
spcl.inf.ethz.ch

@spcl_eth

SALVATORE DI GIROLAMO <DIGIROLS@INF.ETHZ.CH>

DPHPC: Prefix-Sum, Network Models
Recitation session

spcl.inf.ethz.ch

@spcl_eth

 Obvious question: is there a depth- and work-optimal algorithm?

 This took years to settle! The answer is surprisingly: no

 We know, for parallel prefix: 𝑊 +𝐷 ≥ 2𝑛 − 2

2

Recap: Work-depth tradeoff in parallel prefix sums

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8

𝑥1 +⋯+ 𝑥8

Output tree:
• leaves are all inputs, rooted at 𝑥𝑛
• binary due to binary operation
• 𝑊 = 𝑛 − 1, 𝐷 = 𝐷𝑜

Input tree:
• rooted at 𝑥1, leaves are all outputs
• not binary (simultaneous read)
• 𝑊 = 𝑛 − 1

trees may only overlap
at the “ridge”

Ridge can be at most 𝐷𝑜long!
Now add trees and subtract shared vertices:
𝑛 − 1 + 𝑛 − 1 − 𝐷𝑜 = 2𝑛 − 2 − 𝐷𝑜 ≤ 𝑊

q.e.d.

spcl.inf.ethz.ch

@spcl_eth

3

Work-Depth Tradeoffs and deficiency

“The deficiency of a prefix circuit 𝑐 is defined as def 𝑐 = 𝑊𝑐 + 𝐷𝑐 − (2𝑛 − 2)”

1960

W-D tradeoff: 1986

From Zhu et al.: “Construction of Zero-Deficiency Parallel Prefix Circuits”, 2006

Latest 2006 result for zero-deficiency
construction for 𝑛 > 𝐹 𝐷 + 3 − 1

(𝑓 𝑛 is inverse)

spcl.inf.ethz.ch

@spcl_eth

 Any time a sequential chain can be modeled as function composition!

 Let 𝑓1, … , 𝑓𝑛 be an ordered set of functions and 𝑓0 𝑥 = 𝑥

 Define ordered function compositions: 𝑓1(𝑥); 𝑓2(𝑓1 𝑥); … ; 𝑓𝑛(…𝑓1 𝑥)

 If we can write function composition 𝑔 𝑥 = 𝑓𝑖(𝑓𝑖−1 𝑥) as 𝑔 = 𝑓𝑖 ∘ 𝑓𝑖−1 then we can compute ∘ with a prefix sum!

We saw an example with the adder (𝑀𝑎𝑏 were our functions)

 Example: linear recurrence 𝒇𝒊 𝒙 = 𝒂𝒊𝒇𝒊−𝟏 𝒙 + 𝒃𝒊 with 𝒇𝟎 𝒙 =x

 Write as matrix form 𝑓𝑖
𝑥
1

=
𝑎𝑖 𝑏𝑖
0 1

𝑓𝑖−1
𝑥
1

 Function composition is now simple matrix multiplication!

For example: 𝑓2
𝑥
1

=
𝑎2 𝑏2
0 1

𝑎1 𝑏1
0 1

𝑓0
𝑥
1

=
𝑎1𝑎2 𝑎2𝑏1 + 𝑏2
0 1

𝑥
1

4

Prefix sums as magic bullet for other seemingly sequential algorithms

spcl.inf.ethz.ch

@spcl_eth

5

Parallel Filter

Given an array, produce an array containing only the elements for which f(e) is true

input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

f(e): true if e > 10

output [17, 11, 13, 19, 24]

https://wiki.rice.edu/confluence/download/attachments/4435861/comp322-s18-lec37-slides-v1.pdf?version=1&modificationDate=1523898025646&api=v2

Parallelizable?

spcl.inf.ethz.ch

@spcl_eth

 Parallel map to compute a bit-vector for true elements

 Parallel-prefix sum on the bit-vector

 Parallel map to produce the output

6

Parallel Filter

bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

https://wiki.rice.edu/confluence/download/attachments/4435861/comp322-s18-lec37-slides-v1.pdf?version=1&modificationDate=1523898025646&api=v2

output = new array of size bitsum[n-1]

FORALL(i=0; i < input.length; i++){

if(bits[i]==1)

output[bitsum[i]-1] = input[i];

}

output [17, 11, 13, 19, 24]

spcl.inf.ethz.ch

@spcl_eth

7

Parallel Lexical Analysis and Parsing

Hill, Jonathan MD. "Parallel lexical analysis and parsing on the AMT distributed array processor." Parallel computing 18.6 (1992): 699-714.

spcl.inf.ethz.ch

@spcl_eth

 Substitute each character with its associated transition (i.e., column of the FSM)

8

Parallel Lexical Analysis and Parsing

Hill, Jonathan MD. "Parallel lexical analysis and parsing on the AMT distributed array processor." Parallel computing 18.6 (1992): 699-714.

spcl.inf.ethz.ch

@spcl_eth

 Define a composition function as a function that given two transitions
𝜶 → 𝜷 and 𝜷 → 𝜹, produces 𝜶 → 𝜹.

9

Parallel Lexical Analysis and Parsing

spcl.inf.ethz.ch

@spcl_eth

10

Parallel Lexical Analysis and Parsing

Hill, Jonathan MD. "Parallel lexical analysis and parsing on the AMT distributed array processor." Parallel computing 18.6 (1992): 699-714.

 Apply prefix sum.

 At the end, the state of each processor is equivalent to the that produced by a finite state machine in all
possible states after reading the current and all the previous characters.

spcl.inf.ethz.ch

@spcl_eth

 Familiar (non-HPC) network: Internet TCP/IP

 Common model:

 Class Question: What parameters are needed to model the performance (including pipelining)?

 Latency, Bandwidth, Injection Rate, Host Overhead

 What network models do you know and what do they model?

11

Distributed networking basics

Network DestinationSource

spcl.inf.ethz.ch

@spcl_eth

 Transfer time 𝑇(𝑠) = 𝛼 + 𝛽𝑠

 𝛼 = startup time (latency)

 𝛽 = cost per byte (bandwidth=1/β)

 As s increases, bandwidth approaches 1/𝛽 asymptotically

 Convergence rate depends on α

 𝑠1
2

= 𝛼/𝛽

 Assuming no pipelining (new messages can only be issued from a process after all arrived)

12

Remember: A Simple Model for Communication

spcl.inf.ethz.ch

@spcl_eth

 𝑠1
2

= 𝛼/𝛽 is often used to distinguish bandwidth- and latency-bound messages

 𝑠1
2

is in the order of kilobytes on real systems

13

Bandwidth vs. Latency

asymptotic limit

spcl.inf.ethz.ch

@spcl_eth

 Simplest linear broadcast

 One process has a data item to be distributed to all processes

 Linearly broadcasting s bytes among P processes:

 𝑇 𝑠 = 𝑃 − 1 ⋅ 𝛼 + 𝛽𝑠 = 𝑂(𝑃)

 Class question: Do you know a faster method to accomplish the same?

14

Quick Example

spcl.inf.ethz.ch

@spcl_eth

 Origin process is the root of the tree, passes messages to k neighbors which pass them on

 k=2 -> binary tree

 Class Question: What is the broadcast time in the simple latency/bandwidth model?

 𝑇 𝑠 ≈ log𝑘𝑃 ⋅ 𝑘(𝛼 + 𝛽𝑠) (for fixed k)

 Class Question: What is the optimal k?

 0 =
𝑘 ln 𝑃

ln 𝑘

𝑑

𝑑𝑘
=

lnP ln 𝑘 − ln 𝑃

ln2𝑘
→ 𝑘 = 𝑒 = 2.71…

 Independent of 𝑃, 𝛼, 𝛽𝑠? Really?

15

k-ary Tree Broadcast

spcl.inf.ethz.ch

@spcl_eth

 Class Question: Can we broadcast faster than in a ternary tree?

 Yes because each respective root is idle after sending three messages!

 Those roots could keep sending!

 Result is a k-nomial tree

For k=2, it’s a binomial tree

 Class Question: What about the runtime?

 Class Question: What is the optimal k here?

 T(s) d/dk is monotonically increasing for k>1, thus kopt=2

 Class Question: Can we broadcast faster than in a k-nomial tree?

 is asymptotically optimal for s=1!

 But what about large s?

16

Faster Trees?

spcl.inf.ethz.ch

@spcl_eth

 Extreme case (P small, s large): simple pipeline

 Split message into segments of size z

 Send segments from PE i to PE i+1

 Class Question: What is the runtime?

 T(s) = (P-2+s/z)(α + βz)

 Compare 2-nomial tree with simple pipeline for α=10, β=1, P=4, s=106, and z=105

 2,000,020 vs. 1,200,120

 Class Question: Can we do better for given α, β, P, s?

 Derive by z

 What is the time for simple pipeline for α=10, β=1, P=4, s=106, zopt?

 1,008,964
17

Very Large Message Broadcast

spcl.inf.ethz.ch

@spcl_eth

 Class Question: What is a simple lower bound on the broadcast time?

 How close are the binomial tree for small messages and the pipeline for large messages (approximately)?

 Bin. tree is a factor of log2(P) slower in bandwidth

 Pipeline is a factor of P/log2(P) slower in latency

 Class Question: What can we do for intermediate message sizes?

 Combine pipeline and tree pipelined tree

 Class Question: What is the runtime of the pipelined binary tree algorithm?

 Class Question: What is the optimal z?

18

Lower Bounds

spcl.inf.ethz.ch

@spcl_eth

 What is the complexity of the pipelined tree with zopt for small s, large P and for large s, constant P?

 Small messages, large P: s=1; z=1 (s≤z), will give O(log P)

 Large messages, constant P: assume α, β, P constant, will give asymptotically O(sβ)

Asymptotically optimal for large P and s but bandwidth is off by a factor of 2! Why?

 Bandwidth-optimal algorithms exist, e.g., Sanders et al. “Full Bandwidth Broadcast, Reduction and Scan
with Only Two Trees”. 2007

 Intuition: in binomial tree, all leaves (P/2) only receive data and never send wasted bandwidth

 Send along two simultaneous binary trees where the leafs of one tree are inner nodes of the other

 Construction needs to avoid endpoint congestion (makes it complex)

Can be improved with linear programming and topology awareness

19

Towards an Optimal Algorithm

spcl.inf.ethz.ch

@spcl_eth

 Defined by four parameters:

 L: an upper bound on the latency, or delay, incurred in communicating a message containing a word (or
small number of words) from its source module to its target module.

 o: the overhead, defined as the length of time that a processor is engaged in the transmission or
reception of each message; during this time, the processor cannot perform other operations.

 g: the gap, defined as the minimum time interval between consecutive message transmissions or
consecutive message receptions at a processor. The reciprocal of g corresponds to the available per-
processor communication bandwidth.

 P: the number of processor/memory modules. We assume unit time for local operations and call it a
cycle.

20

The LogP Model

spcl.inf.ethz.ch

@spcl_eth

21

The LogP Model

spcl.inf.ethz.ch

@spcl_eth

 Sending a single message

 T = 2o+L

 Ping-Pong Round-Trip

 TRTT = 4o+2L

 Transmitting n messages

 T(n) = L+(n-1)*max(g, o) + 2o

22

Simple Examples

spcl.inf.ethz.ch

@spcl_eth

 o is bigger than g on some machines

 g can be ignored (eliminates max() terms)

 be careful with multicore!

 Offloading networks might have very low o

 Can be ignored (not yet but hopefully soon)

 L might be ignored for long message streams

 If they are pipelined

 Account g also for the first message

 Eliminates “-1”

23

Simplifications

spcl.inf.ethz.ch

@spcl_eth

 Models pipelining

 L/g messages can be “in flight”

 Captures state of the art (cf. TCP windows)

 Models computation/communication overlap

 Asynchronous algorithms

 Models endpoint congestion/overload

 Benefits balanced algorithms

24

Benefits over Latency/Bandwidth Model

spcl.inf.ethz.ch

@spcl_eth

 Class Question: What is the LogP running time for a linear broadcast of a single packet?

 Tlin = L + (P-2) * max(o,g) + 2o

 Class Question: Approximate the LogP runtime for a binary-tree broadcast of a single packet?

 Tbin ≤ log2P * (L + max(o,g) + 2o)

 Class Question: Approximate the LogP runtime for an k-ary-tree broadcast of a single packet?

 Tk-n ≤ logkP * (L + (k-1)max(o,g) + 2o)

25

Example: Broadcasts

spcl.inf.ethz.ch

@spcl_eth

 Class Question: Approximate the LogP runtime for a binomial tree broadcast of a single packet (assume L
> g!)?

 Tbin ≤ log2P * (L + 2o)

 Class Question: Approximate the LogP runtime for a k-nomial tree broadcast of a single packet?

 Tk-n ≤ logkP * (L + (k-2)max(o,g) + 2o)

 Class Question: What is the optimal k (assume o>g)?

 Derive by k: 0 = o * ln(kopt) – L/kopt + o (solve numerically)

For larger L, k grows and for larger o, k shrinks

 Models pipelining capability better than simple model!

26

Example: Broadcasts

spcl.inf.ethz.ch

@spcl_eth

 Class Question: Can we do better than kopt-ary binomial broadcast?

 Problem: fixed k in all stages might not be optimal

 We can construct a schedule for the optimal broadcast in practical settings

 First proposed by Karp et al. in “Optimal Broadcast and Summation in the LogP Model”

27

Example: Broadcasts

spcl.inf.ethz.ch

@spcl_eth

 Broadcast to P-1 processes

 Each process who received the value sends it on; each process receives exactly once

28

Example: Optimal Broadcast

P=8, L=6, g=4, o=2

spcl.inf.ethz.ch

@spcl_eth

 This determines the maximum number of PEs (P(t)) that can be reached in time t

 P(t) can be computed with a generalized Fibonacci recurrence (assuming o>g):

 Which can be bounded by (see [1]):

 A closed solution is an interesting open problem!

29

Optimal Broadcast Runtime

[1]: Hoefler et al.: “Scalable Communication Protocols for Dynamic Sparse Data Exchange” (Lemma 1)

