
spcl.inf.ethz.ch

@spcl_eth

SALVATORE DI GIROLAMO <DIGIROLS@INF.ETHZ.CH>

DPHPC: Performance
Recitation session

spcl.inf.ethz.ch

@spcl_eth

 16 nodes

 Batch system: SLURM

 Submit with: sbatch <job script>

 Check queue state with: squeue –u $USER

 Cancel jobs with: scancel <jobid>

 Login node: dco-node129

ssh teamX@dco-node129.dco.ethz.ch

 Wall time 20mins

 Ask if you need more

 Nodes: AMD Opteron 6212 (8 cores)

 Network: 10Gbit

 1 account per team (email me to get login credentials)

2

DCO Cluster

#!/bin/bash

#SBATCH --job-name=test

#SBATCH --output=slurm-%j.out

#SBATCH --nodes 4

#SBATCH --ntasks=16

#SBATCH --time=00:10:00

srun ./a.out

spcl.inf.ethz.ch

@spcl_eth

3

Assignment: Filter Lock

From: The Art of Multiprocessor Programming

spcl.inf.ethz.ch

@spcl_eth

 Why does it happen?

4

False sharing

spcl.inf.ethz.ch

@spcl_eth

5

Amdahl’s Law

𝑇1 = 𝑓𝑇1 + 1 − 𝑓 𝑇1

Time of sequential program with f as the fraction not affected

by the parallelization:

Time of parallel program:

𝑇𝑃 ≥ 𝑓𝑇1 +
1 − 𝑓 𝑇1

𝑃

𝑆𝑃 =
𝑇1
𝑇𝑃

≤
1

1 − 𝑓
𝑃

+ 𝑓

Speedup:

𝑇∞ = 𝑓𝑇1

𝑆∞ ≤
1

𝑓

spcl.inf.ethz.ch

@spcl_eth

6

Amdahl’s Law

𝑇1 = 𝑓𝑇1 + 1 − 𝑓 𝑇1

Time of sequential program with f as the fraction not affected

by the parallelization:

Time of parallel program:

𝑇𝑃 = 𝑓𝑇1 +
1 − 𝑓 𝑇1

𝑃

𝑆𝑃 =
𝑇1
𝑇𝑃

=
1

1 − 𝑓
𝑃

+ 𝑓

Speedup:

𝑇∞ = 𝑓𝑇1

𝑆∞ =
1

𝑓

It’s like to see the glass as half empty but…

It could be even worse!

Possible factors: load balancing, communication costs, I/O, scheduling

spcl.inf.ethz.ch

@spcl_eth

7

Amdahl’s Law vs Gustafson-Barsis' Law

…speedup should be measured by scaling the problem to the number of

processors, not by fixing the problem size.

— John Gustafson

𝑇1 = 𝛼𝑇1 + 1 − 𝛼 𝑃𝑇1

Time of sequential program with 𝛼 as the fraction not affected by the parallelization on P-processors machine:

Speedup:

𝑆𝑃 =
𝑇1
𝑇𝑃

≤ 𝛼 + 𝑃(1 − 𝛼)

Time of parallel program:

𝑇𝑃 = 𝛼𝑇1 + 1 − 𝛼 𝑇1

Note: no parallel overheads are taken into account here (as in Amdahl’s)!

spcl.inf.ethz.ch

@spcl_eth

 Speedup

 How well something responds when adding more resources

 What’s your base case? The best serial version or a single parallel process?

 Efficiency

 Gives an idea on the “utilization” degree of the computing resources

 Strong Scaling

 Problem size stays fixed as the number of processing elements are increased

 Weak Scaling

 Problem size increases as the number of processing elements are increased

8

Quiz

Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalability! but at what cost?. In Proceedings of the 15th USENIX conference on Hot Topics in Operating

Systems (HOTOS'15), George Candea (Ed.). USENIX Association, Berkeley, CA, USA, 14-14.

spcl.inf.ethz.ch

@spcl_eth

9

Exercise 1

Assume 1% of the runtime of a program is not parallelizable. This program is run on 61 cores of a Intel

Xeon Phi. Under the assumption that the program runs at the same speed on all of those cores, and there

are no additional overheads, what is the parallel speedup?

spcl.inf.ethz.ch

@spcl_eth

10

Exercise 2

Assume 0.1% of the runtime is not parallelizable. The program also invokes a broadcast operation, that

add overhead depending on the number of cores involved. There are two broadcast implementations

available. One adds a parallel overhead of 0.0001𝑛, the other one 0.0005 log 𝑛. For which number of cores

do you get the highest speedup for both implementations?

spcl.inf.ethz.ch

@spcl_eth

11

PRAM: Parallel Random Access Machine

 P processes with shared memory

 Ignores communications and synchronization

 Instruction are composed by 3 phases:

 Load data from shared memory (if needed)

 Perform computation (if any)

 Store data in shared memory (if needed)

 Any process can read/write to any memory cell

 How are conflicts handled?

spcl.inf.ethz.ch

@spcl_eth

 EREW: Exclusive Read / Exclusive Write

 No two processes are allowed to read or write to the same memory cell simultaneously

 CREW: Concurrent Read / Exclusive Write

 Simultaneous reads are allowed; only one process can write

 CRCW: Concurrent Read / Concurrent Write

 Simultaneous reads and write to the same memory cell are allowed

 Detecting CRCW: A special code for “detected collision” is written

 Priority CRCW: processors assigned fixed distinct priorities, highest priority wins

 Random CRCW: one randomly chosen write wins

 Common CRCW: all processors are allowed to complete write if and only if all the values to be written are

equal

12

PRAM: Conflicting Accesses

http://homes.cs.washington.edu/~arvind/cs424/notes/l2-6.pdf

EREW < CREW < CRCW-D < CRCW-C < CRCW-R < CRCW-P

Weak Strong

spcl.inf.ethz.ch

@spcl_eth

 Reduce p values on the p-processor EREW PRAM in 𝑶(𝒍𝒐𝒈𝒑) time

 The algorithm uses exclusive reads and writes

 It’s the basis of other EREW algorithms

13

PRAM: Reduction

spcl.inf.ethz.ch

@spcl_eth

 Computing the position of the first “1” in the sequence of 0’s and 1’s in a constant time.

14

PRAM: First 1

Algorithm A

(2 parallel steps and n2 processors)
for each 1 i<j  n do in parallel

if C[i] =1 and C[j]=1 then C[j]:=0

for each 1 i  n do in parallel

if C[i] =1 then FIRST-ONE-POSITION:=i

1 1

1 0

www.csc.liv.ac.uk/~igor/COMP308/ppt/Lect_5.ppt

spcl.inf.ethz.ch

@spcl_eth

15

PRAM: First 1 – Reducing Number of Processors

Algorithm B: it reports if there is any “1” in the table.

There-is-one:=0

for each 1 i  n do in parallel

if C[i] =1 then There-is-one:=1

0000000000000000001 1

1

Merge A and B

1. Partition table C into segments of size 𝑛

2. In each segment apply the algorithm B

3. Find position of the first one in these sequence by

applying algorithm A

4. Apply algorithm A to this single segment and compute

the final value

B B B B B B BB B B

A

A

www.csc.liv.ac.uk/~igor/COMP308/ppt/Lect_5.ppt

How many processors we need?

(𝑛)2= 𝑛

What’s the complexity?

3 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑠𝑡𝑒𝑝𝑠 → 𝑂(1)

spcl.inf.ethz.ch

@spcl_eth

17

Exercise 3

We can find the minimum from an unordered collection of n natural numbers by performing a reduction

along a binary tree: In each round, each processor compares two elements, and the smaller element gets

to the next round, the bigger one is discarded. What is the work and depth of this algorithm?

How can we find the minimum from an unordered collection of n natural numbers on EREW-PRAM

machine?

spcl.inf.ethz.ch

@spcl_eth

18

Exercise 4

Develop an algorithm which can find the minimum in an unordered collection of n natural numbers in 𝑂 1
time on a CRCW-PRAM machine.

• Assume the list is stored in an array 𝐴.

• Create an additional array 𝑡𝑚𝑝 𝑛 initialiazed with 𝑡𝑟𝑢𝑒.

• We use 𝑂 𝑛2 processors, labelled 𝑝(𝑖, 𝑗) with 0 ≤ 𝑖, 𝑗 ≤ 𝑛.

• Each processor 𝑝(𝑖, 𝑗) checks if 𝐴 𝑖 > 𝐴 𝑗 .

• If true then tmp[𝑖] is set to false (it cannot be the minimum)

• Otherwise nothing is done

• At the end we have only one element of 𝑡𝑚𝑝 set to true, say 𝑡𝑚𝑝[𝑘]. The minimum element of A is 𝐴[𝑘].

3 5 1 8

T T T T

P(0, 1):

If (A[0] > A[1]) tmp[0] = F;

P(0, 2):

If (A[0] > A[2]) tmp[0] = F;

P(0, 3):

If (A[0] > A[3]) tmp[0] = F;

P(1, 0):

If (A[1] > A[0]) tmp[1] = F;

P(1, 2):

If (A[1] > A[2]) tmp[1] = F;

P(1, 3):

If (A[1] > A[3]) tmp[1] = F;

P(2, 0):

If (A[2] > A[0]) tmp[2] = F;

P(2, 1):

If (A[2] > A[1]) tmp[2] = F;

P(2, 3):

If (A[2] > A[3]) tmp[2] = F;

P(3, 0):

If (A[3] > A[0]) tmp[3] = F;

P(3, 1):

If (A[3] > A[1]) tmp[3] = F;

P(3, 2):

If (A[3] > A[2]) tmp[3] = F;

A:

tmp:

