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What if a processes receives a message before posting a matching receive?

What if this message is very big?

How does all of this work in non-blocking collectives?

MPI – Q&A
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MPI Datatypes
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• Basic Types: MPI_INT, MPI_CHAR, MPI_FLOAT, MPI_DOUBLE …

• Use them (and the count argument) to send the corresponding  types in C. 

• Now assume we have a 2D matrix of N*N doubles in C  

• C does not have multi-dimensional arrays built in  

• Can emulate it using 1D array.

• mat[i,j] = m[i*N+j] (row major layout) or  mat[i, j] = m[j*N+i] (column major layout)

MPI Datatypes – Basic Types

double* m = malloc(N*N*sizeof(double));

// fill with random data  

for (int i=0; i<N; i++)  

for (int j=0; i<N; i++)

m[i*N+j] = rand();
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Now we want to send a column of our matrix stored in row-major layout to another process

This will send N separate small messages

Each message has to be matched by the receiver, and usually there is some overhead when sending small 
messages (i.e., minimum packet size on the network)

So this will give bad performance! Do NOT do this!

MPI Datatypes – Small messages

for (int row=0; i<N; i++)

MPI_Send(&m[row*N+col], 1, MPI_DOUBLE, peer, tag, comm);
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So how about packing the column data into a send buffer?

Works better in many cases

Sadly, many people do this in real applications

We added an extra copy of our data! Copying is not free!  But what if your network is very good with 

small messages?

Maybe a hybrid approach would be best, i.e., send in chunks of  100 doubles? Or 500?

Idea: Let MPI decide how to handle this!9

MPI Datatypes – Manual Packing

double* buf = malloc(N*sizeof(double));  

for (int row=0; i<N; i++) {

sendbuf[row] = m[row*N+col];

}

MPI_Send(buf, 1, MPI_DOUBLE, peer, tag, comm);



spcl.inf.ethz.ch

@spcl_eth

We need to tell MPI how the data is laid out

MPI_Type_vector(count, blocklen, stride, basetype, newtype) will  create a new datatype, which consists of 
count instances of  blocklen times basetype, with a space of stride in between.

Before a new type can be used it has to be committed with  
MPI_Type_commit(MPI_Datatype* newtype)

MPI Datatypes – Type creation

MPI_Datatype newtype;

MPI_Type_vector(N, blocklen, N, MPI_DOUBLE, &newtype);  

MPI_Type_commit(&newtype);

MPI_Send(m, 1, newtype, peer, tag, comm);

stride = 4

count = 5

blocklen = 1



spcl.inf.ethz.ch

@spcl_eth

MPI Datatypes can are composable! - So you can create a vector  of a vector datatype! (Useful for 3D matrices!)

The MPI_Type_vector() is not the only type creation function

MPI_Type_indexed() allows non-uniform strides

MPI_Type_struct() allows to combine different datatypes into one “object”  See 

Check the MPI standard for complete list/definition if you need them!

MPI Datatypes – Composable
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• Type signature is the sequence of basic datatypes used in a derived datatype, e.g.

typesig(mystruct) = {char, int, double}

• Type map is sequence of basic datatypes + sequence of displacements

typemap(mystruct) = {(char,0),(int,8),(double,16)}

• Type matching rule of MPI: type signature of sender and receiver has to match

• Including the count argument in Send and Recv operation (e.g. unroll the description)

• Receiver must not define overlapping datatypes

• The message does not need to fill the whole receive buffer

Type map vs. Type signature
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Datatypes - Performance

Manual Packing MPI Datatypes

Schneider/Gerstenberger: Application-oriented ping-pong benchmarking: how  to assess the real communication overheads
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Non-blocking Collectives
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 Nonblocking (send/recv) communication
 Deadlock avoidance

 Overlapping communication/computation

 Collective communication
 Collection of pre-defined optimized routines

  Nonblocking collective communication
 Combines both techniques (more than the sum of the parts )

 System noise/imbalance resiliency

 Semantic advantages

Nonblocking Collective Communication
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Nonblocking Collective Communication

 Nonblocking variants of all collectives

 MPI_Ibcast(<bcast args>, MPI_Request *req);

 Semantics

 Function returns no matter what

 No guaranteed progress (quality of implementation)

 Usual completion calls (wait, test) + mixing

 Out-of order completion

 Restrictions

 No tags, in-order matching

 Send and vector buffers may not be touched during operation

 MPI_Cancel not supported

 No matching with blocking collectives

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI
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Nonblocking Collective Communication

 Semantic advantages
 Enable asynchronous progression (and manual)

Software pipelining

 Decouple data transfer and synchronization

Noise resiliency!

 Allow overlapping communicators

See also neighborhood collectives

 Multiple outstanding operations at any time

Enables pipelining window

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI
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Nonblocking Collectives Overlap

 Software pipelining
 More complex parameters 

 Progression issues

 Not scale-invariant

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications
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MPI One-sided
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One-sided Communication

 The basic idea of one-sided communication models is to decouple data movement with 
process synchronization
 Should be able move data without requiring that the remote process synchronize

 Each process exposes a part of its memory to other processes

 Other processes can directly read from or write to this memory
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Two-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

Memory
Segment
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One-sided Communication Example

MPI implementation

Memory Memory

MPI implementation
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Comparing One-sided and Two-sided Programming

Process 0 Process 1

SEND(data)

RECV(data)

D
E
L
A
Y

Even the 
sending 

process is 
delayed

Process 0 Process 1

PUT(data) D
E
L
A
Y

Delay in 
process 1 
does not 

affect 
process 0

GET(data)



spcl.inf.ethz.ch

@spcl_eth

What we need to know in MPI RMA

 How to create remote accessible memory?

 Reading, Writing and Updating remote memory

 Data Synchronization

 Memory Model
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Creating remotely accessible memory

 Any memory used by a process is, by default, only locally accessible
 X = malloc(100);

 Once the memory is allocated, the user has to make an explicit MPI call to declare a 
memory region as remotely accessible
 MPI terminology for remotely accessible memory is a “window”

 A group of processes collectively create a “window”

 Once a memory region is declared as remotely accessible, all processes in the window 
can read/write data to this memory without explicitly synchronizing with the target 
process

Process 1 Process 2 Process 3

Private

Memory

Private

Memory

Private

Memory

Process 0

Private

Memory

Private

Memory

Private

Memory

Private

Memory

Private

Memory
window window window window



spcl.inf.ethz.ch

@spcl_eth

Window creation models

 Four models exist
 MPI_WIN_CREATE

You already have an allocated buffer that you would like to make remotely accessible

 MPI_WIN_ALLOCATE

You want to create a buffer and directly make it remotely accessible

 MPI_WIN_CREATE_DYNAMIC

You don’t have a buffer yet, but will have one in the future

You may want to dynamically add/remove buffers to/from the window

 MPI_WIN_ALLOCATE_SHARED

You want multiple processes on the same node share a buffer
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MPI_WIN_CREATE

 Expose a region of memory in an RMA window
 Only data exposed in a window can be accessed with RMA ops.

 Arguments:
 base - pointer to local data to expose

 size - size of local data in bytes (nonnegative integer)

 disp_unit - local unit size for displacements, in bytes (positive 
integer)

 info - info argument (handle)

 comm - communicator (handle)

 win             - window (handle)

MPI_Win_create(void *base, MPI_Aint size, 

int disp_unit, MPI_Info info,

MPI_Comm comm, MPI_Win *win)
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Example with MPI_WIN_CREATE

int main(int argc, char ** argv)

{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);

/* create private memory */

MPI_Alloc_mem(1000*sizeof(int), MPI_INFO_NULL, &a);

/* use private memory like you normally would */

a[0] = 1;  a[1] = 2;

/* collectively declare memory as remotely accessible */

MPI_Win_create(a, 1000*sizeof(int), sizeof(int), 

MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* Array ‘a’ is now accessibly by all processes in

* MPI_COMM_WORLD */

MPI_Win_free(&win);

MPI_Free_mem(a);

MPI_Finalize(); return 0;

}
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MPI_WIN_ALLOCATE

 Create a remotely accessible memory region in an RMA 
window
 Only data exposed in a window can be accessed with RMA ops.

 Arguments:
 size - size of local data in bytes (nonnegative integer)

 disp_unit - local unit size for displacements, in bytes (positive integer)

 info - info argument (handle)

 comm - communicator (handle)

 baseptr - pointer to exposed local data

 win            - window (handle)

MPI_Win_allocate(MPI_Aint size, int disp_unit,

MPI_Info info, MPI_Comm comm, 

void *baseptr, MPI_Win *win)
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Example with MPI_WIN_ALLOCATE

int main(int argc, char ** argv)

{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);

/* collectively create remote accessible memory in a window */

MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL,

MPI_COMM_WORLD, &a, &win);

/* Array ‘a’ is now accessible from all processes in

* MPI_COMM_WORLD */

MPI_Win_free(&win); // will also free the buffer memory

MPI_Finalize(); return 0;

}
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MPI_WIN_CREATE_DYNAMIC

 Create an RMA window, to which data can later be attached
 Only data exposed in a window can be accessed with RMA ops

 Initially “empty”
 Application can dynamically attach/detach memory to this window by calling 

MPI_Win_attach/detach

 Application can access data on this window only after a memory region has been attached

 Window origin is MPI_BOTTOM
 Displacements are segment addresses relative to MPI_BOTTOM

 Must tell others the displacement after calling attach

MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm,

MPI_Win *win)
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Example with MPI_WIN_CREATE_DYNAMIC

int main(int argc, char ** argv)

{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);

MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* create private memory */

a = (int *) malloc(1000 * sizeof(int));

/* use private memory like you normally would */

a[0] = 1;  a[1] = 2;

/* locally declare memory as remotely accessible */

MPI_Win_attach(win, a, 1000*sizeof(int));

/* Array ‘a’ is now accessible from all processes */

/* undeclare remotely accessible memory */

MPI_Win_detach(win, a);  free(a);

MPI_Win_free(&win);

MPI_Finalize(); return 0;

}
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Data movement

 MPI provides ability to read, write and atomically modify data in remotely 
accessible memory regions
 MPI_PUT

 MPI_GET

 MPI_ACCUMULATE (atomic)

 MPI_GET_ACCUMULATE (atomic)

 MPI_COMPARE_AND_SWAP (atomic)

 MPI_FETCH_AND_OP (atomic)
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Data movement: Put

 Move data from origin, to target

 Separate data description triples for origin and target

Origin

MPI_Put(void *origin_addr, int origin_count,

MPI_Datatype origin_dtype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_dtype, MPI_Win win)

Target

Remotely 
Accessible 
Memory

Private 
Memory



spcl.inf.ethz.ch

@spcl_eth

Data movement: Get

 Move data to origin, from target

 Separate data description triples for origin and target

Origin

MPI_Get(void *origin_addr, int origin_count,

MPI_Datatype origin_dtype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_dtype, MPI_Win win)

Target

Remotely 
Accessible 
Memory

Private 
Memory
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Atomic Data Aggregation: Accumulate

 Atomic update operation, similar to a put

 Reduces origin and target data into target buffer using op argument as combiner

 Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, …

 Predefined ops only, no user-defined operations

 Different data layouts between

target/origin OK

 Basic type elements must match

 Op = MPI_REPLACE

 Implements f(a,b)=b

 Atomic PUT

MPI_Accumulate(void *origin_addr, int origin_count,

MPI_Datatype origin_dtype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_dtype, MPI_Op op, MPI_Win win)

+
=

Origin Target

Remotely 
Accessible 
Memory

Private 
Memory
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Atomic Data Aggregation: Get Accumulate

 Atomic read-modify-write
 Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, …

 Predefined ops only

 Result stored in target buffer

 Original data stored at result_addr

 Different data layouts between
target/origin OK
 Basic type elements must match

 Atomic get with MPI_NO_OP

 Atomic swap with MPI_REPLACE

MPI_Get_accumulate(void *origin_addr, int origin_count,

MPI_Datatype origin_dtype, void *result_addr,

int result_count, MPI_Datatype result_dtype,

int target_rank, MPI_Aint target_disp,

int target_count, MPI_Datatype target_dype,

MPI_Op op, MPI_Win win)

+
=

Origin Target

Remotely 
Accessible 
Memory

Private 
Memory
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Atomic Data Aggregation: CAS and FOP

 FOP: Simpler version of MPI_Get_accumulate
 All buffers share a single predefined datatype

 No count argument (it’s always 1)

 Simpler interface allows hardware optimization

 CAS: Atomic swap if target value is equal to compare value

MPI_Compare_and_swap(void *origin_addr, void *compare_addr,

void *result_addr, MPI_Datatype dtype, int target_rank,

MPI_Aint target_disp, MPI_Win win)

MPI_Fetch_and_op(void *origin_addr, void *result_addr,

MPI_Datatype dtype, int target_rank,

MPI_Aint target_disp, MPI_Op op, MPI_Win win)
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Ordering of Operations in MPI RMA

 No guaranteed ordering for Put/Get operations

 Result of concurrent Puts to the same location undefined

 Result of Get concurrent Put/Accumulate undefined
 Can be garbage in both cases

 Result of concurrent accumulate operations to the same location are defined 
according to the order in which the occurred
 Atomic put: Accumulate with op = MPI_REPLACE

 Atomic get: Get_accumulate with op = MPI_NO_OP

 Accumulate operations from a given process are ordered by default
 User can tell the MPI implementation that (s)he does not require ordering as optimization hint

 You can ask for only the needed orderings: RAW (read-after-write), WAR, RAR, or WAW
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Examples with operation ordering

Process 0 Process 1

GET_ACC (y, x+=2, P1)

ACC (x+=1, P1) x += 2

x += 1y=2 

x = 2

PUT(x=2, P1)

GET(y, x, P1)

x = 2y=1

x = 1

PUT(x=1, P1)

PUT(x=2, P1)

x = 1

x = 0

x = 2
1. Concurrent Puts: undefined

2. Concurrent Get and 
Put/Accumulates: undefined

3. Concurrent Accumulate operations 
to the same location : ordering is 
guaranteed
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RMA Synchronization Models

 RMA data access model

 When is a process allowed to read/write remotely accessible memory?

 When is data written by process X is available for process Y to read?

 RMA synchronization models define these semantics

 Three synchronization models provided by MPI:

 Fence (active target)

 Post-start-complete-wait (generalized active target)

 Lock/Unlock (passive target)

 Data accesses occur within “epochs”

 Access epochs: contain a set of operations issued by an origin process

 Exposure epochs: enable remote processes to update a target’s window

 Epochs define ordering and completion semantics

 Synchronization models provide mechanisms for establishing epochs

E.g., starting, ending, and synchronizing epochs
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Fence: Active Target Synchronization

 Collective synchronization model

 Starts and ends access and exposure 
epochs on all processes in the 
window

 All processes in group of “win” do an 
MPI_WIN_FENCE to open an epoch

 Everyone can issue PUT/GET 
operations to read/write data

 Everyone does an MPI_WIN_FENCE to 
close the epoch

 All operations complete at the second 
fence synchronization

Fence

Fence

MPI_Win_fence(int assert, MPI_Win win)

P0 P1 P2
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PSCW: Generalized Active Target Synchronization

 Like FENCE, but origin and target specify 
who they communicate with

 Target: Exposure epoch

 Opened with MPI_Win_post

 Closed by MPI_Win_wait

 Origin: Access epoch

 Opened by MPI_Win_start

 Closed by MPI_Win_complete

 All synchronization operations may block, 
to enforce P-S/C-W ordering

 Processes can be both origins and targets

Start

Complete

Post

Wait

Target Origin

MPI_Win_post/start(MPI_Group grp, int assert, MPI_Win win)

MPI_Win_complete/wait(MPI_Win win)
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Lock/Unlock: Passive Target Synchronization

 Passive mode: One-sided, asynchronous communication

 Target does not participate in communication operation

 Shared memory-like model

Active Target Mode Passive Target Mode

Lock

Unlock

Start

Complete

Post

Wait
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Passive Target Synchronization

 Lock/Unlock: Begin/end passive mode epoch

 Target process does not make a corresponding MPI call

 Can initiate multiple passive target epochs to different processes

 Concurrent epochs to same process not allowed (affects threads)

 Lock type

 SHARED: Other processes using shared can access concurrently

 EXCLUSIVE: No other processes can access concurrently

 Flush: Remotely complete RMA operations to the target process

 After completion, data can be read by target process or a different process

 Flush_local: Locally complete RMA operations to the target process

MPI_Win_lock(int locktype, int rank, int assert, MPI_Win win)

MPI_Win_unlock(int rank, MPI_Win win)

MPI_Win_flush/flush_local(int rank, MPI_Win win)
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Advanced Passive Target Synchronization

 Lock_all: Shared lock, passive target epoch to all other processes
 Expected usage is long-lived: lock_all, put/get, flush, …, unlock_all

 Flush_all – remotely complete RMA operations to all processes

 Flush_local_all – locally complete RMA operations to all processes

MPI_Win_lock_all(int assert, MPI_Win win)

MPI_Win_unlock_all(MPI_Win win)

MPI_Win_flush_all/flush_local_all(MPI_Win win)
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Which synchronization mode should I use, when?

 RMA communication has low overheads versus send/recv
 Two-sided: Matching, queuing, buffering, unexpected receives, etc…

 One-sided: No matching, no buffering, always ready to receive

 Utilize RDMA provided by high-speed interconnects (e.g. InfiniBand)

 Active mode: bulk synchronization
 E.g. ghost cell exchange

 Passive mode: asynchronous data movement
 Useful when dataset is large, requiring memory of multiple nodes

 Also, when data access and synchronization pattern is dynamic

 Common use case: distributed, shared arrays

 Passive target locking mode
 Lock/unlock – Useful when exclusive epochs are needed

 Lock_all/unlock_all – Useful when only shared epochs are needed
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MPI RMA Memory Model

 MPI-3 provides two memory models: separate and 
unified

 MPI-2: Separate Model
 Logical public and private copies

 MPI provides software coherence between window copies

 Extremely portable, to systems that don’t provide 
hardware coherence

 MPI-3: New Unified Model
 Single copy of the window

 System must provide coherence

 Superset of separate semantics

E.g. allows concurrent local/remote access

 Provides access to full performance potential of hardware

Public
Copy

Private
Copy

Unified
Copy
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MPI RMA Memory Model (separate windows)

 Very portable, compatible with non-coherent memory systems

 Limits concurrent accesses to enable software coherence

Public
Copy

Private
Copy

Same source
Same epoch Diff. Sources

load store store

X

X
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MPI RMA Memory Model (unified windows)

 Allows concurrent local/remote accesses

 Concurrent, conflicting operations are allowed (not invalid)
 Outcome is not defined by MPI (defined by the hardware)

 Can enable better performance by reducing synchronization

Unified
Copy

Same source
Same epoch Diff. Sources

load store store

X


