.. A s - 3 B A ; spcl.inf.ethz.ch
ETH:zurich . B N W @spcl_eth

SALVATORE DI GIROLAMO <DIGIROLS@INF.ETHZ.CH>

DPHPC: Performance oY e
Recitation session L T e S

ETH:urich -E-

Systems @ ETH zinen

DCO Cluster

= 16 nodes

= Batch system: SLURM
= Submit with: sbatch <job script>
= Check queue state with: squeue —u $USER
= Cancel jobs with: scancel <jobid>
= Login node: dco-nodel29
ssh teamX@dco-nodel29.dco.ethz.ch

= Wall time 20mins
= Ask if you need more

= Nodes: AMD Opteron 6212 (8 cores)
= Network: 10Gbit

&z spcl.inf.ethz.ch
/\(y 7 7 9 @spcl_eth

#!/bin/bash

#SBATCH --job-name=test
#SBATCH --output=slurm-%j.out

#SBATCH --nodes 4
#SBATCH --ntasks=16
#SBATCH --time=00:10:00

srun ./a.out

= 1 account per team (email me to get login credentials)

- . e N spcl.inf.ethz.ch
ETHziirich -i" A - Y \r 'y @spol_eth

Systems @ ETH zinen

Assignment: Filter Lock

1 class Filter implements Lock {

2 int[] level;

3 int[] victim; i

4 public Filter(int n) { non-CS with n threads =0
5 level = new int[n];

6 victim = new int[n]; // use I..n-1 \ n—1 threads x =1
7 for (int i = 0; i < n; i++) {

g \ level[i] = 0; \ n—2 threads / | =2
10 }

11 public void lock() { .

12 int me = ThreadID.get(); *

13 for (int i = 1; i < n; i++) { //attempt level 1 :

14 level [me] = i;

15 victim[i] = me;

16 // spin while conflicts exist \ 2 threads X l=n-2
17 while ((3k !'= me) (level[k] >= i && victim[i] == me)) {};

18 } \ CS / | = n—1
19 }

20 public void unlock() {

21 int me = ThreadID.get();

22 level [me] = 0;

23 }

24}

From: The Art of Multiprocessor Programming

.. o 3 spcl.inf.ethz.ch
ETH:zurich S -E- ‘ " 7 T 9 @spcl_eth

ystems @ ETH i

False sharing

= Why does it happen?

ETH:zurich -E-

_ spcl.inf.ethz.ch

Systems @ ETH zinen

Amdahl’s Law

Time of sequential program with f as the fraction not affected
by the parallelization:

=i +A-)T

Time of parallel program:

YW @spcl_eth

1-/)T
TPZfT1+(Pf)l =fTh
Parallelizable work II IIII I...
Speedup:
Tl - 1 ¢ - 1

1000
Serial Speedup 672
fraction
* 0.1%
* 1%
= 10% ——. 100
e
30% /.,ff"
< 50%
= 10
3
. O
| | Ll L | | | L} L}] 1
2 4 8 16 32 64 128 256 512 1024 2048

Number of workers

- . , iy spcl.inf.ethz.ch
ETH:zurich -E- : ' /ﬁ&’ y @spcl_eth

Systems @ ETH zinen

Amdahl’s Law

Time of sequenti 1000
by the paralleli It’s like to see the glass as half empty but... \\llp//2 672
It could be even worse!
Time of paralls 80 T— ———y 100
f =0.99 e
70 P
60 /‘/
50
Sp / " Amdahl's Law
- / = Reality : 10
| 30
e 20 //'i \ 3
Parallelizable work
o LA °
0 v v ' '
= 0 50 100 150 200 250 . 1
? Number of processors r 1024 2048

Possible factors: load balancing, communication costs, /O, scheduling

=T .

.. . , A) spcl.inf.ethz.ch
ETHziirich -i" - Y Y Nx o @speleth

Systems @ ETH zinen

Amdahl’s Law vs Gustafson-Barsis' Law

...Speedup should be measured by scaling the problem to the number of
processors, not by fixing the problem size.
— John Gustafson

Time of sequential program with a as the fraction not affected by the parallelization on P-processors machine:

Tl — aTl ~+ (1 - a)PTl
Time of parallel program: Pt pos o

4 P=-8
TP — ale _I_ (1 _ C()Tl Serial work
Parallelizable work
Speedup: |
T
Sp=—<a+P(l-a)
Tp

awi |

Note: no parallel overheads are taken into account here (as in Amdahl’s)!

.. . . A s B spcl.inf.ethz.ch
ETHzirich =g™ Lo W @spel eth

Systems @ ETH zinen
g |

= Speedup
= How well something responds when adding more resources
= What’s your base case? The best serial version or a single parallel process?

= Efficiency
= Gives an idea on the “utilization” degree of the computing resources

= Strong Scaling
» Problem size stays fixed as the number of processing elements are increased

= Weak Scaling
» Problem size increases as the number of processing elements are increased

Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalability! but at what cost?. In Proceedings of the 15th USENIX conference on Hot Topics in Operating
Systems (HOTOS'15), George Candea (Ed.). USENIX Association, Berkeley, CA, USA, 14-14.

- . , iy spcl.inf.ethz.ch
ETH:zurich -E- : ' /ﬁ&’ y @spcl_eth
Systems @ ETH zinen

L —

Exercise 1

Assume 1% of the runtime of a program is not parallelizable. This program is run on 61 cores of a Intel
Xeon Phi. Under the assumption that the program runs at the same speed on all of those cores, and there
are no additional overheads, what is the parallel speedup?

Amdahl’s law assumes that a program consists of a serial part and a parallelizable part. The fraction of the program
which is serial can be denoted as B — so the parallel fraction becomes 1 — B. If there is no additional overhead
due to parallelization, the speedup can therefore be expressed as

1
- B+1i(1-DB)

S(n)

For the given value of B = 0.01 we get S(61) = 38.125.

Sy = ."‘ : spcl.inf.ethz.ch
ETH:zurich -i- : ' /@2' y @spcl_eth

Exercise 2

Assume 0.1% of the runtime is not parallelizable. The program also invokes a broadcast operation, that
add overhead depending on the number of cores involved. There are two broadcast implementations
available. One adds a parallel overhead of 0.0001n, the other one 0.0005logn. For which number of cores
do you get the highest speedup for both implementations?

1
0.001 + £0.999 + 0.0001n

1
0.001 + £0.999 + 0.0005l0g(n)

Si(n) =

SQ (TL) -

We can get the maximum of these terms if we minimize the term in denominator.

d
2 0.001 + 0999+00001n—0<—>00001— 0 045 e 10O
dn n2

d 1 0.00510.999

—-0.001 + ~0.999 + 0.0005log(n) = 0 > " — 0 ¢ n = 1998

dn n2

e S~ = _ ‘ spcl.inf.ethz.ch
ETH:zurich -E- Y 57 < /&&J' y @spcl_eth

Systems @ ETH zinen

PRAM: Parallel Random Access Machine

= P processes with shared memory

= |gnores communications and synchronization

= |nstruction are composed by 3 phases: Shared Memory
» Load data from shared memory (if needed)
= Perform computation (if any)
= Store data in shared memory (if needed)
= Any process can read/write to any memory cell P, P, Py o Pp

= How are conflicts handled?

ETH:zurich -E-

spcl.inf.ethz.ch
YW @spcl_eth

Systems @ ETH zinen

PRAM: Conflicting Accesses

= EREW: Exclusive Read / Exclusive Write
= No two processes are allowed to read or write to the same memory cell simultaneously

= CREW: Concurrent Read / Exclusive Write
» Simultaneous reads are allowed; only one process can write

= CRCW: Concurrent Read / Concurrent Write

Simultaneous reads and write to the same memory cell are allowed

Detecting CRCW: A special code for “detected collision” is written

Priority CRCW: processors assigned fixed distinct priorities, highest priority wins
Random CRCW: one randomly chosen write wins

Common CRCW: all processors are allowed to complete write if and only if all the values to be written are

equal

Weak

Strong

EREW < CREW < CRCW-D < CRCW-C < CRCW-R < CRCW-P

http://homes.cs.washington.edu/~arvind/cs424/notes/I2-6.pdf

ETH:zurich -E-

ystems @ ETH zu.

PRAM: Reduction

Reduce p values on the p-processor EREW PRAM in O(logp) time
The algorithm uses exclusive reads and writes
It’s the basis of other EREW algorithms

spcl.inf.ethz.ch

-y @spcl_eth

.. . , oS spcl.inf.ethz.ch
ETHziirich -i" - Y Y Nx o @speleth

Systems @ ETH zinen

PRAM: First 1

= Computing the position of the first “1” in the sequence of 0’s and 1’s in a constant time.

/ Algorithm A D I I I

(2 parallel steps and n? processors) l l

for each 1< i<j < n do 1in parallel
if C[i] =1 and C[j]=1 then C[j]:=0

for each 1< 1 < n do in parallel - 1 - 0 -

1f C[i] =1 then FIRST-ONE-POSITION:=1

)

www.csc.liv.ac.uk/~igor/COMP308/ppt/Lect_5.ppt

spcl.inf.ethz.ch

-y @spcl_eth

PRAM: First 1 — Reducing Number of Processors

Algorithm B: it reports if there is any “1” in the table. - 1 - 1 -

There-is—-one:=0
for each 1< i1 < n do 1in -4 R—

if C[i] =1 then The

How many processors we need? 1

(Wn)?=n
Merge A and B What's the complexity?
1. Partition table C into se 3 parallel steps — 0(1)

2. Ineach segment apply &

3. Find position of the first one in these sequence by
applying algorithm A

4. Apply algorithm A to this single segment and compute
the final value

15

www.csc.liv.ac.uk/~igor/COMP308/ppt/Lect_5.ppt

. . . s Iy spcl.inf.ethz.ch
ETH:zurich ¥ 572 ’ /wdf?,&)' y @spcl_eth

Exercise 3

How can we find the minimum from an unordered collection of n natural numbers on EREW-PRAM
machine?

We can find the minimum from an unordered collection of n natural numbers by performing a reduction

along a binary tree: In each round, each processor compares two elements, and the smaller element gets
to the next round, the bigger one is discarded. What is the work and depth of this algorithm?

The dependency graph of this computation is a tree with loga(n) levels. Therefore the longest path, which is equal
to the depth/span has length logs(n). The tree contains 2n — 1 nodes, which is equal to the work.

. . o e f_ : g 3] - spcl.inf.ethz.ch
ETH:zurich -E- P /\@J y @spcl_eth

Systems @ ETH zinen

Exercise 4

Develop an algorithm which can find the minimum in an unordered collection of n natural numbers in 0(1)
time on a CRCW-PRAM machine.

« Assume the listis stored in an array A.
« Create an additional array tmp[n] initialiazed with true.
- We use 0(n?) processors, labelled p(i, j) with 0 < i,j < n.
« Each processor p(i, j) checks if Ali] > Alj].
« If true then tmp[i] is set to false (it cannot be the minimum)
« Otherwise nothing is done
« At the end we have only one element of tmp set to true, say tmp[k]. The minimum element of Ais A[k].

P(O, 1) P(O, 3)
If (A[0] > A[1]) tmp[0] = F; If (A[0] > A[2]) tmp[0] = F; If (A[0] > A[3]) tmp[0] = F;
A 8

. If (A[1] > A[0]) tmp[1] = F; If (A[1] > A[2]) tmp[1] = F; If (A[1] > A[3]) tmp[1] = F;
tm p .
P(2, 0): P(2, 1): P(2, 3):
If (A[2] > A[0]) tmp[2] = F; If (A[2] > A[1]) tmp[2] = F; If (A[2] > A[3]) tmp[2] = F;

P(3, 0): P(3, 1): P(3, 2):
If (A[3] > A[O]) tmp[3] = F; If (A[3] > A[1]) tmp[3] = F; If (A[3] > A[2]) tmp[3] = F;

