
spcl.inf.ethz.ch

@spcl_eth

SALVATORE DI GIROLAMO <DIGIROLS@INF.ETHZ.CH>

DPHPC: SPIN Tutorial
Recitation session

Credits: http://spinroot.com/spin/Doc/SpinTutorial.pdf

spcl.inf.ethz.ch

@spcl_eth

2

2-threads: LockOne

volatile int flag[2];

void lock() {

int j = 1 - tid;

flag[tid] = true;

while (flag[j]) {} // wait

}

void unlock() {

flag[tid] = false;

}

write(flag[0]=true)

read(flag[1])==true

write(flag[1]=true)

read(flag[0])==true)

T0 T1

spcl.inf.ethz.ch

@spcl_eth

3

2-threads: LockTwo

volatile int victim;

void lock() {

victim = tid; // grant access

while (victim == tid) {} // wait

}

void unlock() {}

write(victim=0)

read(victim==0)

write(victim=1)

read(victim==1)

T0 T1

CS

write(victim=0)

read(victim==0)

read(victim==1)

CS

read(victim==0)

spcl.inf.ethz.ch

@spcl_eth

4

2-threads: Peterson lock

volatile int flag[2];

volatile int victim;

void lock() {

int j = 1 - tid;

flag[tid] = 1; // I’m interested

victim = tid; // other goes first

while (flag[j] && victim == tid) {}; // wait

}

void unlock() {

flag[tid] = 0; // I’m not interested

}

spcl.inf.ethz.ch

@spcl_eth

5

Locks

void lock() {

int j = 1 - tid;

flag[tid] = true; // I’m interested

victim = tid; // other goes first

while (flag[j] && victim == tid) {};

}

volatile int flag[n] = {0,0,…,0};

volatile int label[n] = {0,0,….,0};

void lock() {

flag[tid] = 1; // request

label[tid] = max(label[0], ...,label[n-1]) + 1; // take ticket

while ((∃k != tid)(flag[k] && (label[k],k) <* (label[tid],tid))) {};

}

public void unlock() {

flag[tid] = 0;

}

Lamport’s Bakery

bool test_and_set (bool *flag) {

bool old = *flag;

*flag = true;

return old;

} // all atomic!

volatile int lock = 0;

void lock() {

do {

while (lock == 1);

} while (TestAndSet(&lock) == 1);

}

void unlock() {

lock = 0;

}

TATAS

volatile int lock = 0;

void lock() {

while (TestAndSet(&lock) == 1) {

wait(time);

time *= 2; // double waiting time

}

}

void unlock() {

lock = 0;

}

TATAS + exp backoff

volatile int array[n] = {1,0,…,0};

volatile int index[n] = {0,0,…,0};

volatile int tail = 0;

void lock() {

index[tid] = GetAndInc(tail) % n;

while (!array[index[tid]]); // wait to receive lock

}

void unlock() {

array[index[tid]] = 0; // I release my lock

array[(index[tid] + 1) % n] = 1; // next one

}

Array Queue Lock

typedef struct qnode {

struct qnode *prev;

int succ_blocked;

} qnode;

qnode *lck = new qnode; // node owned by lock

void lock(qnode *lck, qnode *qn) {

qn->succ_blocked = 1;

qn->prev = FetchAndSet(lck, qn);

while (qn->prev->succ_blocked);

}

void unlock(qnode **qn) {

qnode *pred = (*qn)->prev;

(*qn)->succ_blocked = 0;

*qn = pred;

}

CLH Lock

typedef struct qnode {

struct qnode *next;

int succ_blocked;

} qnode;

qnode *lck = NULL;

void lock(qnode *lck, qnode *qn) {

qn->next = NULL;

qnode *pred = FetchAndSet(lck, qn);

if(pred != NULL) {

qn->locked = 1;

pred->next = qn;

while(qn->locked);

} }

void unlock(qnode * lck, qnode *qn) {

if(qn->next == NULL) { // if we’re the last waiter

if(CAS(lck, qn, NULL)) return;

while(qn->next == NULL); // wait for pred arrival

}

qn->next->locked = 0; // free next waiter

qn->next = NULL;

}

MCS Lock

Complicated

Difficult to optmize

Over-optimization can quickly lead

to incorrect locks

How can make sure locks (or other distributed algorithms) are correct in

practice?

spcl.inf.ethz.ch

@spcl_eth

 Common design flaws in designing distributed systems:

 Deadlock

 Livelock, starvation

 Underspecification

Unexpected messages

 Overspecification

Dead code

 Constraint violations

Buffer overruns

Array bound violations

6

How to check correctness?

spcl.inf.ethz.ch

@spcl_eth

 Model checking verifies a program by using software to analyze its state space

 Alternative: mathematical deductive methods

 Constructing a proof requires mathematical insights and tenacity

 The complexity depends on the algorithms itself

 Deductive proofs are more elegant and powerful, but model checking can be more practical

7

Model checking

integer n=0

process P

integer regP=0

p1: load n into regP

p2: increment regP

p3: store regP into n

p4: end

process Q

integer regQ=0

p1: load n into regQ

p2: increment regQ

p3: store regQ into n

p4: end

Ben-Ari, Mordechai Moti. "A primer on model checking." ACM Inroads 1.1 (2010): 40-47.

How many states?

State: IP + 2 register (regP, regQ) + global var n
IP: 4 value (1…4) – one per process

Registers + n: 3 values (0, 1, 2)

4x4x3x3x3=432

spcl.inf.ethz.ch

@spcl_eth

 The system is described as a State Transition Graph

 We have a combinatorial explosion of systems states

 How to handle it?

 Increase the abstraction

 Not all the states are actually reachable

 Generate the states on the fly: only the ones that can be reached are generated

 Avoid to visit the same state multiple times

 E.g., keep a hash table to index the visited states

8

Space Explosion Problem

spcl.inf.ethz.ch

@spcl_eth

 SPIN: Simple Promela Interpeter

 Goal: analyze the logical consistency of concurrent systems

 Concurrent systems are described in the modelling language called Promela

 Promela: Protocol/Process Meta Language

 Allows dynamic creation of concurrent processes

 Communication via message passing can be

Synchronous (aka rendezvous)

Asynchronous (aka buffered)

 C-like language

 Enables you to model a finite-state system

 Warning: If that description is “too far off” from our code, we risk specifying the wrong state machine!

9

SPIN – Introduction

spcl.inf.ethz.ch

@spcl_eth

10

Promela Model

Promela model consist of:

• Type declarations

• Channel declarations

• Variable declarations

• Process declarations

• [init process]

A process type (proctype) consist of

• a name

• a list of formal parameters

• local variable declarations

• body

spcl.inf.ethz.ch

@spcl_eth

 Identified by the proctype keyword

 Can be executed concurrently

 You can create multiple processes of the same type

 Each process has its own local state defined by:

 Program counter

 Local variables

 Communication between processes:

 Shared variables

 Channels

 Processes can be created using the run keyword

 It returns the pid of the created process

 Can be called at any point

11

Promela - Processes

spcl.inf.ethz.ch

@spcl_eth

12

Promela: Hello World

active proctype Hello() {

printf("Hello process, my pid is: %d\n", _pid);

}

init{

int lastpid;

printf("init process, my pid is: %d\n", _pid);

lastpid = run Hello();

printf("last pid was: %d\n", lastpid);

}

spcl.inf.ethz.ch

@spcl_eth

 Types: 5 basic types

 bit, bool, byte, short, int

 Arrays

 byte a[27];

 Records (structs)

 typedef Record{

short f1;

byte f2;

}

Record rr;

rr.f1 = …

 Global and local variables are initialized to 0 by default

13

Promela: Variables and Types

spcl.inf.ethz.ch

@spcl_eth

 The body of a process consists of a sequence of statements.

 Executable: the statement can be executed immediately

 Blocked: it cannot be executed

 Assignments are always executable

 An expression is executable only if it evaluates to non-zero

 2 < 3 always executable

 x < 27 executable only if x < 27

 3 + x executable only if x != -3

 The assert(<expr>) statement is always

executable

 SPIN exits with an error if an assert evaluates to 0

 Used to check if properties hold

14

Promela: Statements

spcl.inf.ethz.ch

@spcl_eth

 Pamela processes are executed concurrently and scheduled in a non-deterministic fashion

 Execution of statements of different processes is interleaved

 All statements are atomic

 Each process may have multiple actions ready to be executed

 Only one is non-deterministically chosen to be executed

15

Semantic

spcl.inf.ethz.ch

@spcl_eth

16

bit flag; /* signal entering/leaving the section */

byte mutex; /* # procs in the critical section. */

proctype P(int i) {

flag != 1;

flag = 1;

mutex++;

printf("MSC: P(%d) has entered section.\n", i);

mutex--;

flag = 0;

}

proctype monitor() {

assert(mutex != 2);

}

init { run P(0); run P(1); run monitor(); }

Promela: Mutual Exclusion? (1)

Both processes can pass the flag!=1

“at the same time”

spcl.inf.ethz.ch

@spcl_eth

17

bit x, y; /* signal entering/leaving the section */

byte mutex; /* # of procs in the critical section. */

active proctype A() {

x = 1;

y == 0;

mutex++; mutex--;

x = 0;

}

active proctype B() {

y = 1;

x == 0;

mutex++; mutex--;

y = 0;

}

active proctype monitor() {

assert(mutex != 2);

}

Promela: Mutual Exclusion? (2)

Both processes can pass execute x=1

and y=1 “at the same time”...

spcl.inf.ethz.ch

@spcl_eth

 If there is at least one choice (guard) executable, the if statement is executable and SPIN

non-deterministically chooses one of the executable choices.

 The “else” choice is executable iff no other choices are

 If no choice is executable, the if-statement is blocked

18

PROMELA Semantics: if

if

:: choice_1 -> stat1.1; stat1.2; stat1.3; …

:: choice_2 -> stat2.1; stat2.2; stat2.3; …

:: …

:: choice_n -> statn.1; statn.2; statn.3; …

:: else -> skip

fi;

spcl.inf.ethz.ch

@spcl_eth

 With respect to the choices, a do-statement behaves in the same way as an if-statement

 However, instead of ending the statement at the end of the chosen list of statements, a do-

statement repeats the choice selection

 The (always executable) break statement exits a do-loop statement and transfers control to

the end of the loop

19

PROMELA Semantics: do

do

:: choice1 -> stat1.1; stat1.2; stat1.3; …

:: choice2 -> stat2.1; stat2.2; stat2.3; …

:: …

:: choicen -> statn.1; statn.2; statn.3; …

od;

spcl.inf.ethz.ch

@spcl_eth

 Communication between processes is via typed channels

 A channel can be synchronous (dim=0) or asynchronous (dim>0)

 In the first case, synchronization is needed

 In the second, the channels act like a FIFO-buffer

20

PROMELA Semantics: Communication

chan <name> = [<dim>] of {<t1>,<t2>,…,<tn>};

Example:

mtype = {MSG, ACK};

chan toS = [2] of {mtype, bit};

spcl.inf.ethz.ch

@spcl_eth

 Communication between processes is via typed channels

 Sending:

 ch ! <expr1>, <expr2>, …, <exprn>;

The values of <expri> must match the types of the channel declaration

A send statement is executable if the channel is not full

 Receiving

 ch ? <var1>, <var2>, …, <varn>;

If the channel is not empty, the message is fetched from the channel

 ch ? <const1>, <const2>, …, <constn>;

If the channel is not empty and the message at the front of the channel evaluates to the individual <consti>,

the statement is executable and the message is removed from the channel

21

PROMELA Semantics: Communication

chan <name> = [<dim>] of {<t1>,<t2>,…,<tn>};

Message Matching

<vars> and <consts> can be mixed

Rendezvous communication (dim==0):

A send ch! is executable only if there is a

corresponding receive ch? that can be

executed simultaneously

spcl.inf.ethz.ch

@spcl_eth

 Random simulation mode: debugging/testing. Randomly resolves non-determinism

spin –n<SEED> model.pr #fix the seed to reproduce scenarios

 Guided simulation mode (-i): non-determinism solved by the user

 Verification mode: analyze all the reachable states

spin -a model.pr

gcc –O2 –o pan pan.c

./pan #generates trail file if things go wrong

spin –t –p model.pr

Generates a verifier in C code, so that compiler can optimize it, then exhaustively searches all

possible states. It can still be slow/eat all your memory.

22

Using spin

spcl.inf.ethz.ch

@spcl_eth

24

Assignment

Hippie problem:

4 Hippies want to cross a bridge. The bridge is fragile, it can only crossed by <= 2 people at a time with a

torchlight. The hippies have one torchlight and want to reach the other side within one hour. Due to different

degrees of intoxication they require different amounts of time to cross the bridge: 5, 10, 20 and 25 minutes.

If a pair crosses the bridge, they can only move at the speed of the slower partner.

