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Goals of this lecture

 Motivate you!

 Trends

 High performance computing

 Programming models

 Course overview
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Source: Wikipedia

What doubles …?
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Source: Wikipedia

How to increase the compute power?
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How to increase the compute power?
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Not an option anymore!
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Evolutions of Processors (Intel)
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Evolutions of Processors (Intel)
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free speedup

parallelism:
work required
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memory bandwidth (normalized)

Source: Wikipedia/Intel/PCGuide
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A more complete view
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Source: www.singularity.com
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High-Performance Computing (HPC)

 a.k.a. “Supercomputing”

 Question: define “Supercomputer”!
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High-Performance Computing (HPC)

 a.k.a. “Supercomputing”

 Question: define “Supercomputer”!

 “A supercomputer is a computer at the frontline of contemporary processing 
capacity—particularly speed of calculation.” (Wikipedia)

 Usually quite expensive ($s and kWh) and big (space)

 HPC is a quickly growing niche market

 Not all “supercomputers”, wide base

 Important enough for vendors to specialize

 Very important in research settings (up to 40% of university spending)

“Goodyear Puts the Rubber to the Road with High Performance Computing”

“High Performance Computing Helps Create New Treatment For Stroke Victims”

“Procter & Gamble: Supercomputers and the Secret Life of Coffee”

“Motorola: Driving the Cellular Revolution With the Help of High Performance 
Computing”

“Microsoft: Delivering High Performance Computing to the Masses”
15

Source: www.singularity.com Blue Waters, ~13 PF (2012)

TaihuLight, ~125 PF (2016)

1 Exaflop! ~2023?
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Blue Waters in 2012
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Source: extremetech.com 18
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The Top500 List

 A benchmark, solve Ax=b

 As fast as possible!  as big as possible 

 Reflects some applications, not all, not even many

 Very good historic data!

 Speed comparison for computing centers, states, countries, nations, 
continents 

 Politicized (sometimes good, sometimes bad)

 Yet, fun to watch
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The Top500 List (June 2019)
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Top500: Trends

Source: Jack Dongarra

Single GPU/MIC Card
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Piz Daint @ CSCS
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More pictures at: http://spcl.inf.ethz.ch/Teaching/2015-dphpc/
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HPC Applications: Scientific Computing

 Most natural sciences are simulation driven or are moving towards 
simulation
 Theoretical physics (solving the Schrödinger equation, QCD)
 Biology (Gene sequencing)
 Chemistry (Material science)
 Astronomy (Colliding black holes)
 Medicine (Protein folding for drug discovery)
 Meteorology (Storm/Tornado prediction)
 Geology (Oil reservoir management, oil exploration)
 and many more … (even Pringles uses HPC)
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HPC Applications: Commercial Computing

 Databases, data mining, search
 Amazon, Facebook, Google

 Transaction processing
 Visa, Mastercard

 Decision support
 Stock markets, Wall Street, Military applications

 Parallelism in high-end systems and back-ends
 Often throughput-oriented
 Used equipment varies from COTS (Google) to high-end redundant 

mainframes (banks)
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HPC Applications: Industrial Computing

 Aeronautics (airflow, engine, structural mechanics, 
electromagnetism)

 Automotive (crash, combustion, airflow)

 Computer-aided design (CAD)

 Pharmaceuticals (molecular modeling, protein folding, drug design)

 Petroleum (Reservoir analysis)

 Visualization (all of the above, movies, 3d)

25

What can faster computers do for us?

 Solving bigger problems than we could solve before!

 E.g., Gene sequencing and search, simulation of whole cells, mathematics 
of the brain, …

 The size of the problem grows with the machine power

Weak Scaling

 Solve today’s problems faster!

 E.g., large (combinatorial) searches, mechanical simulations (aircrafts, cars, 
weapons, …)

 The machine power grows with constant problem size

 Strong Scaling
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Towards the age of massive parallelism

 Everything goes parallel

 Desktop computers get more cores

2,4,8, soon dozens, hundreds?

 Supercomputers get more PEs (cores, nodes)

> 10 million today

> 50 million on the horizon

1 billion in a couple of years

 Parallel Computing is inevitable!

Parallel vs. Concurrent computing
Concurrent activities may be executed in parallel
Example: 

A1 starts at T1, ends at T2; A2 starts at T3, ends at T4
Intervals (T1,T2) and (T3,T4) may overlap!

Parallel activities: 
A1 is executed while A2  is running
Usually requires separate resources!
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Flynn’s Taxonomy
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SISD
Standard Serial Computer 

(nearly extinct)

SIMD
Vector Machines or Extensions

(very common)

MISD
Redundant Execution

(fault tolerance)

MIMD
Multicore

(ubiquituous)

Single instruction, multiple data

Parallel Resources and Programming

Parallel Resource

 Instruction-level parallelism

 Pipelining

 VLIW

 Superscalar

 SIMD operations

 Vector operations

 Instruction sequences

 Multiprocessors

 Multicores

 Multithreading

Programming

 Compiler

 (inline assembly)

 Hardware scheduling

 Compiler (inline assembly)

 Intrinsics

 Libraries

 Compilers (very limited)

 Expert programmers

 Parallel languages

 Parallel libraries

 Hints
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Historic Architecture Examples

 Systolic Array 

 Data-stream driven (data counters)

 Multiple streams for parallelism

 Specialized for applications (reconfigurable)

 Dataflow Architectures

 No program counter, execute instructions when all input arguments are 
available

 Fine-grained, high overheads

Example: compute f = (a+b) * (c+d) 

 Both come-back in FPGA computing

 Interesting research opportunities!

Source: ni.com

Source: isi.edu
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Parallel Architectures 101

 … and mixtures of those

Today’s laptops Today’s servers

Yesterday’s clusters Today’s clusters

32

Uniform memory access Non-uniform memory access

Time-division multiplexing Remote direct-memory access
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Programming Models

 Shared Memory Programming (SM)

 Shared address space

 Implicit communication

 Hardware for cache-coherent remote memory access

 Cache-coherent Non Uniform Memory Access (cc NUMA)

 Pthreads, OpenMP

 (Partitioned) Global Address Space (PGAS)

 Remote Memory Access

 Remote vs. local memory (cf. ncc-NUMA)

 Distributed Memory Programming (DM)

 Explicit communication (typically messages)

 Message Passing
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MPI: de-facto large-scale prog. standard

Basic MPI Advanced MPI, including MPI-3
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DPHPC Overview
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Schedule of Last Year
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From Evaluation 2018
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A comment:
The course description should mention that a strong parallel 
computing background would be appreciated to fully enjoy 
this course


