
spcl.inf.ethz.ch

@spcl_eth

SALVATORE DI GIROLAMO <DIGIROLS@INF.ETHZ.CH>

DPHPC: Assignment Discussion
Recitation session

spcl.inf.ethz.ch

@spcl_eth

2

False Sharing Benchmark

https://software.intel.com/sites/default/files/m/d/4/1/d/8/5-4-figure-1.gif

How did you benchmark?

spcl.inf.ethz.ch

@spcl_eth

 Idea: Allocate uint8_t array a, let core 0 write to a[0] and core 1 to a[x]

 If x is larger than the size of one CL, this should be “fast” because both cores operate on

their on cached copy of different CLs

 If x is smaller than one CL it will be slow, due to false sharing

 In practice it is a bit harder to get it right :)

 If we write only once it might not really be parallel -> do it in a large enough loop

 If we write only one Byte in each iteration we will not see much because of loop overhead (incrementing

counter, jump) -> write 8 bytes in inner loop

 Make sure the compiler does not “optimize” your loop by removing it!

3

False Sharing Benchmark

spcl.inf.ethz.ch

@spcl_eth

4

False Sharing Benchmark

Machine: Intel Core i5 3230M; Compiler: gcc 4.9.1 –O3 –fopenmp –std=gnu11

spcl.inf.ethz.ch

@spcl_eth

SALVATORE DI GIROLAMO <DIGIROLS@INF.ETHZ.CH>

DPHPC: Sequential Consistency
Recitation session

spcl.inf.ethz.ch

@spcl_eth

 Writes to same location

 Coherence

a) Write Serialization: all processors see writes to the same location in the same order

b) Write Propagation: a write will eventually be seen by other processors

 Writes to different location

 Memory Model: defines the ordering of writes and reads to different memory locations – the hardware

guarantees a certain consistency model and the programmer attempts to write correct programs with those

assumptions

6

Consistency vs Coherence

spcl.inf.ethz.ch

@spcl_eth

 Multiprocessor with bus-based snooping cache-coherence and write buffer

 Initially A=B=0

7

Consistency: Example

T1:

A=1

if (B==0){

<enter critical section>

}

T2:

B=1

if (A==0){

<enter critical section>

}

Does it work (in x86)?

• This lock implementation is based on two different variables (i.e., memory location)

• The stores are intercepted by the write buffer => P1 and P2 can enter the critical section at the same time

• Cache coherence is not involved here

Is that always true?

spcl.inf.ethz.ch

@spcl_eth

 Memory model specifies:

 How threads interact through memory

 What value a read can return

 When does a value update become visible to other threads

 What assumptions are allowed to make about memory when writing a program or applying some program

optimization

9

Memory Models

“A formal specification of how the memory system will

appear to the programmer, eliminating the gap between

the behavior expected by the programmer and the actual

behavior supported by a system.” [Adve’ 1995]

spcl.inf.ethz.ch

@spcl_eth

 Method calls act as if they occurred in a sequential order consistent with program order

 Method calls should appear to happen in a one-at-time, sequential order

 Method calls should appear to take effect in program order

10

Sequential Consistency

Program Order: Per-processor order of memory

accesses, determined by program‘s control flow.

Visibility Order: Order of memory accesses

observed by one or more processors

Herlihy, Maurice, and Nir Shavit. The Art of Multiprocessor Programming, Revised Reprint. Elsevier, 2012.

spcl.inf.ethz.ch

@spcl_eth

 Method calls act as if they occurred in a sequential order consistent with program order

 Method calls should appear to happen in a one-at-time, sequential order

 Method calls should appear to take effect in program order

11

Sequential Consistency Illustrated

Processors issue in
program order

“Switch” selects arbitrary
next operation

spcl.inf.ethz.ch

@spcl_eth

 Programmer’s view:

 Prefer sequential consistency

 Easiest to reason about

 Compiler/hardware designer’s view:

 Sequential consistency disallows many optimizations!

 Substantial speed difference

 Most architectures and compilers don’t adhere to sequential consistency!

 Solution: synchronized programming

 Access to shared data (aka. “racing accesses”) are ordered by synchronization operations

 Synchronization operations guarantee memory ordering (aka. fence)

 More later!

12

Sequential Consistency - Discussion

Memory Fence: special instructions that require all

previous memory accesses to complete before

proceeding (sequential consistency)

spcl.inf.ethz.ch

@spcl_eth

 Ideal: intuitive programming model (i.e., sequential consistency) and high-performance

 Not that easy 

 Idea: Relax some constraints, but allow the programmer to enforce them from specific

portions of the code

 Some possible relaxations (different memory locations):

 Relax WR: Reads may be reordered with older writes to different locations but not

with older writes to the same location (x86)

 Relax WW: Writes can be reordered with other writes

 Relax RW: Writes can be reordered with older reads

 A consistency model is identified by a set of contraint

14

Relaxed Memory Models

spcl.inf.ethz.ch

@spcl_eth

 They can destroy the program order (as seen from other CPUs), hence invalidate SC

 Overtaking of messages is desirable and should not be prohibited in general.

 Solution: memory barriers!

 x86 CPUs provide the mfence instruction

 a write barrier after each write gives sequentially consistent CPU behavior (and is as slow as a CPU without

store buffer)

 Use memory barriers only when necessary

15

Write Buffers

http://www2.in.tum.de/hp/file?fid=1276

spcl.inf.ethz.ch

@spcl_eth

16

Exercise 1

spcl.inf.ethz.ch

@spcl_eth

17

Exercise 2

