
spcl.inf.ethz.ch

@spcl_eth

S. DI GIROLAMO [DIGIROLS@INF.ETHZ.CH]

MPI Tutorial – Part 1
Design of Parallel and High-Performance Computing – Recitation Session

Slides credits: Pavan Balaji, Torsten Hoefler
https://htor.inf.ethz.ch/teaching/mpi_tutorials/ppopp13/2013-02-24-ppopp-mpi-basic.pdf

spcl.inf.ethz.ch

@spcl_eth

 Assignments

 are an important part of the course.

 You will not learn this material from listening to a lecture alone – we strongly suggest to do the assignments.

 They are not graded, but feedbacks are provided if handend-in

 Course webpage: http://spcl.inf.ethz.ch/Teaching/2018-dphpc/

 Course mailing-list: https://spcl.inf.ethz.ch/cgi-bin/mailman/listinfo/dphpc-20178

2

Basic Info

http://spcl.inf.ethz.ch/Teaching/2018-dphpc/

spcl.inf.ethz.ch

@spcl_eth

3

The switch from sequential to parallel computing

 Moore’s law continues to be true, but…

– Processor speeds no longer double every 18-24 months

– Number of processing units double, instead

• Multi-core chips (dual-core, quad-core)

– No more automatic increase in speed for software

 Parallelism is the norm

– Lots of processors connected over a network and coordinating to

solve large problems

– Used every where!

• By USPS for tracking and minimizing fuel routes

• By automobile companies for car crash simulations

• By airline industry to build newer models of flights

spcl.inf.ethz.ch

@spcl_eth

4

spcl.inf.ethz.ch

@spcl_eth

5

spcl.inf.ethz.ch

@spcl_eth

6

spcl.inf.ethz.ch

@spcl_eth

7

Sample Parallel Programming Models

 Shared Memory Programming

– Processes share memory address space (threads model)

– Application ensures no data corruption (Lock/Unlock)

 Transparent Parallelization

– Compiler works magic on sequential programs

 Directive-based Parallelization

– Compiler needs help (e.g., OpenMP)

 Message Passing

– Explicit communication between processes (like sending and receiving

emails)

spcl.inf.ethz.ch

@spcl_eth

8

The Message-Passing Model

 A process is (traditionally) a program counter and address space.

 Processes may have multiple threads (program counters and associated stacks) sharing a

single address space. MPI is for communication among processes, which have separate

address spaces.

 Inter-process communication consists of...

– synchronization

– movement of data from one process’s address space to another’s.

Process Process

MPI

MPI

spcl.inf.ethz.ch

@spcl_eth

9

The Message-Passing Model (an example)

 Each process has to send/receive data to/from other processes

 Example: Sorting Integers

8 19 23 35 45 67 1 3 5 13 24 30

Process1 Process2

1 3 5 8 13 19 23 24 30 35 45 67

O(N/2 log N/2) O(N/2 log N/2)

O(N log N)

O(N)

Process1

8 23 19 67 45 35 1 24 13 30 3 5

Process1

spcl.inf.ethz.ch

@spcl_eth

10

Standardizing Message-Passing Models with MPI

 Early vendor systems (Intel’s NX, IBM’s EUI, TMC’s CMMD)were not portable (or very capable)

 Early portable systems (PVM, p4, TCGMSG, Chameleon)were mainly research efforts

– Did not address the full spectrum of message-passing issues

– Lacked vendor support

– Were not implemented at the most efficient level

 The MPI Forum was a collection of vendors, portability writersand

users that wanted to standardize all these efforts

spcl.inf.ethz.ch

@spcl_eth

11

What is MPI?

 MPI: Message Passing Interface

– The MPI Forum organized in 1992 with broad participation by:

• Vendors: IBM, Intel, TMC, SGI, Convex, Meiko

• Portability library writers: PVM, p4

• Users: application scientists and library writers

• MPI-1 finished in 18 months

– Incorporates the best ideas in a “standard” way

• Each function takes fixed arguments

• Each function has fixed semantics

– Standardizes what the MPI implementation provides and what the application can and cannot expect

– Each system can implement it differently as long as the semantics match

 MPI is not…

– a language or compiler specification

– a specific implementation or product

spcl.inf.ethz.ch

@spcl_eth

12

Reasons for Using MPI

 Standardization - MPI is the only message passing library which can be considered a standard. It is

supported on virtually all HPC platforms. Practically, it has replaced all previous message passing

libraries

 Portability - There is no need to modify your source code when you port your application to a different

platform that supports (and is compliant with) the MPI standard

 Performance Opportunities - Vendor implementations should be able to exploit native hardware features

to optimize performance

 Functionality – Rich set of features

 Availability - A variety of implementations are available, both vendor and public domain

– MPICH/Open MPI are popular open-source and free implementations of MPI

– Vendors and other collaborators take MPICH and add support for their systems

• Intel MPI, IBM Blue Gene MPI, Cray MPI, Microsoft MPI, MVAPICH, MPICH-MX

Important Note:

All parallelism is explicit: the programmer is responsible for correctly identifying parallelism

and implementing parallel algorithms using MPI constructs

spcl.inf.ethz.ch

@spcl_eth

13

MPI Basic Send/Receive

 Simple communication model

 Application needs to specify to the MPI implementation:

1. How do you compile and run an MPI application?

2. How will processes be identified?

3. How will “data” be described?

Process 0 Process 1

Send(data)

Receive(data)

spcl.inf.ethz.ch

@spcl_eth

14

Compiling and Running MPI applications (more details later)

 MPI is a library

– Applications can be written in C, C++ or Fortran and appropriate calls to MPI can be added where
required

 Compilation:

– Regular applications:

• gcc test.c -o test

– MPI applications

• mpicc test.c -o test

 Execution:

– Regular applications

• ./test

– MPI applications (running with 16 processes)

• mpiexec –np 16 ./test

spcl.inf.ethz.ch

@spcl_eth

15

Process Identification

 MPI processes can be collected into groups

 Each group can have multiple colors (some times called context)

 Group + color == communicator (it is like a name for the group)

 When an MPI application starts, the group of all processes is initially given a predefined name called
MPI_COMM_WORLD

 The same group can have many names, but simple programs do not have to worry about multiple
names

 A process is identified by a unique number within each communicator, called rank

 For two different communicators, the same process can have two different ranks: so the

meaning of a “rank” is only defined when you specify the communicator

spcl.inf.ethz.ch

@spcl_eth

16

Communicators

When you start an MPI
program, there is one

predefined communicator
MPI_COMM_WORLD

Can make copies of this
communicator (same group of

processes, but different
“aliases”)

Communicators do not
need to contain all

processes in the system

Every process in a
communicator has an ID

called as “rank”

The same process might have different
ranks in different communicators

Communicators can be created “by hand” or using tools provided by MPI (not discussed in this tutorial)

Simple programs typically only use the predefined communicator MPI_COMM_WORLD

mpiexec -np 16 ./test

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1

2 3

4 5

6 7

0 1 2 3

4 5 6 7

spcl.inf.ethz.ch

@spcl_eth

17

Simple MPI Program Identifying Processes

#include <mpi.h>

#include <stdio.h>

int main(int argc, char ** argv)

{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

printf("I am %d of %d\n", rank, size);

MPI_Finalize();

return 0;

}

Basic
requirements

for an MPI
program

spcl.inf.ethz.ch

@spcl_eth

18

Data Communication

 Data communication in MPI is like email exchange

– One process sends a copy of the data to another process (or a group of processes), and the other process

receives it

 Communication requires the following information:

– Sender has to know:

• Whom to send the data to (receiver’s process rank)

• What kind of data to send (100 integers or 200 characters, etc)

• A user-defined “tag” for the message (think of it as an email subject; allows the receiver to understand what
type of data is being received)

– Receiver “might” have to know:

• Who is sending the data (OK if the receiver does not know; in this case sender rank will be MPI_ANY_SOURCE,
meaning anyone can send)

• What kind of data is being received (partial information is OK: I might receive up to 1000 integers)

• What the user-defined “tag” of the message is (OK if the receiver does not know; in this case tag will be
MPI_ANY_TAG)

spcl.inf.ethz.ch

@spcl_eth

19

More Details on Using Ranks for Communication

 When sending data, the sender has to specify the destination process’ rank

– Tells where the message should go

 The receiver has to specify the source process’ rank

– Tells where the message will come from

 MPI_ANY_SOURCE is a special “wild-card” source that can be

used by the receiver to match any source

spcl.inf.ethz.ch

@spcl_eth

20

More Details on Describing Data for Communication

 MPI Datatype is very similar to a C or Fortran datatype

– int MPI_INT

– double MPI_DOUBLE

– char MPI_CHAR

 More complex datatypes are also possible:

– E.g., you can create a structure datatype that comprises of other datatypes a char, an int and a
double.

– Or, a vector datatype for the columns of a matrix

 The “count” in MPI_SEND and MPI_RECV refers to how many datatype elements should

be communicated

spcl.inf.ethz.ch

@spcl_eth

21

More Details on User “Tags” for Communication

 Messages are sent with an accompanying user-defined integer tag, to assist the

receiving process in identifying the message

 For example, if an application is expecting two types of messages from a peer, tags

can help distinguish these two types

 Messages can be screened at the receiving end by specifying a specific tag

 MPI_ANY_TAG is a special “wild-card” tag that can be used by the receiver to match any

tag

spcl.inf.ethz.ch

@spcl_eth

22

MPI Basic (Blocking) Send

MPI_SEND(buf, count, datatype, dest, tag, comm)

 The message buffer is described by (buf, count,datatype).

 The target process is specified by dest and comm.

– dest is the rank of the target process in the communicator specified by comm.

 tag is a user-defined “type” for the message

 When this function returns, the data has been delivered to the system and the buffer can
be reused.

– The message may not have been received by the target process.

spcl.inf.ethz.ch

@spcl_eth

23

MPI Send Modes

spcl.inf.ethz.ch

@spcl_eth

24

MPI Basic (Blocking) Receive

MPI_RECV(buf, count, datatype, source, tag, comm, status)

 Waits until a matching (on source, tag, comm) message is received from the system, and

the buffer can be used.

 source is rank in communicator comm, or MPI_ANY_SOURCE.

 Receiving fewer than count occurrences of datatype is OK, but receiving more is an

error.

 status contains further information:

– Who sent the message (can be used if you used MPI_ANY_SOURCE)

– How much data was actually received

– What tag was used with the message (can be used if you used MPI_ANY_TAG)

– MPI_STATUS_IGNORE can be used if we don’t need any additional information

spcl.inf.ethz.ch

@spcl_eth

25

Simple Communication in MPI

#include <mpi.h>

#include <stdio.h>

int main(int argc, char ** argv)

{

int rank, data[100];

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0)

MPI_Send(data, 100, MPI_INT, 1, 0, MPI_COMM_WORLD);

else if (rank == 1)

MPI_Recv(data, 100, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Finalize();

return 0;

}

spcl.inf.ethz.ch

@spcl_eth

26

Parallel Sort using MPI Send/Recv

8 19 23 35 45 67 1 3 5 13 24 30

Rank 0 Rank 1O(N log N)

1 3 5 8 13 19 23 24 30 35 45 67

Rank 0

8 23 19 67 45 35 1 24 13 30 3 5

Rank 0

8 19 23 35 45 67 1 3 5 13 24 30

Rank 0

spcl.inf.ethz.ch

@spcl_eth

27

Parallel Sort using MPI Send/Recv (contd.)
#include <mpi.h>

#include <stdio.h>

int main(int argc, char ** argv)

{

int rank;

int a[1000], b[500];

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {

MPI_Send(&a[500], 500, MPI_INT, 1, 0, MPI_COMM_WORLD);

sort(a, 500);

MPI_Recv(b, 500, MPI_INT, 1, 0, MPI_COMM_WORLD, &status);

/* Serial: Merge array b and sorted part of array a */

}

else if (rank == 1) {

MPI_Recv(b, 500, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);

sort(b, 500);

MPI_Send(b, 500, MPI_INT, 0, 0, MPI_COMM_WORLD);

}

MPI_Finalize(); return 0;

}

spcl.inf.ethz.ch

@spcl_eth

28

Status Object

 The status object is used after completion of a receive to findthe actual length, source, and tag of
a message

 Status object is MPI-defined type and provides informationabout:

– The source process for the message (status.MPI_SOURCE)

– The message tag (status.MPI_TAG)

– Error status (status.MPI_ERROR)

 The number of elements received is given by:

MPI_Get_count(MPI_Status *status, MPI_Datatype datatype, int *count)

status

datatype

count

return status of receive operation (status)

datatype of each receive buffer element (handle)

number of received elements (integer)(OUT)

spcl.inf.ethz.ch

@spcl_eth

29

Using the “status” field

 Each “worker process” computes some task (maximum 100 elements) and sends it to the
“master” process together with its group number: the “tag” field can be used to represent
the task

– Data count is not fixed (maximum 100 elements)

– Order in which workers send output to master is not fixed (different workers = different src ranks, and
different tasks = different tags)

Task1 Task2

spcl.inf.ethz.ch

@spcl_eth

30

Using the “status” field (contd.)

#include <mpi.h>

#include <stdio.h>

int main(int argc, char ** argv)

{

[...snip...]

if (rank != 0)

MPI_Send(data, rand() % 100, MPI_INT, 0, group_id, MPI_COMM_WORLD);

else {

for (i = 0; i < size – 1 ; i++) {

MPI_Recv(data, 100, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);

MPI_Get_count(&status, MPI_INT, &count);

printf(“worker ID: %d; task ID: %d; count: %d\n”, status.source, status.tag, count);

}

}

[...snip...]

}

spcl.inf.ethz.ch

@spcl_eth

31

MPI is Simple

 Many parallel programs can be written using just these six functions, only two of which are non-trivial:

– MPI_INIT – initialize the MPI library (must be the

first routine called)

– MPI_COMM_SIZE - get the size of a communicator

– MPI_COMM_RANK – get the rank of the calling process

in the communicator

– MPI_SEND – send a message to another process

– MPI_RECV – send a message to another process

– MPI_FINALIZE – clean up all MPI state (must be the last MPI function

called by a process)

 For performance, however, you need to use other MPI features

spcl.inf.ethz.ch

@spcl_eth

 Download your preferred MPI implementation. E.g.:

 MPICH: https://www.mpich.org (current stable: 3.2)

 OpenMPI: https://www.open-mpi.org (current stable: 3.0)

 Build (e.g., MPICH – pretty much the same for the others)

 tar -xzvf mpich-3.2.tar.gz

 cd mpich-3.2

 ./configure –-prefix=/where/to/install/mpich

 make

 make install

 Add /where/to/install/mpich/bin to your PATH

32

Getting Started with MPI

https://www.mpich.org/
https://www.open-mpi.org/

spcl.inf.ethz.ch

@spcl_eth

33

Compiling MPI programs with MPICH

 Compilation Wrappers

– For C programs: mpicc test.c –o test

– For C++ programs: mpicxx test.cpp –o test

– For Fortran 77 programs:

– For Fortran 90 programs:

mpif77 test.f –o test

mpif90 test.f90 –o test

 You can link other libraries are required too

• – To link to a math library: mpicc

test.c –o test -lm

 You can just assume that “mpicc” and friends have replaced

• your regular compilers (gcc, gfortran, etc.)

spcl.inf.ethz.ch

@spcl_eth

34

Running MPI programs with MPICH

 Launch 16 processes on the local node:

– mpiexec –np 16 ./test

 Launch 16 processes on 4 nodes (each has 4 cores)

– mpiexec –hosts h1:4,h2:4,h3:4,h4:4 –np 16 ./test

• Runs the first four processes on h1, the next four on h2, etc.

– mpiexec –hosts h1,h2,h3,h4 –np 16 ./test

• Runs the first process on h1, the second on h2, etc., and wraps around

• So, h1 will have the 1st, 5th, 9th and 13th processes

 If there are many nodes, it might be easier to create a host file

– cat hf

h1:4 h2:2

– mpiexec –hostfile hf –np 16 ./test

spcl.inf.ethz.ch

@spcl_eth

35

Blocking vs. Non-blocking Communication

 MPI_SEND/MPI_RECV are blocking communication calls

– Return of the routine implies completion

– When these calls return the memory locations used in the message transfer can be safely accessed

for reuse

– For “send” completion implies variable sent can be reused/modified

– Modifications will not affect data intended for the receiver

– For “receive” variable received can be read

 MPI_ISEND/MPI_IRECV are non-blocking variants

– Routine returns immediately – completion has to be separately tested for

– These are primarily used to overlap computation and communication to improve performance

spcl.inf.ethz.ch

@spcl_eth

36

Blocking Communication

 In blocking communication.

– MPI_SENDdoes not return until buffer is empty (available for reuse)

– MPI_RECVdoes not return until buffer is full (available for use)

 A process sending data will be blocked until data in the send buffer is emptied

 A process receiving data will be blocked until the receive buffer is filled

 Exact completion semantics of communication generally depends on the

message size and the system buffer size

 Blocking communication is simple to use but can be prone to deadlocks

If (rank == 0) Then

Callmpi_send(..)

Callmpi_recv(..)

Usually deadlocks Else

 UNLESS you reverse send/recvCallmpi_send(..)

Callmpi_recv(..)

Endif

spcl.inf.ethz.ch

@spcl_eth

37

Blocking Send-Receive Diagram

time

spcl.inf.ethz.ch

@spcl_eth

38

Non-Blocking Communication

 Non-blocking (asynchronous) operations return (immediately) ‘‘request handles” that can be waited on and

queried

– MPI_ISEND(start, count, datatype, dest, tag, comm, request)

– MPI_IRECV(start, count, datatype, src, tag, comm, request)

– MPI_WAIT(request, status)

 Non-blocking operations allow overlapping computation and communication

 One can also test without waiting using MPI_TEST

– MPI_TEST(request, flag, status)

 Anywhere you use MPI_SEND or MPI_RECV, you can use the pair of

MPI_ISEND/MPI_WAIT or MPI_IRECV/MPI_WAIT

 Combinations of blocking and non-blocking sends/receives can be used to synchronize execution instead of

barriers

spcl.inf.ethz.ch

@spcl_eth

39

Multiple Completions

 It is sometimes desirable to wait on multiple requests:

• MPI_Waitall(count, array_of_requests, array_of_statuses)

• MPI_Waitany(count, array_of_requests, &index, &status)

• MPI_Waitsome(count, array_of_requests, array_of_indices, array_of_statuses)

 There are corresponding versions of test for each of these

spcl.inf.ethz.ch

@spcl_eth

40

Non-Blocking Send-Receive Diagram

time

spcl.inf.ethz.ch

@spcl_eth

41

Message Completion and Buffering

 For a communication to succeed:
– Sender must specify a valid destination rank

– Receiver must specify a valid source rank (including MPI_ANY_SOURCE)

– The communicator must be the same

– Tags must match

– Receiver’s buffer must be large enough

 A send has completed when the user supplied buffer can be reused

 Just because the send completes does not mean that the receive has completed
– Message may be buffered by the system

– Message may still be in transit

*buf =3;

MPI_Send(buf, 1, MPI_INT …)

buf = 4; / OK, receiver will always

receive 3 */

*buf =3;

MPI_Isend(buf, 1, MPI_INT …)

*buf = 4; /*Not certain if receiver

gets 3 or 4 or anything else */

MPI_Wait(…);

spcl.inf.ethz.ch

@spcl_eth

42

A Non-Blocking communication example

int main(int argc, char ** argv)

{

[...snip...]

if (rank == 0) {

for (i=0; i< 100; i++) {

/* Compute each data element and send it out */ data[i] = compute(i);

MPI_ISend(&data[i], 1, MPI_INT, 1, 0, MPI_COMM_WORLD, &request[i]);

}

MPI_Waitall(100, request, MPI_STATUSES_IGNORE)

}

else {

for (i = 0; i < 100; i++)

MPI_Recv(&data[i], 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}

[...snip...]

}

spcl.inf.ethz.ch

@spcl_eth

43

Introduction to Collective Operations in MPI

 Collective operations are called by all processes in a communicator.

 MPI_BCASTdistributes data from one process (the root) to all others in a communicator.

 MPI_REDUCE combines data from all processes in the communicator and returns it to one
process.

 In many numerical algorithms, SEND/RECV can be replaced by BCAST/REDUCE, improving
both simplicity and efficiency.

spcl.inf.ethz.ch

@spcl_eth

44

MPI Collective Communication

 Communication and computation is coordinated amonga group of processes in a
communicator

 Tags are not used; different communicators deliver similar functionality

 Non-blocking collective operations in MPI-3

– Covered in the advanced tutorial (but conceptually simple)

 Three classes of operations: synchronization, data movement, collective computation

spcl.inf.ethz.ch

@spcl_eth

45

Synchronization

 MPI_BARRIER(comm)

– Blocks until all processes in the group of the communicator comm call it

– A process cannot get out of the barrier until all other processes have reached barrier

spcl.inf.ethz.ch

@spcl_eth

46

Collective Data Movement

A

B

D

C

A

A

A

A

Broadcast

Scatter

Gather

A

A B C D

P0

P1

P2

P3

P0

P1

P2

P3

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm)

int MPI_Scatter(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount,

MPI_Datatype recvtype, int root, MPI_Comm comm)

int MPI_Gather(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount,

MPI_Datatype recvtype, int root, MPI_Comm comm)

spcl.inf.ethz.ch

@spcl_eth

47

More Collective Data Movement

A

B

D

C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

A B C D

A B C D

A B C D

A B C D

Allgather

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3

int MPI_Allgather(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Alltoall(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)

spcl.inf.ethz.ch

@spcl_eth

48

Collective Computation

P0

P1

P2

P3

A

B

D

C

A+B+C+D

Reduce

P0

P1

P2

P3

A

B

D

C

AllReduce
A+B+C+D

A+B+C+D

A+B+C+D

A+B+C+D

int MPI_Reduce(const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, int root,

MPI_Comm comm)

int MPI_Allreduce(const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op,

MPI_Comm comm)

spcl.inf.ethz.ch

@spcl_eth

49

P0

P1

P2

P3

A

B

D

C

A

AB

ABC

ABCD

Scan

int MPI_Scan(const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op,

MPI_Comm comm)

 MPI_ALLREDUCE, MPI_REDUCE, MPI_REDUCESCATTER, and MPI_SCANtake both built-in and user-
defined combiner functions

spcl.inf.ethz.ch

@spcl_eth

50

MPI Built-in Collective Computation Operations

 MPI_MAX

 MPI_MIN

 MPI_PROD

 MPI_SUM

 MPI_LAND

 MPI_LOR

 MPI_LXOR

 MPI_BAND

 MPI_BOR

 MPI_BXOR

 MPI_MAXLOC

 MPI_MINLOC

Maximum

Minimum

Product

Sum

Logical and

Logical or

Logical exclusive or

Bitwise and

Bitwise or

Bitwise exclusive or

Maximum and location

Minimum and location

spcl.inf.ethz.ch

@spcl_eth

51

Defining your own Collective Operations

 Create your own collective computations with:
MPI_OP_CREATE(user_fn, commutes, &op);

MPI_OP_FREE(&op);

user_fn(invec, inoutvec, len, datatype);

inoutvec[i];

 The user function should perform:
inoutvec[i] = invec[i] op

for i from 0 to len-1

 The user function can be non-commutative, but must be associative

spcl.inf.ethz.ch

@spcl_eth

 Download π-seq from the website

 Make it parallel using MPI!

 Did the perfomance improve? How did you measure it?

52

Homework

