of the project: shrink or expand as necessary!

 Requirements:

 No numerical algorithm (dominated by floating point operations)

Exceptions possible if directly related to student’s research

 Not sorting or anything that is mainly sorting

Example From Before



© Torsten Höfler & Markus Püschel
Computer Science

Design of Parallel and High Performance Computing

Fall 2013

Example From Before

Project Ideas



© Torsten Höfler & Markus Püschel
Computer Science

Design of Parallel and High Performance Computing

Fall 2013

Parallel Data Structure: 
Example Priority Queue
 Modified specification: Maintain a collection of data items, 

identified by a key. Finding the k smallest items (with the k 
smallest keys) should be supported in O(k) time. Finding any 
item by key should also be supported.

Required Operations

 queue_t init()

 void insert(queue_t q, void* data, uint64_t key)

 void*find(queue_t q, uint64_t key)

 void delete(queue_t q, uint64_t key)

 void*pop_front(queue_t q, int k) // returns k smallest elements

 void finalize(queue_t q)

Parallel Priority Queue (II)

 Requirements continued

 Multiple threads will be accessing the queue simultaneously (with all 
operations)

 Code may be written in C/C++ (gcc inline assembly is allowed ;-))

 Tips:

 Experiment with different locking strategies and compare the 
performance

 Pay attention to larger number of threads

 Maybe try MPI-3 One Sided



© Torsten Höfler & Markus Püschel
Computer Science

Design of Parallel and High Performance Computing

Fall 2013

Collective Communications
 Assume P threads in shared memory

 Each thread p has:

 a set of input elements ij,p (0≤j<n-1)

 a set of output elements oj,p (0≤j<n-1)

 The post-condition (result) is:



 i.e., all oj,p are identical on all p

 Tips:

 Use the memory hierarchy and CC protocols (inline assembly is allowed!)

 First optimize small n, then large n

Parallel Algorithms: Example BFS

 Generate an Erdős–Rényi graph G(n,p) given n and p

 Perform a breadth-first search (BFS) from n/2 vertices

 Print the average maximum distance for any vertex

 Your implementation should exploit all available cores and perform 
the BFS as fast as possible

https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model


© Torsten Höfler & Markus Püschel
Computer Science

Design of Parallel and High Performance Computing

Fall 2013

Parallel Graph Algorithms

 Many more!

 Connected Components (CC)

 Single-source shortest path (SSSP)

 All-pairs-shortest path (APSP) - too simple, looks like MatVec

 Minimum spanning tree (MST)

 Vertex coloring

 Strongly connected components

 … pick one and enjoy!

 Others

 A* search 

 Various ML and AI algorithms (only nontrivial ones)

 Always implement infrastructure to validate your code!

Mind the Lecture!!!

 Try to relate your project to the contents of the lecture!

 E.g., analyze sequential consistency (was very successful!)

 E.g., deal with memory models!

 Reason about the performance obtained

 Many more (be creative!)

 Or talk to TA

 Remember: you have until the October 11th

 You can also check the slides from last year for later lecture topics

 This is of course all up to you


