e

s TR T (S Ly L Linf.ethz.ch
ETH-urich 0 R P By AR e DINFK

SALVATORE DI GIROLAMO <DIGIROLS@INF.ETHZ.CH>

DPHPC: Prefix-Sum, Network Models

Recitation session

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Recap: Work-depth tradeoff in parallel prefix sums

= Obvious question: is there a depth- and work-optimal algorithm?
= This took years to settle! The answer is surprisingly: no

= We know, for parallel prefix: W + D = 2n — 2

Output tree:

* leaves are all inputs, rooted at x,,
* binary due to binary operation

- W=n—-1,D =D,

Input tree:

trees may only overlap
* rooted at x4, leaves are all outputs

at the “ridge”
@) \ * not binary (simultaneous read)
e W=n-1
O O O Ridge can be at most D,long!

Now add trees and subtract shared vertices:
mn-1)+n-1)—-D,=2n—2—-D, <W
g.e.d.

X1 + +x8

spcl.inf.ethz.ch
L 4 @spcl_eth

ETH:zurich

Work-Depth Tradeoffs and deficiency

“The deficiency of a prefix circuit c is defined as def(c) = W, + D. — (2n — 2)”

120

100

80

60

d (depth)

40

20

0

| |

Serial Prefix Circuit

Sklansky Circuit
1960

v

zero—deficiency prefix circuits
(linear depth—size tradeott) L

60 80 100 120

Latest 2006 result for zero-deficiency
construction forn > F(D +3) — 1
(f (n) is inverse)

From Zhu et al.: “Construction of Zero-Deficiency Parallel Prefix Circuits”, 2006

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Prefix sums as magic bullet for other seemingly sequential algorithms

= Any time a sequential chain can be modeled as function composition!
= Letf, ..., [, be an ordered set of functions and f,(x) = x
= Define ordered function compositions: f; (x); fo(fi(x)); ...; fn(... f1(x))

= |f we can write function composition g(x) = f;(fi_1(x)) as g = f; o f;_1 then we can compute o with a prefix sum!
We saw an example with the adder (M, were our functions)

= Example: linear recurrence f;(x) = a;f;_1(x) + b; with f,(x)=x

. : . b;
" Write as matrix form f;() = (C(l)‘ 1‘) fi-1 (3)

= Function composition is now simple matrix multiplication!

roreompte: ()= (7 7) (5)R @ =("57 =)0

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Parallel Filter

Given an array, produce an array containing only the elements for which f(e) is true

input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
f(e): true if e > 10

output [17, 11, 13, 19, 24]

Parallelizable?

https://wiki.rice.edu/confluence/download/attachments/4435861/comp322-s18-lec37-slides-v1.pdf?version=1&modificationDate=1523898025646&api=v2

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Parallel Filter
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
= Parallel map to compute a bit-vector for true elements

bits [1, ©O0, O, O, 1, O, 1, 1, O, 1]

= Parallel-prefix sum on the bit-vector

bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

= Parallel map to produce the output

output = new array of size bitsum[n-1]
FORALL (i=0; i < input.length; i++) {
if(bits[i]==1)
output [bitsum[i]-1] = inputl[i];

output [17, 11, 13, 19, 24]

https://wiki.rice.edu/confluence/download/attachments/4435861/comp322-s18-lec37-slides-v1.pdf?version=1&modificationDate=1523898025646&api=v2

spcl.inf.ethz.ch

ETH:zurich

Parallel Lexical Analysis and Parsing

L 4 @spcl_eth

INPUT

f

O

O

space

—

lettar | character
token

Hill, Jonathan MD. "Parallel lexical analysis and parsing on the AMT distributed array processor." Parallel computing 18.6 (1992): 699-714.

spcl.inf.ethz.ch 0o o
v owien ETHZUrich

Parallel Lexical Analysis and Parsing

letiar } character Quote White

token Spaca

. N A * Q N

= Substitute each character with its associated transition (i.e., column of the FSM) al z| - | al ~

zf z ' Q| N

* A * Q N

Ql s S E S

St S S E N

E§ E * S N

o "

(/f\ 0 O | <space + S "o)
N - hi—lh‘ N = A N—=A N =i [N =3 N = A N - Vo
A - * A -2 A2 A2 AN Ao A= A =2 A-Q =
Z =" A/ Z =12 Z - Z Z =N Z ar Z =0 7 2 Z -0 i o= "
o, & I_.A i_.,A l_‘n t._..H * o ¥ ""‘Q "'"h t_.c- LI
Q=5 g =5 Q =5 b -5 Q=5 Q 5 g -E 0 =5 Q=-E Q=5
5 =5 § =3 S =5 S =8 S = § S =8 S 2 E S5 52 E S =5
Ew—an» E =-E E = E E = E E =N E - * E =+ 5 E wE E - E o *

Data initialised from
column 1 of figure 2

/

Hill, Jonathan MD. "Parallel lexical analysis and parsing on the AMT distributed array processor." Parallel computing 18.6 (1992): 699-714.

ETH:zurich

S =
53
I8
£
iy
" & 5 & NN
~~Sltrt1t1111t
FTeLs O o
=
VTN s = W %
% T TN RY ASITTTTTIETYT e
= tTtrrrtr1 Zrd s Qo

E el e IO

QOOOWaw
E I O O
Zacs JQUn

- S o BT
Wittt
St OV

w0 ol
wmyrr.rrrt

Za e OV

s 1o Jo Fe ERFANY]
LI I O e o ¥

=l s O

QOO WO
Tttt
Zlod « O

£ * ® 4 N =

TTTTTIT Y

Ze e Onn

+

4 & 2N
Trittte

Zelod = OOT I

+

EEZZZNNZ
rtrtrert
Z ALl DL

Data initialised from
column 1 of figure 2

zZzzzuunz
rrrrrte?

ZaAm s NN

<space
<space

N L W
Za e N LA I I O B
T eled s 014

tables and the result is stored in the right of the two elements. This result
signifies that the machine would be in state A or S after read

The left an rigt roceig elemen | co tir trsio -
previous and current characters (i.e "(f")

O

O

TNV W
TTTTTITIOY

Z e O

—
oL 0] L LNiA W

LR N O

ZEL 30 OV

A& o4 L

rtrrrrt

ZHL e QLN

8 1 89 63 00 €0 0d
LU O O |

Edede QUL

L T YL
LA B O O §

ZaLraw Oty

- =« 4 & L=

Trr1111

2 O

Define a composition function as a function that given two transitions

Parallel Lexical Analysis and Parsing
a - [and B — 6, produces a — 4.

spcl.inf.ethz.ch 0o o
v owien ETHZUrich

Parallel Lexical Analysis and Parsing

= Apply prefix sum.

= At the end, the state of each processor is equivalent to the that produced by a finite state machine in all
possible states after reading the current and all the previous characters.

:\
J

£
(;1\ O (9) <space>! 4+ " S ")
N - N=A N a2 N =2 N =N N . N 5 N E .
g~ A-rA\ A2 A2 AN Ao A:g ::s ASE ﬂ:’.-
Lo Zanh Z 42 742 Z N 7 - Z -0 7 5 Ik Z "
.y * A L | - 57 * 4N PR — LIS * 45 * = E LR
Q-5 Q=S Q=8 Q~5 Q5 Q-5 Q E DA Q=0 Q=5
S5 S w5 S =5 545 S =5 S5 S =+ E 5 — A 5 =0 S 5
E o E -3 E -2 F 2 E N E - E=Q E S E =E U
§ During the fourth and final iteration, the last processor will
f| combine its contents with the processor eight places to its left.
space " '
INPUT fl ol o [P 4 S
Result State * A Z Z N * Q S E
Single 'A’ denotes the stant of a identifier i a Single Q' and 'E'denote the stat & endota | Single
Comment char. token , and Z' corresponds to the n, char quotes token, & S denotes the char
token continuation of that token Ma] token santance within the quotes token

Hill, Jonathan MD. "Parallel lexical analysis and parsing on the AMT distributed array processor." Parallel computing 18.6 (1992): 699-714.

v enien ETHZzUrich
Distributed networking basics

= Familiar (non-HPC) network: Internet TCP/IP
= Common model:

Source Network Destination

= Class Question: What parameters are needed to model the performance (including pipelining)?
= Latency, Bandwidth, Injection Rate, Host Overhead
= What network models do you know and what do they model?

11

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Remember: A Simple Model for Communication

= TransfertimeT(s) = a+ fs
= = startup time (latency)
" [3 = cost per byte (bandwidth=1/p)

= As s increases, bandwidth approaches 1/ asymptotically
= Convergence rate depends on a

" S1 =C(/,3

2

= Assuming no pipelining (new messages can only be issued from a process after all arrived)

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Bandwidth vs. Latency

= s1 = a/f is often used to distinguish bandwidth- and latency-bound messages

2

» s1isinthe order of kilobytes on real systems
2

0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1

asymptotic limit

Bandwidth

bandwidth, a=8, b=2 ——

0.05 f bandwidth, a=4, b=2 - .
V 'bandW|dthl" a=2’ b=2 e
0

2 4 6 8 10
Message Size

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Quick Example

= Simplest linear broadcast
= One process has a data item to be distributed to all processes

= Linearly broadcasting s bytes among P processes:
» T(s)= (P —-1): (a+Bs) =0(P)

= Class question: Do you know a faster method to accomplish the same?

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

k-ary Tree Broadcast

= Origin process is the root of the tree, passes messages to k neighbors which pass them on
= k=2 ->binary tree

= Class Question: What is the broadcast time in the simple latency/bandwidth model?
= T(s) = [logyP] - k(a + Bs) (for fixed k)

= Class Question: What is the optimal k?

_klnPi_lnPlnk—lnP
" Ink dk In2k

—k=e=271..

» Independent of P, a, fs? Really?

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Faster Trees?

= Class Question: Can we broadcast faster than in a ternary tree?
= Yes because each respective root is idle after sending three messages!
= Those roots could keep sending!
= Result is a k-nomial tree
For k=2, it’s a binomial tree

= Class Question: What about the runtime?

" T(s) = [loge(P)] - (k=1) - (a+ - 5) = O(log(P))

= Class Question: What is the optimal k here?
= T(s) d/dk is monotonically increasing for k>1, thus k=2

= (Class Question: Can we broadcast faster than in a k-nomial tree?
= O(log(P)) is asymptotically optimal for s=1!
= But what about large s?

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Very Large Message Broadcast

= Extreme case (P small, s large): simple pipeline
= Split message into segments of size z
= Send segments from PE i to PE i+1

= Class Question: What is the runtime?
= T(s) = (P-2+s/z)(a + Bz)

= Compare 2-nomial tree with simple pipeline for a=10, =1, P=4, s=10°, and z=10°
= 2,000,020vs. 1,200,120

= Class Question: Can we do better for given a, 3, P, s?

= Derive by z Zopt = \/(P NG

= What is the time for simple pipeline for a=10, =1, P=4, s=1069, z
= 1,008,964

opt

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Lower Bounds

= Class Question: What is a simple lower bound on the broadcast time?

" Tpc > min{[log,(P)|a, s5}

= How close are the binomial tree for small messages and the pipeline for large messages (approximately)?
= Bin. tree is a factor of log,(P) slower in bandwidth
» Pipeline is a factor of P/log,(P) slower in latency

= Class Question: What can we do for intermediate message sizes?
= Combine pipeline and tree - pipelined tree

= Class Question: What is the runtime of the pipelined binary tree algorithm?

" T~ (2+[logy, Pl —2) -2 (a+2p)

= Class Question: What is the optimal z?

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Towards an Optimal Algorithm

= What is the complexity of the pipelined tree with z,, for small s, large P and for large s, constant P?
= Small messages, large P: s=1; z=1 (s<z), will give O(log P)
= Large messages, constant P: assume a, 3, P constant, will give asymptotically O(s[3)
Asymptotically optimal for large P and s but bandwidth is off by a factor of 2! Why?
= Bandwidth-optimal algorithms exist, e.g., Sanders et al. “Full Bandwidth Broadcast, Reduction and Scan
with Only Two Trees”. 2007
= |ntuition: in binomial tree, all leaves (P/2) only receive data and never send - wasted bandwidth
= Send along two simultaneous binary trees where the leafs of one tree are inner nodes of the other
= Construction needs to avoid endpoint congestion (makes it complex)
Can be improved with linear programming and topology awareness

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

The LogP Model

= Defined by four parameters:
= L:an upper bound on the latency, or delay, incurred in communicating a message containing a word (or
small number of words) from its source module to its target module.
= 0:the overhead, defined as the length of time that a processor is engaged in the transmission or
reception of each message; during this time, the processor cannot perform other operations.

= g:the gap, defined as the minimum time interval between consecutive message transmissions or
consecutive message receptions at a processor. The reciprocal of g corresponds to the available per-
processor communication bandwidth.

= P:the number of processor/memory modules. We assume unit time for local operations and call it a
cycle.

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

The LogP Model

level
Sender Receiver
CPU | » 4 » .
| | 1 1
| | 1 1
: : : :
1 1 1 1
Network I : " ¢: :
| | 1 1
1 | 1 1
< P pit—s—P
OS ALY L FARY r
9 ' 4 L}
g B
>

time

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Simple Examples

= Sending a single message
= T=20+L

= Ping-Pong Round-Trip
" Terr=4o+2L

= Transmitting n messages
= T(n)=L+(n-1)*max(g, o) + 20

spcl.inf.ethz.ch

Simplifications

= ois bigger than g on some machines
= g can be ignored (eliminates max() terms)
= be careful with multicore!
= Offloading networks might have very low o
= Can beignored (not yet but hopefully soon)
= L might be ignored for long message streams
= |f they are pipelined

= Account g also for the first message
= Eliminates “-1”

L 4 @spcl_eth

ETH:zurich

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Benefits over Latency/Bandwidth Model

= Models pipelining
= |/g messages can be “in flight”
= Captures state of the art (cf. TCP windows)
= Models computation/communication overlap
= Asynchronous algorithms
= Models endpoint congestion/overload
= Benefits balanced algorithms

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Example: Broadcasts

= Class Question: What is the LogP running time for a linear broadcast of a single packet?
= T, =L+ (P-2)* max(o,g) + 20

= Class Question: Approximate the LogP runtime for a binary-tree broadcast of a single packet?
"= T, <log,P* (L+ max(o,g)+20)

= Class Question: Approximate the LogP runtime for an k-ary-tree broadcast of a single packet?
= T.,<logP *(L+ (k-1)max(o,g) + 20)

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Example: Broadcasts

= Class Question: Approximate the LogP runtime for a binomial tree broadcast of a single packet (assume L
>gl)?
" T, <log,P*(L+20)
= Class Question: Approximate the LogP runtime for a k-nomial tree broadcast of a single packet?
= T.,<logP *(L+(k-2)max(o,g) + 20)
= (Class Question: What is the optimal k (assume o>g)?
= Derive by k: 0=0 * In(k,) — L/k

opt T O (solve numerically)

For larger L, k grows and for larger o, k shrinks
= Models pipelining capability better than simple model!

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Example: Broadcasts

= Class Question: Can we do better than k, -ary binomial broadcast?
= Problem: fixed k in all stages might not be optimal
= We can construct a schedule for the optimal broadcast in practical settings
= First proposed by Karp et al. in “Optimal Broadcast and Summation in the LogP Model”

v owien ETHzUrich
Example: Optimal Broadcast

= Broadcast to P-1 processes
= Each process who received the value sends it on; each process receives exactly once

PO 5 'g 5 'g s 'g: o1 .. L
P2 L ~—
P3 e
P4 T ~y
P5 - ,‘%{“: 5t L
P6 I
P7 P6 P4 P7 a2y
[| | ne

P=8, L=6, g=4, 0=2 0

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Optimal Broadcast Runtime

= This determines the maximum number of PEs (P(t)) that can be reached in time t

= P(t) can be computed with a generalized Fibonacci recurrence (assuming o0>g):

1: t <20+ L
P(t) = | . (1)
P(t—o0)+ P(t— L —20): otherwise.

= Which can be bounded by (see [1]): 9 | 55 | < P(t) <2 [L]

= A closed solution is an interesting open problem!

[1]: Hoefler et al.: “Scalable Communication Protocols for Dynamic Sparse Data Exchange” (Lemma 1)

