
spcl.inf.ethz.ch

@spcl_eth

SALVATORE DI GIROLAMO <DIGIROLS@INF.ETHZ.CH>

DPHPC: Prefix-Sum, Network Models
Recitation session

spcl.inf.ethz.ch

@spcl_eth

 Obvious question: is there a depth- and work-optimal algorithm?

 This took years to settle! The answer is surprisingly: no

 We know, for parallel prefix: 𝑊 +𝐷 ≥ 2𝑛 − 2

2

Recap: Work-depth tradeoff in parallel prefix sums

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8

𝑥1 +⋯+ 𝑥8

Output tree:
• leaves are all inputs, rooted at 𝑥𝑛
• binary due to binary operation
• 𝑊 = 𝑛 − 1, 𝐷 = 𝐷𝑜

Input tree:
• rooted at 𝑥1, leaves are all outputs
• not binary (simultaneous read)
• 𝑊 = 𝑛 − 1

trees may only overlap
at the “ridge”

Ridge can be at most 𝐷𝑜long!
Now add trees and subtract shared vertices:
𝑛 − 1 + 𝑛 − 1 − 𝐷𝑜 = 2𝑛 − 2 − 𝐷𝑜 ≤ 𝑊

q.e.d.

spcl.inf.ethz.ch

@spcl_eth

3

Work-Depth Tradeoffs and deficiency

“The deficiency of a prefix circuit 𝑐 is defined as def 𝑐 = 𝑊𝑐 + 𝐷𝑐 − (2𝑛 − 2)”

1960

W-D tradeoff: 1986

From Zhu et al.: “Construction of Zero-Deficiency Parallel Prefix Circuits”, 2006

Latest 2006 result for zero-deficiency
construction for 𝑛 > 𝐹 𝐷 + 3 − 1

(𝑓 𝑛 is inverse)

spcl.inf.ethz.ch

@spcl_eth

 Any time a sequential chain can be modeled as function composition!

 Let 𝑓1, … , 𝑓𝑛 be an ordered set of functions and 𝑓0 𝑥 = 𝑥

 Define ordered function compositions: 𝑓1(𝑥); 𝑓2(𝑓1 𝑥); … ; 𝑓𝑛(…𝑓1 𝑥)

 If we can write function composition 𝑔 𝑥 = 𝑓𝑖(𝑓𝑖−1 𝑥) as 𝑔 = 𝑓𝑖 ∘ 𝑓𝑖−1 then we can compute ∘ with a prefix sum!

We saw an example with the adder (𝑀𝑎𝑏 were our functions)

 Example: linear recurrence 𝒇𝒊 𝒙 = 𝒂𝒊𝒇𝒊−𝟏 𝒙 + 𝒃𝒊 with 𝒇𝟎 𝒙 =x

 Write as matrix form 𝑓𝑖
𝑥
1

=
𝑎𝑖 𝑏𝑖
0 1

𝑓𝑖−1
𝑥
1

 Function composition is now simple matrix multiplication!

For example: 𝑓2
𝑥
1

=
𝑎2 𝑏2
0 1

𝑎1 𝑏1
0 1

𝑓0
𝑥
1

=
𝑎1𝑎2 𝑎2𝑏1 + 𝑏2
0 1

𝑥
1

4

Prefix sums as magic bullet for other seemingly sequential algorithms

spcl.inf.ethz.ch

@spcl_eth

5

Parallel Filter

Given an array, produce an array containing only the elements for which f(e) is true

input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

f(e): true if e > 10

output [17, 11, 13, 19, 24]

https://wiki.rice.edu/confluence/download/attachments/4435861/comp322-s18-lec37-slides-v1.pdf?version=1&modificationDate=1523898025646&api=v2

Parallelizable?

spcl.inf.ethz.ch

@spcl_eth

 Parallel map to compute a bit-vector for true elements

 Parallel-prefix sum on the bit-vector

 Parallel map to produce the output

6

Parallel Filter

bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

https://wiki.rice.edu/confluence/download/attachments/4435861/comp322-s18-lec37-slides-v1.pdf?version=1&modificationDate=1523898025646&api=v2

output = new array of size bitsum[n-1]

FORALL(i=0; i < input.length; i++){

if(bits[i]==1)

output[bitsum[i]-1] = input[i];

}

output [17, 11, 13, 19, 24]

spcl.inf.ethz.ch

@spcl_eth

7

Parallel Lexical Analysis and Parsing

Hill, Jonathan MD. "Parallel lexical analysis and parsing on the AMT distributed array processor." Parallel computing 18.6 (1992): 699-714.

spcl.inf.ethz.ch

@spcl_eth

 Substitute each character with its associated transition (i.e., column of the FSM)

8

Parallel Lexical Analysis and Parsing

Hill, Jonathan MD. "Parallel lexical analysis and parsing on the AMT distributed array processor." Parallel computing 18.6 (1992): 699-714.

spcl.inf.ethz.ch

@spcl_eth

 Define a composition function as a function that given two transitions
𝜶 → 𝜷 and 𝜷 → 𝜹, produces 𝜶 → 𝜹.

9

Parallel Lexical Analysis and Parsing

spcl.inf.ethz.ch

@spcl_eth

10

Parallel Lexical Analysis and Parsing

Hill, Jonathan MD. "Parallel lexical analysis and parsing on the AMT distributed array processor." Parallel computing 18.6 (1992): 699-714.

 Apply prefix sum.

 At the end, the state of each processor is equivalent to the that produced by a finite state machine in all
possible states after reading the current and all the previous characters.

spcl.inf.ethz.ch

@spcl_eth

 Familiar (non-HPC) network: Internet TCP/IP

 Common model:

 Class Question: What parameters are needed to model the performance (including pipelining)?

 Latency, Bandwidth, Injection Rate, Host Overhead

 What network models do you know and what do they model?

11

Distributed networking basics

Network DestinationSource

spcl.inf.ethz.ch

@spcl_eth

 Transfer time 𝑇(𝑠) = 𝛼 + 𝛽𝑠

 𝛼 = startup time (latency)

 𝛽 = cost per byte (bandwidth=1/β)

 As s increases, bandwidth approaches 1/𝛽 asymptotically

 Convergence rate depends on α

 𝑠1
2

= 𝛼/𝛽

 Assuming no pipelining (new messages can only be issued from a process after all arrived)

12

Remember: A Simple Model for Communication

spcl.inf.ethz.ch

@spcl_eth

 𝑠1
2

= 𝛼/𝛽 is often used to distinguish bandwidth- and latency-bound messages

 𝑠1
2

is in the order of kilobytes on real systems

13

Bandwidth vs. Latency

asymptotic limit

spcl.inf.ethz.ch

@spcl_eth

 Simplest linear broadcast

 One process has a data item to be distributed to all processes

 Linearly broadcasting s bytes among P processes:

 𝑇 𝑠 = 𝑃 − 1 ⋅ 𝛼 + 𝛽𝑠 = 𝑂(𝑃)

 Class question: Do you know a faster method to accomplish the same?

14

Quick Example

spcl.inf.ethz.ch

@spcl_eth

 Origin process is the root of the tree, passes messages to k neighbors which pass them on

 k=2 -> binary tree

 Class Question: What is the broadcast time in the simple latency/bandwidth model?

 𝑇 𝑠 ≈ log𝑘𝑃 ⋅ 𝑘(𝛼 + 𝛽𝑠) (for fixed k)

 Class Question: What is the optimal k?

 0 =
𝑘 ln 𝑃

ln 𝑘

𝑑

𝑑𝑘
=

lnP ln 𝑘 − ln 𝑃

ln2𝑘
→ 𝑘 = 𝑒 = 2.71…

 Independent of 𝑃, 𝛼, 𝛽𝑠? Really?

15

k-ary Tree Broadcast

spcl.inf.ethz.ch

@spcl_eth

 Class Question: Can we broadcast faster than in a ternary tree?

 Yes because each respective root is idle after sending three messages!

 Those roots could keep sending!

 Result is a k-nomial tree

For k=2, it’s a binomial tree

 Class Question: What about the runtime?



 Class Question: What is the optimal k here?

 T(s) d/dk is monotonically increasing for k>1, thus kopt=2

 Class Question: Can we broadcast faster than in a k-nomial tree?

 is asymptotically optimal for s=1!

 But what about large s?

16

Faster Trees?

spcl.inf.ethz.ch

@spcl_eth

 Extreme case (P small, s large): simple pipeline

 Split message into segments of size z

 Send segments from PE i to PE i+1

 Class Question: What is the runtime?

 T(s) = (P-2+s/z)(α + βz)

 Compare 2-nomial tree with simple pipeline for α=10, β=1, P=4, s=106, and z=105

 2,000,020 vs. 1,200,120

 Class Question: Can we do better for given α, β, P, s?

 Derive by z

 What is the time for simple pipeline for α=10, β=1, P=4, s=106, zopt?

 1,008,964
17

Very Large Message Broadcast

spcl.inf.ethz.ch

@spcl_eth

 Class Question: What is a simple lower bound on the broadcast time?



 How close are the binomial tree for small messages and the pipeline for large messages (approximately)?

 Bin. tree is a factor of log2(P) slower in bandwidth

 Pipeline is a factor of P/log2(P) slower in latency

 Class Question: What can we do for intermediate message sizes?

 Combine pipeline and tree  pipelined tree

 Class Question: What is the runtime of the pipelined binary tree algorithm?



 Class Question: What is the optimal z?



18

Lower Bounds

spcl.inf.ethz.ch

@spcl_eth

 What is the complexity of the pipelined tree with zopt for small s, large P and for large s, constant P?

 Small messages, large P: s=1; z=1 (s≤z), will give O(log P)

 Large messages, constant P: assume α, β, P constant, will give asymptotically O(sβ)

Asymptotically optimal for large P and s but bandwidth is off by a factor of 2! Why?

 Bandwidth-optimal algorithms exist, e.g., Sanders et al. “Full Bandwidth Broadcast, Reduction and Scan
with Only Two Trees”. 2007

 Intuition: in binomial tree, all leaves (P/2) only receive data and never send  wasted bandwidth

 Send along two simultaneous binary trees where the leafs of one tree are inner nodes of the other

 Construction needs to avoid endpoint congestion (makes it complex)

Can be improved with linear programming and topology awareness

19

Towards an Optimal Algorithm

spcl.inf.ethz.ch

@spcl_eth

 Defined by four parameters:

 L: an upper bound on the latency, or delay, incurred in communicating a message containing a word (or
small number of words) from its source module to its target module.

 o: the overhead, defined as the length of time that a processor is engaged in the transmission or
reception of each message; during this time, the processor cannot perform other operations.

 g: the gap, defined as the minimum time interval between consecutive message transmissions or
consecutive message receptions at a processor. The reciprocal of g corresponds to the available per-
processor communication bandwidth.

 P: the number of processor/memory modules. We assume unit time for local operations and call it a
cycle.

20

The LogP Model

spcl.inf.ethz.ch

@spcl_eth

21

The LogP Model

spcl.inf.ethz.ch

@spcl_eth

 Sending a single message

 T = 2o+L

 Ping-Pong Round-Trip

 TRTT = 4o+2L

 Transmitting n messages

 T(n) = L+(n-1)*max(g, o) + 2o

22

Simple Examples

spcl.inf.ethz.ch

@spcl_eth

 o is bigger than g on some machines

 g can be ignored (eliminates max() terms)

 be careful with multicore!

 Offloading networks might have very low o

 Can be ignored (not yet but hopefully soon)

 L might be ignored for long message streams

 If they are pipelined

 Account g also for the first message

 Eliminates “-1”

23

Simplifications

spcl.inf.ethz.ch

@spcl_eth

 Models pipelining

 L/g messages can be “in flight”

 Captures state of the art (cf. TCP windows)

 Models computation/communication overlap

 Asynchronous algorithms

 Models endpoint congestion/overload

 Benefits balanced algorithms

24

Benefits over Latency/Bandwidth Model

spcl.inf.ethz.ch

@spcl_eth

 Class Question: What is the LogP running time for a linear broadcast of a single packet?

 Tlin = L + (P-2) * max(o,g) + 2o

 Class Question: Approximate the LogP runtime for a binary-tree broadcast of a single packet?

 Tbin ≤ log2P * (L + max(o,g) + 2o)

 Class Question: Approximate the LogP runtime for an k-ary-tree broadcast of a single packet?

 Tk-n ≤ logkP * (L + (k-1)max(o,g) + 2o)

25

Example: Broadcasts

spcl.inf.ethz.ch

@spcl_eth

 Class Question: Approximate the LogP runtime for a binomial tree broadcast of a single packet (assume L
> g!)?

 Tbin ≤ log2P * (L + 2o)

 Class Question: Approximate the LogP runtime for a k-nomial tree broadcast of a single packet?

 Tk-n ≤ logkP * (L + (k-2)max(o,g) + 2o)

 Class Question: What is the optimal k (assume o>g)?

 Derive by k: 0 = o * ln(kopt) – L/kopt + o (solve numerically)

For larger L, k grows and for larger o, k shrinks

 Models pipelining capability better than simple model!

26

Example: Broadcasts

spcl.inf.ethz.ch

@spcl_eth

 Class Question: Can we do better than kopt-ary binomial broadcast?

 Problem: fixed k in all stages might not be optimal

 We can construct a schedule for the optimal broadcast in practical settings

 First proposed by Karp et al. in “Optimal Broadcast and Summation in the LogP Model”

27

Example: Broadcasts

spcl.inf.ethz.ch

@spcl_eth

 Broadcast to P-1 processes

 Each process who received the value sends it on; each process receives exactly once

28

Example: Optimal Broadcast

P=8, L=6, g=4, o=2

spcl.inf.ethz.ch

@spcl_eth

 This determines the maximum number of PEs (P(t)) that can be reached in time t

 P(t) can be computed with a generalized Fibonacci recurrence (assuming o>g):

 Which can be bounded by (see [1]):

 A closed solution is an interesting open problem!

29

Optimal Broadcast Runtime

[1]: Hoefler et al.: “Scalable Communication Protocols for Dynamic Sparse Data Exchange” (Lemma 1)

