Design of Parallel and High-Performance

Computing
Fall 2019
Lecture: Organization

Instructor: Tal Ben-Nun & Markus Plischel
TA: Timo Schneider

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Course Name

m Design of Parallel and High-Performance Computing
m Design of Parallel and High-Performance Computing Platforms?
m Design of Parallel and High-Performance Computing Applications?

m Design of Parallel and High-Performance Computing Systems?

m Design of Parallel and High-Performance Computing:
Understand principal issues involved in software and system development for
parallel computing

© Torsten Hofler & Markus Piischel

ETH Design of Parallel and High Performance Computing
Computer Science « ek

Fall 2013

The Team

m Professors: Tal Ben-Nun & Markus Plischel

m TA: Timo Schneider
& Others

m Guest lecturer: maybe

m Possibly consultants for projects

m Course website: http://spcl.inf.ethz.ch/Teaching/2019-dphpc/

Administrative

m Lecture: Mo 13:15 - 16:00

m Recitation: Do 13:15 - 15:00
= Takes place as announced on website
= Sometimes used as lecture or swapped with lecture
" Room was changed to CHN C 14

m Help:
® Email Timo: timo.schneider@inf.ethz.ch

© Torsten Hofler & Markus Piischel ETH

idg

Design of Parallel and High Performance Computing
Computer Science s

Fall 2013

http://spcl.inf.ethz.ch/Teaching/2019-dphpc/
mailto:timo.schneider@inf.ethz.ch

Administrative

m Website: http://spcl.inf.ethz.ch/Teaching/2019-dphpc/

= Will contain all material (slides, homeworks, schedule, etc.)

m Mailing list: https://spcl.inf.ethz.ch/cgi-bin/mailman/listinfo/dphpc-2019

= Background material:

" Maurice Herlihy and Nir Shavit: The Art of Multiprocessor Programming.
Morgan Kaufmann, 2012

= Papers as mentioned

Work and Grading

m Work during semester:
= Regular homeworks
" Project

= Grade:
= 50% Project

= 50% Written exam (120 minutes, in exam period as usual)

© Torsten Hofler & Markus Piischel ETH

Computer Science

Design of Parallel and High Performance Computing

Fall 2013

http://spcl.inf.ethz.ch/Teaching/2019-dphpc/

Project: Rules

m Each project is done in teams of four.

m You can use the mailing-list dphpc-forum-2019 (everybody is
subscribed inititally) to find project partners, offer a project etc.

m Once you have a team (even without project) email the TA and we
will take you off the list

= lIdeas for projects: see below. Projects have to be approved by the
TAs/lecturers (see next slide)

m We will track progress during the semester

Project: Timeline

m Before October 11: Find team (let TA know names). Find project. If you
have a suggestion send email with topic and rough plan and references
to TAs and lecturer for approval. Note that this may take more than
one iteration.

m October 11: You have a team and an approved project.

m During semester: We will check progress in some way. Procedure and
possible dates to come.

m End of semester: Project presentations during lecture/recitation hours.

m January 17: Project reports due (6 pages, conference style, information
on web).

© Torsten Hofler & Markus Piischel

ETH Design of Parallel and High Performance Computing
Computer Science +

Fall 2013

= Requirements:

Projects: Performance Optimization

m Pick an important algorithm/application

m Includes thorough benchmarking and experimental evaluation

" No numerical algorithm (dominated by floating point operations)
Exceptions possible if directly related to student’s research
= Not sorting or anything that is mainly sorting

m Develop a parallel implementation that scales well on multicore

m You are in charge of the project: shrink or expand as necessary!

Example From Before

Best algorithms for different input sizes

—
o
w

Runtime (nanoseconds per element)
\

— Bitonic Mergesort SSE

— LSD Radixsort

—— Parallel Bitonic Mergesort SSE (16)
Parallel Radixsort (8)

— Parallel Radixsort SSE (4)
tbb::parallel_sort

0
2

12

Input size

© Torsten Hofler & Markus Piischel ETH

idgenassische Technische Hochschule Zurich

Computer Science sw

Design of Parallel and High Performance Computing
Fall 2013

Example From Before

= Uses our fastest implementations depending
on input size and adapts #threads accordingly

Bitonic LSD Parallel Radixsort Parallel Parallel Bitonic
Mergesort SSE Radixsort with SSE Radixsort Mergesort SSE

AN Y [[S [[S [[I N [|
28 10 12 QU 216 18 220 222 2% 926

Input Size

Project Ideas

© Torsten Hofler & Markus Piischel ETH
Computer Science o

Design of Parallel and High Performance Computing
gt Fall 2013

Parallel Data Structure:
Example Priority Queue

m Modified specification: Maintain a collection of data items,
identified by a key. Finding the k smallest items (with the k
smallest keys) should be supported in O(k) time. Finding any
item by key should also be supported.

Required Operations

queue_t init()

void insert(queue_t q, void* data, uint64_t key)
void*find(queue_t g, uint64_t key)

void delete(queue_t q, uint64_t key)

void*pop_front(queue_t q, int k) // returns k smallest elements

void finalize(queue_t q)

Parallel Priority Queue (ll)

m Requirements continued

= Multiple threads will be accessing the queue simultaneously (with all
operations)

= Code may be written in C/C++ (gcc inline assembly is allowed ;-))

m Tips:
= Experiment with different locking strategies and compare the
performance
® Pay attention to larger number of threads
" Maybe try MPI-3 One Sided

© Torsten Hofler & Markus Piischel

ETH Design of Parallel and High Performance Computing
Computer Science = " s

Fall 2013

Collective Communications

m Assume P threads in shared memory

m Each thread p has:
* asetof input elements i, (O<j<n-1)
" aset of output elements o, , (0j<n-1)

The post-condition (result) is:
P . .
- O.j-P = Ep:l .Z.j-P(O S J < ?1)
= je,all ojpare identical on all p

m Tips:
= Use the memory hierarchy and CC protocols (inline assembly is allowed!)
® First optimize small n, then large n

Parallel Algorithms: Example BFS

m Generate an ErdGs—Rényi graph G(n,p) given n and p

m Perform a breadth-first search (BFS) from n/2 vertices
® Print the average maximum distance for any vertex

= Your implementation should exploit all available cores and perform
the BFS as fast as possible

© Torsten Hofler & Markus Piischel
Computer Science

ETH Design of Parallel and High Performance Computing

Fall 2013

https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model

Parallel Graph Algorithms

= Many more!

Connected Components (CC)

Single-source shortest path (SSSP)

All-pairs-shortest path (APSP) - too simple, looks like MatVec
Minimum spanning tree (MST)

Vertex coloring

Strongly connected components

... pick one and enjoy!

m Others

A* search
Various ML and Al algorithms (only nontrivial ones)

m Always implement infrastructure to validate your code!

Mind the Lecture!!!

m Try to relate your project to the contents of the lecture!

E.g., analyze sequential consistency (was very successful!)
E.g., deal with memory models!

Reason about the performance obtained

Many more (be creative!)

Ortalk to TA

m Remember: you have until the October 11th

® You can also check the slides from last year for later lecture topics

This is of course all up to you

© Torsten Hofler & Markus Piischel

Computer Science +

ETH

Design of Parallel and High Performance Computing
Fall 2013

