
© Torsten Höfler & Markus Püschel
Computer Science

Design of Parallel and High Performance Computing

Fall 2013

Design of Parallel and High-Performance
Computing
Fall 2019
Lecture: Organization

Instructor: Tal Ben-Nun & Markus Püschel

TA: Timo Schneider

Course Name

 Design of Parallel and High-Performance Computing 

 Design of Parallel and High-Performance Computing Platforms?

 Design of Parallel and High-Performance Computing Applications?

 Design of Parallel and High-Performance Computing Systems?

 Design of Parallel and High-Performance Computing:
Understand principal issues involved in software and system development for 
parallel computing

2



© Torsten Höfler & Markus Püschel
Computer Science

Design of Parallel and High Performance Computing

Fall 2013

The Team

 Professors: Tal Ben-Nun & Markus Püschel

 TA: Timo Schneider
& Others

 Guest lecturer: maybe

 Possibly consultants for projects

 Course website: http://spcl.inf.ethz.ch/Teaching/2019-dphpc/

3

Administrative

 Lecture: Mo 13:15 – 16:00

 Recitation: Do 13:15 – 15:00

 Takes place as announced on website

 Sometimes used as lecture or swapped with lecture

 Room was changed to CHN C 14

 Help: 

 Email Timo: timo.schneider@inf.ethz.ch

4

http://spcl.inf.ethz.ch/Teaching/2019-dphpc/
mailto:timo.schneider@inf.ethz.ch


© Torsten Höfler & Markus Püschel
Computer Science

Design of Parallel and High Performance Computing

Fall 2013

Administrative

 Website: http://spcl.inf.ethz.ch/Teaching/2019-dphpc/

 Will contain all material (slides, homeworks, schedule, etc.)

 Mailing list: https://spcl.inf.ethz.ch/cgi-bin/mailman/listinfo/dphpc-2019 

 Background material:

 Maurice Herlihy and Nir Shavit: The Art of Multiprocessor Programming. 
Morgan Kaufmann, 2012

 Papers as mentioned

5

Work and Grading

 Work during semester:

 Regular homeworks

 Project

 Grade:

 50% Project

 50% Written exam (120 minutes, in exam period as usual)

6

http://spcl.inf.ethz.ch/Teaching/2019-dphpc/


© Torsten Höfler & Markus Püschel
Computer Science

Design of Parallel and High Performance Computing

Fall 2013

Project: Rules

 Each project is done in teams of four.

 You can use the mailing-list dphpc-forum-2019 (everybody is 
subscribed inititally) to find project partners, offer a project etc.

 Once you have a team (even without project) email the TA and we 
will take you off the list

 Ideas for projects: see below. Projects have to be approved by the 
TAs/lecturers (see next slide)

 We will track progress during the semester

Project: Timeline

 Before October 11: Find team (let TA know names). Find project. If you 
have a suggestion send email with topic and rough plan and references 
to TAs and lecturer for approval. Note that this may take more than 
one iteration.

 October 11: You have a team and an approved project.

 During semester: We will check progress in some way. Procedure and 
possible dates to come.

 End of semester: Project presentations during lecture/recitation hours.

 January 17: Project reports due (6 pages, conference style, information 
on web).

8



© Torsten Höfler & Markus Püschel
Computer Science

Design of Parallel and High Performance Computing

Fall 2013

Projects: Performance Optimization

 Pick an important algorithm/application

 Develop a parallel implementation that scales well on multicore

 Includes thorough benchmarking and experimental evaluation

 You are in charge of the project: shrink or expand as necessary!

 Requirements:

 No numerical algorithm (dominated by floating point operations)

Exceptions possible if directly related to student’s research

 Not sorting or anything that is mainly sorting

Example From Before



© Torsten Höfler & Markus Püschel
Computer Science

Design of Parallel and High Performance Computing

Fall 2013

Example From Before

Project Ideas



© Torsten Höfler & Markus Püschel
Computer Science

Design of Parallel and High Performance Computing

Fall 2013

Parallel Data Structure: 
Example Priority Queue
 Modified specification: Maintain a collection of data items, 

identified by a key. Finding the k smallest items (with the k 
smallest keys) should be supported in O(k) time. Finding any 
item by key should also be supported.

Required Operations

 queue_t init()

 void insert(queue_t q, void* data, uint64_t key)

 void*find(queue_t q, uint64_t key)

 void delete(queue_t q, uint64_t key)

 void*pop_front(queue_t q, int k) // returns k smallest elements

 void finalize(queue_t q)

Parallel Priority Queue (II)

 Requirements continued

 Multiple threads will be accessing the queue simultaneously (with all 
operations)

 Code may be written in C/C++ (gcc inline assembly is allowed ;-))

 Tips:

 Experiment with different locking strategies and compare the 
performance

 Pay attention to larger number of threads

 Maybe try MPI-3 One Sided



© Torsten Höfler & Markus Püschel
Computer Science

Design of Parallel and High Performance Computing

Fall 2013

Collective Communications
 Assume P threads in shared memory

 Each thread p has:

 a set of input elements ij,p (0≤j<n-1)

 a set of output elements oj,p (0≤j<n-1)

 The post-condition (result) is:



 i.e., all oj,p are identical on all p

 Tips:

 Use the memory hierarchy and CC protocols (inline assembly is allowed!)

 First optimize small n, then large n

Parallel Algorithms: Example BFS

 Generate an Erdős–Rényi graph G(n,p) given n and p

 Perform a breadth-first search (BFS) from n/2 vertices

 Print the average maximum distance for any vertex

 Your implementation should exploit all available cores and perform 
the BFS as fast as possible

https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model


© Torsten Höfler & Markus Püschel
Computer Science

Design of Parallel and High Performance Computing

Fall 2013

Parallel Graph Algorithms

 Many more!

 Connected Components (CC)

 Single-source shortest path (SSSP)

 All-pairs-shortest path (APSP) - too simple, looks like MatVec

 Minimum spanning tree (MST)

 Vertex coloring

 Strongly connected components

 … pick one and enjoy!

 Others

 A* search 

 Various ML and AI algorithms (only nontrivial ones)

 Always implement infrastructure to validate your code!

Mind the Lecture!!!

 Try to relate your project to the contents of the lecture!

 E.g., analyze sequential consistency (was very successful!)

 E.g., deal with memory models!

 Reason about the performance obtained

 Many more (be creative!)

 Or talk to TA

 Remember: you have until the October 11th

 You can also check the slides from last year for later lecture topics

 This is of course all up to you


