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 Memory consists of infinite number of cells

 Instructions exectued sequentially, one at time

 All instructions take unit time
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RAM model

How to model parallel applications?

PRAM is a generalization of RAM

However, parallel computers tend to vary more in organization than do sequential computers
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Local-Memory Machine

How do processors access memory?
Local memory is accessed directly, remote memory is accessed by sending messages through the interconnection network.

What is the cost of the memory accesses?
Local accesses are made in unit time. Remote accesses cost depends on (a) the interconnection network and (b) on the access pattern of the

other processors (may congest the network).
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Modular Memory Machine

How do processors access memory?
Memory access requests are sent through the interconnection network.

What is the cost of the memory accesses?
Typically, memory and processors are arranged such that the memory access cost is roughly uniform. Exact time depends on  the interconnection 

network and on the access pattern of other processors.
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Shared-Memory Machine (PRAM model)

How do processors access memory?
Processors are directly attached to the memory.

What is the cost of the memory accesses?
Unit cost, parallel accesses are possible (write-conflicts have to be managed according with the model).
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Interconnection Networks
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Interconnection Networks

• Algorithms can be optimized for specific interconnection networks

• Difficult for perfomance-portability!

• Alternative is to abstract the network details away:

• Postal model

• LogGP

• BSP 
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 Idea: Instead of focusing on the architecture (too many different ways to organize a parallel 

computer), let’s focus on the algorithm.
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Work-Depth Model

Circuit model:
Nodes and directed arcs.

Work: total number of 

nodes.

Depth: longest directect 

path from an input arc to 

an output arc

Vector model:
Sequence of steps. A step is 

a vector operation.

Work: work of a step is 

the length of it’s input 

vector. Work of the 

algorithm is sum of 

works of its steps.

Depth: number of steps

Language model:
Programming language 

constructs.

Work: Number of 

constructs.

Depth: maximum depth 

of call sequences.
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Algorithm Cost

Work and depth can be viewed as the running time of an algorithm at two 

limits: one processor (work) and an unlimited number of processors (depth).

Richard P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the Association for Computing Machinery, 21(2):201-206, 1974. 

Brent’s theorem provides bounds to the running time:

𝑾

𝑷
≤ 𝑻 ≤

𝑾

𝑷
+ 𝑫
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Defining a DAG

Strand: chain of serially executed instructions.

Strands are partially ordered with dependencies 

Spawn nodes have two 

successors

Sync nodes are where 

the control flow merges
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Defining a DAG

Given an input size n:

• The work 𝑾(𝒏) is the total number of strands. 

• W(n)=13

• The depth 𝑫(𝒏) is the length of the critical path 

(measured in number of strands). 

• Defines the minimum execution time of the computation

• D(n)=8

The ratio 
𝑊(𝑛)

𝐷(𝑛)
measures the average available parallelism
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Scheduling a DAG

int fib (int n) { 
if (n<2) return (n); 
else { 
int x,y; 
x = spawn fib(n-1);
y = fib(n-2); 
sync; 
return (x+y); 

} 
} 
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3

2

2

1 1 0

1 0

The DAG unfolds dynamically:

Node: Sequence of instructions without call, spawn, sync, return

Edge: Dependency

5 threads

spawn call
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Scheduling a DAG

4

3

2

2

1 1 0

1 0

The DAG unfolds dynamically:

5 threads

spawn call

spawn

join
thread

Remember oblivious algorithms?
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Greedy Scheduler

 Idea: Do as much as possible in 

every step

 Definition: A node is ready if all 

predecessors have been executed

executed

ready

p = 3
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Greedy Scheduler

 Idea: Do as much as possible in 

every step

 Definition: A node is ready if all 

predecessors have been executed

 Complete step: 

 ≥ p nodes are ready

 run any p

executed

ready

p = 3
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Greedy Scheduler

 Idea: Do as much as possible in 

every step

 Definition: A node is ready if all 

predecessors have been executed

 Complete step: 

 ≥ p nodes are ready

 run any p

 Incomplete step:

 < p nodes ready

 run all

executed

ready

p = 3
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Greedy Scheduler

Maintain thread pool of live threads, each is ready or not

 Initial: Root thread in thread pool, all processors idle

 At the beginning of each step each processor is idle or has a thread T to work on

 If idle

 Get ready thread from pool

 If has thread T

 Case 0: T has another instruction to execute

execute it

 Case 1: thread T spawns thread S

return T to pool, continue with S

 Case 2: T stalls

return T to pool, then idle

 Case 3: T dies

if parent of T has no living children, continue with the parent, otherwise idle
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Work Stealing Scheduler

 Each processor maintains a “ready deque:” deque of threads ready for execution; bottom is 

manipulated as a stack

processor

ready deque

threads can be added

or removed

(stack discipline)

threads can be removed

thread being executed
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Work Stealing Scheduler

P P P P

Spawn
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Work Stealing Scheduler

P P P P

Spawn Spawn
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Work Stealing Scheduler

P P P P

Return
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Work Stealing Scheduler

P P P P

Return
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Work Stealing Scheduler

P P P P

Steal

 When a processor runs out of work, it steals a task from the top of a random victim’s deque.
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Work Stealing Scheduler

P P P P

Steal
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Work Stealing Scheduler

P P P P
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Work Stealing Scheduler

Each processor maintains a ready deque, bottom treated as stack

 Initial: Root thread in deque of a random processor

 Deque not empty:

 Processor takes thread T from bottom and starts working

 T spawns S: Put T on stack, continue with S

 T stalls: Take next thread from stack

 T dies: Take next thread from stack

 If T enables a stalled thread S, S is put on the stack of T’s processor

 Deque empty: 

 Steal thread from the top of a random (uniformly) processor’s deque
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Matrix Multiplication

Work? 

𝑂(𝑛3)
Depth? 

𝑂(𝑙𝑜𝑔𝑛)

Can we do better?

E.g., Stressen 𝑂(𝑛2.81)

Much more parallelism than needed! 

Partition A by rows and B by cols

Research focused on how to reduce communication: Communication Avoiding Algorithms
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Pointer Jumping

Applicable to lists or trees.

At the end of the loop all nodes

point to their root.

Many use cases: e.g., connected 

components.

Work? 

𝑂(𝑛𝑙𝑜𝑔𝑛)
Depth? 

𝑂(𝑙𝑜𝑔𝑛)


