
spcl.inf.ethz.ch

@spcl_eth

SALVATORE DI GIROLAMO <DIGIROLS@INF.ETHZ.CH>

DPHPC: Work-Depth
Recitation session

Reference:

Guy E. Blelloch and Bruce M. Maggs. 2010. Parallel algorithms. In Algorithms and theory of computation handbook

(2 ed.), Mikhail J. Atallah and Marina Blanton (Eds.). Chapman & Hall/CRC 25-25.

spcl.inf.ethz.ch

@spcl_eth

 Memory consists of infinite number of cells

 Instructions exectued sequentially, one at time

 All instructions take unit time

2

RAM model

How to model parallel applications?

PRAM is a generalization of RAM

However, parallel computers tend to vary more in organization than do sequential computers

spcl.inf.ethz.ch

@spcl_eth

3

Local-Memory Machine

How do processors access memory?
Local memory is accessed directly, remote memory is accessed by sending messages through the interconnection network.

What is the cost of the memory accesses?
Local accesses are made in unit time. Remote accesses cost depends on (a) the interconnection network and (b) on the access pattern of the

other processors (may congest the network).

spcl.inf.ethz.ch

@spcl_eth

4

Modular Memory Machine

How do processors access memory?
Memory access requests are sent through the interconnection network.

What is the cost of the memory accesses?
Typically, memory and processors are arranged such that the memory access cost is roughly uniform. Exact time depends on the interconnection

network and on the access pattern of other processors.

spcl.inf.ethz.ch

@spcl_eth

5

Shared-Memory Machine (PRAM model)

How do processors access memory?
Processors are directly attached to the memory.

What is the cost of the memory accesses?
Unit cost, parallel accesses are possible (write-conflicts have to be managed according with the model).

spcl.inf.ethz.ch

@spcl_eth

6

Interconnection Networks

spcl.inf.ethz.ch

@spcl_eth

7

Interconnection Networks

• Algorithms can be optimized for specific interconnection networks

• Difficult for perfomance-portability!

• Alternative is to abstract the network details away:

• Postal model

• LogGP

• BSP

spcl.inf.ethz.ch

@spcl_eth

 Idea: Instead of focusing on the architecture (too many different ways to organize a parallel

computer), let’s focus on the algorithm.

8

Work-Depth Model

Circuit model:
Nodes and directed arcs.

Work: total number of

nodes.

Depth: longest directect

path from an input arc to

an output arc

Vector model:
Sequence of steps. A step is

a vector operation.

Work: work of a step is

the length of it’s input

vector. Work of the

algorithm is sum of

works of its steps.

Depth: number of steps

Language model:
Programming language

constructs.

Work: Number of

constructs.

Depth: maximum depth

of call sequences.

spcl.inf.ethz.ch

@spcl_eth

9

Algorithm Cost

Work and depth can be viewed as the running time of an algorithm at two

limits: one processor (work) and an unlimited number of processors (depth).

Richard P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the Association for Computing Machinery, 21(2):201-206, 1974.

Brent’s theorem provides bounds to the running time:

𝑾

𝑷
≤ 𝑻 ≤

𝑾

𝑷
+ 𝑫

spcl.inf.ethz.ch

@spcl_eth

10

Defining a DAG

Strand: chain of serially executed instructions.

Strands are partially ordered with dependencies

Spawn nodes have two

successors

Sync nodes are where

the control flow merges

spcl.inf.ethz.ch

@spcl_eth

11

Defining a DAG

Given an input size n:

• The work 𝑾(𝒏) is the total number of strands.

• W(n)=13

• The depth 𝑫(𝒏) is the length of the critical path

(measured in number of strands).

• Defines the minimum execution time of the computation

• D(n)=8

The ratio
𝑊(𝑛)

𝐷(𝑛)
measures the average available parallelism

spcl.inf.ethz.ch

@spcl_eth

12

Scheduling a DAG

int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = spawn fib(n-1);
y = fib(n-2);
sync;
return (x+y);

}
}

4

3

2

2

1 1 0

1 0

The DAG unfolds dynamically:

Node: Sequence of instructions without call, spawn, sync, return

Edge: Dependency

5 threads

spawn call

spcl.inf.ethz.ch

@spcl_eth

13

Scheduling a DAG

4

3

2

2

1 1 0

1 0

The DAG unfolds dynamically:

5 threads

spawn call

spawn

join
thread

Remember oblivious algorithms?

spcl.inf.ethz.ch

@spcl_eth

14

Greedy Scheduler

 Idea: Do as much as possible in

every step

 Definition: A node is ready if all

predecessors have been executed

executed

ready

p = 3

spcl.inf.ethz.ch

@spcl_eth

15

Greedy Scheduler

 Idea: Do as much as possible in

every step

 Definition: A node is ready if all

predecessors have been executed

 Complete step:

 ≥ p nodes are ready

 run any p

executed

ready

p = 3

spcl.inf.ethz.ch

@spcl_eth

16

Greedy Scheduler

 Idea: Do as much as possible in

every step

 Definition: A node is ready if all

predecessors have been executed

 Complete step:

 ≥ p nodes are ready

 run any p

 Incomplete step:

 < p nodes ready

 run all

executed

ready

p = 3

spcl.inf.ethz.ch

@spcl_eth

17

Greedy Scheduler

Maintain thread pool of live threads, each is ready or not

 Initial: Root thread in thread pool, all processors idle

 At the beginning of each step each processor is idle or has a thread T to work on

 If idle

 Get ready thread from pool

 If has thread T

 Case 0: T has another instruction to execute

execute it

 Case 1: thread T spawns thread S

return T to pool, continue with S

 Case 2: T stalls

return T to pool, then idle

 Case 3: T dies

if parent of T has no living children, continue with the parent, otherwise idle

spcl.inf.ethz.ch

@spcl_eth

18

Work Stealing Scheduler

 Each processor maintains a “ready deque:” deque of threads ready for execution; bottom is

manipulated as a stack

processor

ready deque

threads can be added

or removed

(stack discipline)

threads can be removed

thread being executed

spcl.inf.ethz.ch

@spcl_eth

19

Work Stealing Scheduler

P P P P

Spawn

spcl.inf.ethz.ch

@spcl_eth

20

Work Stealing Scheduler

P P P P

Spawn Spawn

spcl.inf.ethz.ch

@spcl_eth

21

Work Stealing Scheduler

P P P P

Return

spcl.inf.ethz.ch

@spcl_eth

22

Work Stealing Scheduler

P P P P

Return

spcl.inf.ethz.ch

@spcl_eth

23

Work Stealing Scheduler

P P P P

Steal

 When a processor runs out of work, it steals a task from the top of a random victim’s deque.

spcl.inf.ethz.ch

@spcl_eth

24

Work Stealing Scheduler

P P P P

Steal

spcl.inf.ethz.ch

@spcl_eth

25

Work Stealing Scheduler

P P P P

spcl.inf.ethz.ch

@spcl_eth

26

Work Stealing Scheduler

Each processor maintains a ready deque, bottom treated as stack

 Initial: Root thread in deque of a random processor

 Deque not empty:

 Processor takes thread T from bottom and starts working

 T spawns S: Put T on stack, continue with S

 T stalls: Take next thread from stack

 T dies: Take next thread from stack

 If T enables a stalled thread S, S is put on the stack of T’s processor

 Deque empty:

 Steal thread from the top of a random (uniformly) processor’s deque

spcl.inf.ethz.ch

@spcl_eth

27

Matrix Multiplication

Work?

𝑂(𝑛3)
Depth?

𝑂(𝑙𝑜𝑔𝑛)

Can we do better?

E.g., Stressen 𝑂(𝑛2.81)

Much more parallelism than needed!

Partition A by rows and B by cols

Research focused on how to reduce communication: Communication Avoiding Algorithms

spcl.inf.ethz.ch

@spcl_eth

28

Pointer Jumping

Applicable to lists or trees.

At the end of the loop all nodes

point to their root.

Many use cases: e.g., connected

components.

Work?

𝑂(𝑛𝑙𝑜𝑔𝑛)
Depth?

𝑂(𝑙𝑜𝑔𝑛)

