
© Markus Püschel
Computer Science

DPHPC

Spring 2019

Design of Parallel and High-Performance
Computing
Fall 2019
Lecture: Refresher on Caches

Instructor: Tal Ben-Nun & Markus Püschel

TA: Timo Schneider

Organization

 Temporal and spatial locality

 Memory hierarchy

 Caches

Chapter 5 in Computer Systems: A Programmer's Perspective, 2nd edition,
Randal E. Bryant and David R. O'Hallaron, Addison Wesley 2010
Part of these slides are adapted from the course associated with this book

2

© Markus Püschel
Computer Science

DPHPC

Spring 2019

Problem: Processor-Memory Bottleneck

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus bandwidth

doubled every 36 months

Core i7 Haswell:
Peak performance:
2 AVX three operand (FMA) ops/cycles
consumes up to 192 Bytes/cycle

Core i7 Haswell:
Bandwidth
16 Bytes/cycle

Solution: Caches/Memory hierarchy

3

Typical Memory Hierarchy

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

on-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved from
L2 cache

CPU registers hold words retrieved from
L1 cache

L2 cache holds cache lines retrieved
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

4

© Markus Püschel
Computer Science

DPHPC

Spring 2019

5

The next slide is from the course “How to Write Fast Numerical Code”
http://people.inf.ethz.ch/markusp/teaching/263-2300-ETH-spring19/course.html
It contains additional information on latency and throughput of caches

1 Core

Abstracted Microarchitecture: Example Core i7 Haswell (2013) and Sandybridge (2011)
Throughput (tp) is measured in doubles/cycle. For example: 4 (2)
Latency (lat) is measured in cycles
1 double floating point (FP) = 8 bytes
fma = fused multiply-add
Rectangles not to scale

Hard disk
≥ 0.5 TB

fp add

fp mul

int ALU

load

store

Main
Memory

(RAM)
32 GB max

L2 cache
256 KB
8-way
64B CB

L1
Icache

L1
Dcache

16 FP
register

internal
registers

instruction
decoder

instruction pool
(up to 192 (168) “in flight”)

execution
units

CISC ops

RISC
μops

issue
8 (6) μops/

cycle

lat: 4 (4)
tp: 12 =
8 ld + 4 st
(4)

lat: 11 (12)
tp: 8 (4)

lat: ~125
(100)
tp: 2 (1)

lat: millions
tp: ~1/50

(~1/100)

Memory hierarchy:
• Registers
• L1 cache
• L2 cache
• L3 cache
• Main memory
• Hard disk

Haswell Sandy Bridge

out of order execution
superscalar

© Markus Püschel
Computer ScienceSource: Intel manual (chapter 2), http://www.7-cpu.com/cpu/Haswell.html

CB = cache block

depends
on hard

disk
technology,

I/O
interconnect

fp fma

SIMD
logic/sh

uffle

Core i7-4770 Haswell:
4 cores, 8 threads
3.4 GHz
(3.9 GHz max turbo freq)
2 DDR3 channels 1600 MHz RAM

Core #1, L1, L2

Core #2, L1, L2

Core #3, L1, L2

Core #4, L1, L2

L3

L3

L3

L3

ring interconnect

core uncore

double FP:
max scalar tp:
• 2 fmas/cycle =
• 2 (1) adds/cycle and

2 (1) mults/cycle

max vector tp (AVX)
• 2 vfmas/cycle = 8 fmas/cycle =
• 8 (4) adds/cycle and

8 (4) mults/cycle

both:
32 KB
8-way
64B CB

Shared
L3 cache

8 MB
16-way
64B CB

lat: ~34
(26-31)
tp: 4 (4)

ISA

processor die

http://people.inf.ethz.ch/markusp/teaching/263-2300-ETH-spring17/course.html
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

© Markus Püschel
Computer Science

DPHPC

Spring 2019

Why Caches Work: Locality

 Locality: Programs tend to use data and instructions with addresses
near or equal to those they have used recently
History of locality

 Temporal locality:

Recently referenced items are likely
to be referenced again in the near future

 Spatial locality:

Items with nearby addresses tend
to be referenced close together in time

memory

memory

7

Example: Locality?

 Data:

 Temporal: sum referenced in each iteration

 Spatial: array a[] accessed consecutively

 Instructions:

 Temporal: loops cycle through the same instructions

 Spatial: instructions referenced in sequence

 Being able to assess the locality of code is a crucial skill for a
performance programmer

sum = 0;
for (i = 0; i < n; i++)
sum += a[i];

return sum;

8

http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1

© Markus Püschel
Computer Science

DPHPC

Spring 2019

Locality Example

int sum_array_3d(double a[M][N][K])
{
int i, j, k, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
for (k = 0; k < K; k++)
sum += a[k][i][j];

return sum;
}

How to improve locality?

90

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

8 1
6

2
4

3
2

4
0

4
8

5
6

6
4

7
2

8
0

8
8

9
6

1
0

4
1

1
2

1
2

0
1

2
8

1
3

6
1

4
4

1
5

2
1

6
0

1
6

8
1

7
6

1
8

4
1

9
2

2
0

0
2

0
8

2
1

6
2

2
4

2
3

2
2

4
0

2
4

8
2

5
6

k-i-j

i-j-k

Performance [flops/cycle]

= M = N = K

CPU: Intel(R) Core(TM) i7-4980HQ CPU @ 2.80GHz
gcc: Apple LLVM version 8.0.0 (clang-800.0.42.1)
flags: -O3 -fno-vectorize

Cache

 Definition: Computer memory with short access time used for the
storage of frequently or recently used instructions or data

 Naturally supports temporal locality

 Spatial locality is supported by transferring data in blocks

 Core family: one block = 64 B = 8 doubles

Main
Memory

CPU Cache

10

© Markus Püschel
Computer Science

DPHPC

Spring 2019

Cache Structure

 Show first direct mapped cache (E = 1, B = 32 bytes, S = 8)

 Add associativity (E = 2, B = 32 bytes, S = 8)

 Show how elements are mapped into cache

11

Example (S=4, E=2)

B = 32 byte = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

blackboard

Ignore the variables sum, i, j

int sum_array_rows(double a[16][16])
{
int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i][j];

return sum;
}

int sum_array_cols(double a[16][16])
{
int i, j;
double sum = 0;

for (j = 0; j < 16; i++)
for (i = 0; i < 16; j++)
sum += a[i][j];

return sum;
}

12

© Markus Püschel
Computer Science

DPHPC

Spring 2019

General Cache Organization (S, E, B)
E = 2e lines per set
E = associativity, E=1: direct mapped

S = 2s sets

set

line

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

Cache size:
S x E x B data bytes

13

Cache Read

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set

• Check if any line in set
has matching tag

• Yes + line valid: hit

• Locate data starting
at offset

E = 2e lines per set
E = associativity, E=1: direct mapped

14

© Markus Püschel
Computer Science

DPHPC

Spring 2019

Terminology

 Direct mapped cache:

 Cache with E = 1

 Means every block from memory has a unique location in cache

 Fully associative cache

 Cache with S = 1 (i.e., maximal E)

 Means every block from memory can be mapped to any location in cache

 In practice to expensive to build

 One can view the register file as a fully associative cache

 LRU (least recently used) replacement

 when selecting which block should be replaced (happens only for E > 1),
the least recently used one is chosen

15

Types of Cache Misses (The 3 C’s)

 Compulsory (cold) miss

Occurs on first access to a block

 Capacity miss

Occurs when working set is larger than the cache

 Conflict miss

Conflict misses occur when the cache is large enough, but multiple data
objects all map to the same slot

 Not a clean classification but still useful

16

© Markus Püschel
Computer Science

DPHPC

Spring 2019

What about writes?

 What to do on a write-hit?

 Write-through: write immediately to memory

 Write-back: defer write to memory until replacement of line

 What to do on a write-miss?

 Write-allocate: load into cache, update line in cache

 No-write-allocate: writes immediately to memory

Write-back/write-allocate (Core)

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

1: load

2: updateupdate

Write-through/no-write-allocate

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

1: update

2: update update

17

Example: (Blackboard)

 z = x + y, x, y, z vector of length n

 assume they fit jointly in cache + cold cache

 memory traffic Q(n)?

18

© Markus Püschel
Computer Science

DPHPC

Spring 2019

Example: Vector Add, Warm Data & Code

0

10

20

30

40

50

60

70

80

90

100

1 KB 4 KB 16 KB 64 KB 256 KB 1 MB 4 MB 16 MB

z = x + y on Core i7 (Nehalem, one core, no SSE), icc 12.0 /O2 /fp:fast /Qipo

L1
cache

L2
cache

L3
cache

2 doubles/cycle

1 double/cycle

1/2 double/cycle

sum of vector lengths (working set)

Percentage peak performance (peak = 1 add/cycle)

Guess the
read bandwidths

19

Summary

 It is important to assess temporal and spatial locality in the code

 Cache structure is determined by three parameters

 block size

 number of sets

 associativity

 You should be able to roughly simulate a computation on paper

20

