© Markus Piischel ETH
Computer Science

Design of Parallel and High-Performance

Computing
Fall 2019
Lecture: Refresher on Caches

Instructor: Tal Ben-Nun & Markus Plischel
TA: Timo Schneider

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Organization

m Temporal and spatial locality
m Memory hierarchy

m Caches

Chapter 5 in Computer Systems: A Programmer's Perspective, 2" edition,
Randal E. Bryant and David R. O'Hallaron, Addison Wesley 2010
Part of these slides are adapted from the course associated with this book

DPHPC
Spring 2019

I

Problem: Processor-Memory Bottleneck

Processor performance
doubled about
every 18 months Bus bandwidth
doubled every 36 months .
Main
CPU Reg
Memory

Core i7 Haswell:
Peak performance:
2 AVX three operand (FMA) ops/cycles 16 Bytes/cycle
consumes up to 192 Bytes/cycle

Core i7 Haswell:
Bandwidth

Solution: Caches/Memory hierarchy

Smaller,
faster,
costlier
per byte

Larger,
slower,
cheaper
per byte

L5:

Typical Memory Hierarchy

L4:

LO:

re gi sters CPU registers hold words retrieved from

L1 cache

L1: on-chip Ll
cache (SRAM) L1 cache holds cache lines retrieved from
L2 cache

L2:)
on-chip L2
cache (SRAM) L2 cache holds cache lines retrieved
from main memory
L3:
main memory
(DRAM) Main memory holds disk blocks
retrieved from local disks

local secondary storage

. Local disks hold files
(local disks) f

retrieved from disks on
remote network servers

remote secondary storage
(tapes, distributed file systems, Web servers)

© Markus Piischel ETH

. Eidg
Computer Science s

e Tachnische Hachschule Zurich
Institute of Technology Zurich

DPHPC
Spring 2019

The next slide is from the course “How to Write Fast Numerical Code”

http://people.inf.ethz.ch/markusp/teaching/263-2300-ETH-spring19/course.html

It contains additional information on latency and throughput of caches

5
Abstracted Microarchitecture: Example Core i7 Haswell (2013) and Sandybridge (2011) Memory hierarchy:
Throughput (tp) is measured in doubles/cycle. For example: 4 (2) * Registers
Latency (lat) is measured in cycles * L1cache
1 double floating point (FP) = 8 bytes * L2 cache
fma = fused multiply-add Haswell Sandy Bridge * L3 cache
Rectangles not to scale * Main memory
* Hard disk
double FP:
max scalar tp: max vector tp (AVX)
« 2fmas/cycle= + 2vfmas/cycle = 8 fmas/cycle =
* 2(1)adds/cycle and + 8(4)adds/cycle and
2(1) mults/cycle 8 (4) mults/cycle
ISA
internal
feiadd registers «—§p 16 kP L
; —
r— L lat:~34 lat: ~125
tp:12= tp: 8 (4) (26-31) (100)
faing out of order execution ?4';1 +ast tp: 4(4) Share: tp:2(1)
= L3 cache Main
superscalar
int ALU Lzz;saf(:e 8MB Memory Hard disk
B —
load issue 32kB 5 16-way (RAM) e 205TB
8 (6) pops/ Baesy way 648 CB 32GBmax .\
64B CB 64B CB tp: ~1/50
store cycle (~1/100)
instruction|
SINE decoder
logic/sh RISC
uffle Hops CISC ops L1 depends
5 1 Icache on hard
execl'mon disk
(ilis technology,
1/0
instruction pool interconnect
1 Core (upto192 (168) “in fiight") CB = cache block
Core i7-4770 Haswell: ring ptercomect | Processor die
4 cores, 8 threads Core#1,11,12 <+ INIFTY
3.4GHz
(3.9 GHz max turbo freq) Core#2,11,12 < > L3 RAM
2 DDR3 channels 1600 MHz B N5
Core#4, 11,12 <> 13
uncore
Source: Intel manual (chapter 2), http://www.7-cpu.com/cpu/Haswell.htm! =

© Markus Piischel ETH
Eidgendssische Technische Hochschule Zurich

Computer SCience s reduiinsite of echnology zunch

DPHPC
Spring 2019

http://people.inf.ethz.ch/markusp/teaching/263-2300-ETH-spring17/course.html
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

© Markus Piischel ETH

. g
Computer Science s

Why Caches Work: Locality

Locality: Programs tend to use data and instructions with addresses
near or equal to those they have used recently
History of locality

Temporal locality: —_ ; memory
Recently referenced items are likely | | | | |

to be referenced again in the near future

Spatial locality: ()
memory

Items with nearby addresses tend | | | | |
to be referenced close together in time

Example: Locality?

sum = 0;
for (i = 0; i < n; i++)

return sum;

sum += a[i];

Data:
® Temporal: sum referenced in each iteration
= Spatial: array a[] accessed consecutively

Instructions:
® Temporal: loops cycle through the same instructions
= Spatial: instructions referenced in sequence

Being able to assess the locality of code is a crucial skill for a
performance programmer

DPHPC
Spring 2019

http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1

© Markus Piischel ETH
Computer Science s

Locality Example

int sum_array_3d(double a[M][N][K])
{

int i, j, k, sum = ©;

return sum;

}

Performance [flops/cycle]
04

How to improve locality?

CPU: Intel(R) Core(TM) i7-4980HQ, CPU @ 2.80GHz
gec: Apple LLVM version 8.0.0 (clang-800.0.42.1)
flags: -O3 -fno-vectorize

Cache

m Definition: Computer memory with short access time used for the
storage of frequently or recently used instructions or data

CPU Cache

m Naturally supports temporal locality

Main
Memory

m Spatial locality is supported by transferring data in blocks

= Core family: one block = 64 B = 8 doubles

10

idgenassische Technische Hochschule Zurich
i3 Federal Institute of Technology Zuric

DPHPC
Spring 2019

Cache Structure

m Add associativity (E = 2, B =32 bytes, S = 8)

m Show how elements are mapped into cache

m Show first direct mapped cache (E = 1, B =32 bytes, S = 8)

11

Example (S=4, E=2)

int sum_array_rows(double a[16][16])

{
int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i][3];
return sum;

}

int sum_array_cols(double a[16][16])

{
int i, j;
double sum = 0;

for (j = 0; j < 16; i++)
for (i =0; i < 16; j++)
sum += a[i][]];
return sum;

Ignore the variables sum, i, j

assume: cold (empty) cache,
a[0][0] goes here

B =32 byte = 4 doubles

blackboard

12

© Markus Piischel ETH
Computer Science =

DPHPC
Spring 2019

© Markus Piischel ETH
s echlshe o

. idf
Computer Science

General Cache Organization (S, E, B)

E = 2¢ lines per set
E = associativity, E=1: direct mapped

A
r N\
- set
[— —
| || | { |
S =25 sets < | I [] |
00000000000 0O0C0OCFOCOCROIOOIOOOOGOS
L | || | { |
Cache size:
S x E x B data byt
[v] [tag | [o]1]2]eee-]B1] xExEdatabytes
|
valid bit
B = 2" bytes per cache block (the data) 13
* Locate set
* Check if any line in set
CaChe Read has matching tag
E = 2¢ lines per set * Yes + line valid: hit
E = associativity, E=1: direct mapped
- A < * Locate data starting
- at offset
| || | { |
| ” | 4 | Address of word:
s=2sets{ | I L] | [tbits | shbits | bhbits |
tag set block
0000000000000 0C0OCOCFOCIOGIOIOGOGIOIOIOS index Offset
| [L] | |

data begins at this offset

E | tg | [0]1]2]--[B]
valid bit N~

B = 2" bytes per cache block (the data)

14

DPHPC
Spring 2019

© Markus Piischel ETH

Terminology

m Direct mapped cache:
" CachewithE=1

Means every block from memory has a unique location in cache

m Fully associative cache
" Cache with S =1 (i.e., maximal E)

Means every block from memory can be mapped to any location in cache
" |n practice to expensive to build

" One can view the register file as a fully associative cache

m LRU (least recently used) replacement

= when selecting which block should be replaced (happens only for E > 1),
the least recently used one is chosen

Types of Cache Misses (The 3 C’s)

m Compulsory (cold) miss
Occurs on first access to a block

m Capacity miss

Occurs when working set is larger than the cache

m Conflict miss

Conflict misses occur when the cache is large enough, but multiple data
objects all map to the same slot

m Not a clean classification but still useful

16

. Eidg
Computer Science s

DPHPC
Spring 2019

© Markus Piischel ETH
Computer Science =

What about writes?

= What to do on a write-hit?

Write-through: write immediately to memory

Write-back: defer write to memory until replacement of line

= What to do on a write-miss?

" Write-allocate: load into cache, update line in cache

" No-write-allocate: writes immediately to memory

Write-back/write-allocate (Core) Write-through/no-write-allocate

2: update update

1: update
cru cru ()

Write-hit Write-miss Write-hit Write-miss */

cP

C
\/I
g
T

Example: (Blackboard)

m z=Xx+Y,X,Y,zvector of length n
m assume they fit jointly in cache + cold cache

= memory traffic Q(n)?

18

DPHPC
Spring 2019

© Markus Piischel ETH
Computer Science s

Example: Vector Add, Warm Data & Code

z=x+yon Core i7 (Nehalem, one core, no SSE), icc 12.0 /02 /fp:fast /Qipo

Percentage peak performance (peak = 1 add/cycle)
100

o L2 o Guess the
90 cache cache cache) e S
80
70
_ef“'""m‘ 2 doubles/cycle

60 A \
50
40
30 1 double/cycle
20

1/2 double/cycle
10
0 r T T T T T T

| KB 4 KB 16 KB 64 KB 256 KB | MB 4 MB 16 MB
sum of vector lengths (working set)
19

m Itis important to assess temporal and spatial locality in the code

m Cache structure is determined by three parameters
" block size
= number of sets
" associativity

= You should be able to roughly simulate a computation on paper

20

idgenassische Technische Hochschule Zurich
i3 Federal Institute of Technology Zurich

DPHPC
Spring 2019

