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What if a processes receives a message before posting a matching receive?

What if this message is very big?

How does all of this work in non-blocking collectives?

MPI – Q&A
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MPI Datatypes
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• Basic Types: MPI_INT, MPI_CHAR, MPI_FLOAT, MPI_DOUBLE …

• Use them (and the count argument) to send the corresponding  types in C. 

• Now assume we have a 2D matrix of N*N doubles in C  

• C does not have multi-dimensional arrays built in  

• Can emulate it using 1D array.

• mat[i,j] = m[i*N+j] (row major layout) or  mat[i, j] = m[j*N+i] (column major layout)

MPI Datatypes – Basic Types

double* m = malloc(N*N*sizeof(double));

// fill with random data  

for (int i=0; i<N; i++)  

for (int j=0; i<N; i++)

m[i*N+j] = rand();
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Now we want to send a column of our matrix stored in row-major layout to another process

This will send N separate small messages

Each message has to be matched by the receiver, and usually there is some overhead when sending small 
messages (i.e., minimum packet size on the network)

So this will give bad performance! Do NOT do this!

MPI Datatypes – Small messages

for (int row=0; i<N; i++)

MPI_Send(&m[row*N+col], 1, MPI_DOUBLE, peer, tag, comm);
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So how about packing the column data into a send buffer?

Works better in many cases

Sadly, many people do this in real applications

We added an extra copy of our data! Copying is not free!  But what if your network is very good with 

small messages?

Maybe a hybrid approach would be best, i.e., send in chunks of  100 doubles? Or 500?

Idea: Let MPI decide how to handle this!9

MPI Datatypes – Manual Packing

double* buf = malloc(N*sizeof(double));  

for (int row=0; i<N; i++) {

sendbuf[row] = m[row*N+col];

}

MPI_Send(buf, 1, MPI_DOUBLE, peer, tag, comm);
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We need to tell MPI how the data is laid out

MPI_Type_vector(count, blocklen, stride, basetype, newtype) will  create a new datatype, which consists of 
count instances of  blocklen times basetype, with a space of stride in between.

Before a new type can be used it has to be committed with  
MPI_Type_commit(MPI_Datatype* newtype)

MPI Datatypes – Type creation

MPI_Datatype newtype;

MPI_Type_vector(N, blocklen, N, MPI_DOUBLE, &newtype);  

MPI_Type_commit(&newtype);

MPI_Send(m, 1, newtype, peer, tag, comm);

stride = 4

count = 5

blocklen = 1
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MPI Datatypes can are composable! - So you can create a vector  of a vector datatype! (Useful for 3D matrices!)

The MPI_Type_vector() is not the only type creation function

MPI_Type_indexed() allows non-uniform strides

MPI_Type_struct() allows to combine different datatypes into one “object”  See 

Check the MPI standard for complete list/definition if you need them!

MPI Datatypes – Composable
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• Type signature is the sequence of basic datatypes used in a derived datatype, e.g.

typesig(mystruct) = {char, int, double}

• Type map is sequence of basic datatypes + sequence of displacements

typemap(mystruct) = {(char,0),(int,8),(double,16)}

• Type matching rule of MPI: type signature of sender and receiver has to match

• Including the count argument in Send and Recv operation (e.g. unroll the description)

• Receiver must not define overlapping datatypes

• The message does not need to fill the whole receive buffer

Type map vs. Type signature
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Datatypes - Performance

Manual Packing MPI Datatypes

Schneider/Gerstenberger: Application-oriented ping-pong benchmarking: how  to assess the real communication overheads
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Non-blocking Collectives
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 Nonblocking (send/recv) communication
 Deadlock avoidance

 Overlapping communication/computation

 Collective communication
 Collection of pre-defined optimized routines

  Nonblocking collective communication
 Combines both techniques (more than the sum of the parts )

 System noise/imbalance resiliency

 Semantic advantages

Nonblocking Collective Communication
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Nonblocking Collective Communication

 Nonblocking variants of all collectives

 MPI_Ibcast(<bcast args>, MPI_Request *req);

 Semantics

 Function returns no matter what

 No guaranteed progress (quality of implementation)

 Usual completion calls (wait, test) + mixing

 Out-of order completion

 Restrictions

 No tags, in-order matching

 Send and vector buffers may not be touched during operation

 MPI_Cancel not supported

 No matching with blocking collectives

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI
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Nonblocking Collective Communication

 Semantic advantages
 Enable asynchronous progression (and manual)

Software pipelining

 Decouple data transfer and synchronization

Noise resiliency!

 Allow overlapping communicators

See also neighborhood collectives

 Multiple outstanding operations at any time

Enables pipelining window

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI
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Nonblocking Collectives Overlap

 Software pipelining
 More complex parameters 

 Progression issues

 Not scale-invariant

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications
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MPI One-sided
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One-sided Communication

 The basic idea of one-sided communication models is to decouple data movement with 
process synchronization
 Should be able move data without requiring that the remote process synchronize

 Each process exposes a part of its memory to other processes

 Other processes can directly read from or write to this memory
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Two-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

Memory
Segment
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One-sided Communication Example

MPI implementation

Memory Memory
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Comparing One-sided and Two-sided Programming

Process 0 Process 1

SEND(data)

RECV(data)

D
E
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Even the 
sending 

process is 
delayed

Process 0 Process 1

PUT(data) D
E
L
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Delay in 
process 1 
does not 

affect 
process 0

GET(data)
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What we need to know in MPI RMA

 How to create remote accessible memory?

 Reading, Writing and Updating remote memory

 Data Synchronization

 Memory Model
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Creating remotely accessible memory

 Any memory used by a process is, by default, only locally accessible
 X = malloc(100);

 Once the memory is allocated, the user has to make an explicit MPI call to declare a 
memory region as remotely accessible
 MPI terminology for remotely accessible memory is a “window”

 A group of processes collectively create a “window”

 Once a memory region is declared as remotely accessible, all processes in the window 
can read/write data to this memory without explicitly synchronizing with the target 
process
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Window creation models

 Four models exist
 MPI_WIN_CREATE

You already have an allocated buffer that you would like to make remotely accessible

 MPI_WIN_ALLOCATE

You want to create a buffer and directly make it remotely accessible

 MPI_WIN_CREATE_DYNAMIC

You don’t have a buffer yet, but will have one in the future

You may want to dynamically add/remove buffers to/from the window

 MPI_WIN_ALLOCATE_SHARED

You want multiple processes on the same node share a buffer
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MPI_WIN_CREATE

 Expose a region of memory in an RMA window
 Only data exposed in a window can be accessed with RMA ops.

 Arguments:
 base - pointer to local data to expose

 size - size of local data in bytes (nonnegative integer)

 disp_unit - local unit size for displacements, in bytes (positive 
integer)

 info - info argument (handle)

 comm - communicator (handle)

 win             - window (handle)

MPI_Win_create(void *base, MPI_Aint size, 

int disp_unit, MPI_Info info,

MPI_Comm comm, MPI_Win *win)
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Example with MPI_WIN_CREATE

int main(int argc, char ** argv)

{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);

/* create private memory */

MPI_Alloc_mem(1000*sizeof(int), MPI_INFO_NULL, &a);

/* use private memory like you normally would */

a[0] = 1;  a[1] = 2;

/* collectively declare memory as remotely accessible */

MPI_Win_create(a, 1000*sizeof(int), sizeof(int), 

MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* Array ‘a’ is now accessibly by all processes in

* MPI_COMM_WORLD */

MPI_Win_free(&win);

MPI_Free_mem(a);

MPI_Finalize(); return 0;

}
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MPI_WIN_ALLOCATE

 Create a remotely accessible memory region in an RMA 
window
 Only data exposed in a window can be accessed with RMA ops.

 Arguments:
 size - size of local data in bytes (nonnegative integer)

 disp_unit - local unit size for displacements, in bytes (positive integer)

 info - info argument (handle)

 comm - communicator (handle)

 baseptr - pointer to exposed local data

 win            - window (handle)

MPI_Win_allocate(MPI_Aint size, int disp_unit,

MPI_Info info, MPI_Comm comm, 

void *baseptr, MPI_Win *win)
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Example with MPI_WIN_ALLOCATE

int main(int argc, char ** argv)

{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);

/* collectively create remote accessible memory in a window */

MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL,

MPI_COMM_WORLD, &a, &win);

/* Array ‘a’ is now accessible from all processes in

* MPI_COMM_WORLD */

MPI_Win_free(&win); // will also free the buffer memory

MPI_Finalize(); return 0;

}
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MPI_WIN_CREATE_DYNAMIC

 Create an RMA window, to which data can later be attached
 Only data exposed in a window can be accessed with RMA ops

 Initially “empty”
 Application can dynamically attach/detach memory to this window by calling 

MPI_Win_attach/detach

 Application can access data on this window only after a memory region has been attached

 Window origin is MPI_BOTTOM
 Displacements are segment addresses relative to MPI_BOTTOM

 Must tell others the displacement after calling attach

MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm,

MPI_Win *win)
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Example with MPI_WIN_CREATE_DYNAMIC

int main(int argc, char ** argv)

{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);

MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* create private memory */

a = (int *) malloc(1000 * sizeof(int));

/* use private memory like you normally would */

a[0] = 1;  a[1] = 2;

/* locally declare memory as remotely accessible */

MPI_Win_attach(win, a, 1000*sizeof(int));

/* Array ‘a’ is now accessible from all processes */

/* undeclare remotely accessible memory */

MPI_Win_detach(win, a);  free(a);

MPI_Win_free(&win);

MPI_Finalize(); return 0;

}
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Data movement

 MPI provides ability to read, write and atomically modify data in remotely 
accessible memory regions
 MPI_PUT

 MPI_GET

 MPI_ACCUMULATE (atomic)

 MPI_GET_ACCUMULATE (atomic)

 MPI_COMPARE_AND_SWAP (atomic)

 MPI_FETCH_AND_OP (atomic)
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Data movement: Put

 Move data from origin, to target

 Separate data description triples for origin and target

Origin

MPI_Put(void *origin_addr, int origin_count,

MPI_Datatype origin_dtype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_dtype, MPI_Win win)

Target

Remotely 
Accessible 
Memory

Private 
Memory
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Data movement: Get

 Move data to origin, from target

 Separate data description triples for origin and target

Origin

MPI_Get(void *origin_addr, int origin_count,

MPI_Datatype origin_dtype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_dtype, MPI_Win win)

Target

Remotely 
Accessible 
Memory

Private 
Memory
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Atomic Data Aggregation: Accumulate

 Atomic update operation, similar to a put

 Reduces origin and target data into target buffer using op argument as combiner

 Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, …

 Predefined ops only, no user-defined operations

 Different data layouts between

target/origin OK

 Basic type elements must match

 Op = MPI_REPLACE

 Implements f(a,b)=b

 Atomic PUT

MPI_Accumulate(void *origin_addr, int origin_count,

MPI_Datatype origin_dtype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_dtype, MPI_Op op, MPI_Win win)

+
=

Origin Target

Remotely 
Accessible 
Memory

Private 
Memory
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Atomic Data Aggregation: Get Accumulate

 Atomic read-modify-write
 Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, …

 Predefined ops only

 Result stored in target buffer

 Original data stored at result_addr

 Different data layouts between
target/origin OK
 Basic type elements must match

 Atomic get with MPI_NO_OP

 Atomic swap with MPI_REPLACE

MPI_Get_accumulate(void *origin_addr, int origin_count,

MPI_Datatype origin_dtype, void *result_addr,

int result_count, MPI_Datatype result_dtype,

int target_rank, MPI_Aint target_disp,

int target_count, MPI_Datatype target_dype,

MPI_Op op, MPI_Win win)

+
=

Origin Target

Remotely 
Accessible 
Memory

Private 
Memory



spcl.inf.ethz.ch

@spcl_eth

Atomic Data Aggregation: CAS and FOP

 FOP: Simpler version of MPI_Get_accumulate
 All buffers share a single predefined datatype

 No count argument (it’s always 1)

 Simpler interface allows hardware optimization

 CAS: Atomic swap if target value is equal to compare value

MPI_Compare_and_swap(void *origin_addr, void *compare_addr,

void *result_addr, MPI_Datatype dtype, int target_rank,

MPI_Aint target_disp, MPI_Win win)

MPI_Fetch_and_op(void *origin_addr, void *result_addr,

MPI_Datatype dtype, int target_rank,

MPI_Aint target_disp, MPI_Op op, MPI_Win win)
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Ordering of Operations in MPI RMA

 No guaranteed ordering for Put/Get operations

 Result of concurrent Puts to the same location undefined

 Result of Get concurrent Put/Accumulate undefined
 Can be garbage in both cases

 Result of concurrent accumulate operations to the same location are defined 
according to the order in which the occurred
 Atomic put: Accumulate with op = MPI_REPLACE

 Atomic get: Get_accumulate with op = MPI_NO_OP

 Accumulate operations from a given process are ordered by default
 User can tell the MPI implementation that (s)he does not require ordering as optimization hint

 You can ask for only the needed orderings: RAW (read-after-write), WAR, RAR, or WAW
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Examples with operation ordering

Process 0 Process 1

GET_ACC (y, x+=2, P1)

ACC (x+=1, P1) x += 2

x += 1y=2 

x = 2

PUT(x=2, P1)

GET(y, x, P1)

x = 2y=1

x = 1

PUT(x=1, P1)

PUT(x=2, P1)

x = 1

x = 0

x = 2
1. Concurrent Puts: undefined

2. Concurrent Get and 
Put/Accumulates: undefined

3. Concurrent Accumulate operations 
to the same location : ordering is 
guaranteed
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RMA Synchronization Models

 RMA data access model

 When is a process allowed to read/write remotely accessible memory?

 When is data written by process X is available for process Y to read?

 RMA synchronization models define these semantics

 Three synchronization models provided by MPI:

 Fence (active target)

 Post-start-complete-wait (generalized active target)

 Lock/Unlock (passive target)

 Data accesses occur within “epochs”

 Access epochs: contain a set of operations issued by an origin process

 Exposure epochs: enable remote processes to update a target’s window

 Epochs define ordering and completion semantics

 Synchronization models provide mechanisms for establishing epochs

E.g., starting, ending, and synchronizing epochs
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Fence: Active Target Synchronization

 Collective synchronization model

 Starts and ends access and exposure 
epochs on all processes in the 
window

 All processes in group of “win” do an 
MPI_WIN_FENCE to open an epoch

 Everyone can issue PUT/GET 
operations to read/write data

 Everyone does an MPI_WIN_FENCE to 
close the epoch

 All operations complete at the second 
fence synchronization

Fence

Fence

MPI_Win_fence(int assert, MPI_Win win)

P0 P1 P2
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PSCW: Generalized Active Target Synchronization

 Like FENCE, but origin and target specify 
who they communicate with

 Target: Exposure epoch

 Opened with MPI_Win_post

 Closed by MPI_Win_wait

 Origin: Access epoch

 Opened by MPI_Win_start

 Closed by MPI_Win_complete

 All synchronization operations may block, 
to enforce P-S/C-W ordering

 Processes can be both origins and targets

Start

Complete

Post

Wait

Target Origin

MPI_Win_post/start(MPI_Group grp, int assert, MPI_Win win)

MPI_Win_complete/wait(MPI_Win win)
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Lock/Unlock: Passive Target Synchronization

 Passive mode: One-sided, asynchronous communication

 Target does not participate in communication operation

 Shared memory-like model

Active Target Mode Passive Target Mode

Lock

Unlock

Start

Complete

Post

Wait
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Passive Target Synchronization

 Lock/Unlock: Begin/end passive mode epoch

 Target process does not make a corresponding MPI call

 Can initiate multiple passive target epochs to different processes

 Concurrent epochs to same process not allowed (affects threads)

 Lock type

 SHARED: Other processes using shared can access concurrently

 EXCLUSIVE: No other processes can access concurrently

 Flush: Remotely complete RMA operations to the target process

 After completion, data can be read by target process or a different process

 Flush_local: Locally complete RMA operations to the target process

MPI_Win_lock(int locktype, int rank, int assert, MPI_Win win)

MPI_Win_unlock(int rank, MPI_Win win)

MPI_Win_flush/flush_local(int rank, MPI_Win win)
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Advanced Passive Target Synchronization

 Lock_all: Shared lock, passive target epoch to all other processes
 Expected usage is long-lived: lock_all, put/get, flush, …, unlock_all

 Flush_all – remotely complete RMA operations to all processes

 Flush_local_all – locally complete RMA operations to all processes

MPI_Win_lock_all(int assert, MPI_Win win)

MPI_Win_unlock_all(MPI_Win win)

MPI_Win_flush_all/flush_local_all(MPI_Win win)
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Which synchronization mode should I use, when?

 RMA communication has low overheads versus send/recv
 Two-sided: Matching, queuing, buffering, unexpected receives, etc…

 One-sided: No matching, no buffering, always ready to receive

 Utilize RDMA provided by high-speed interconnects (e.g. InfiniBand)

 Active mode: bulk synchronization
 E.g. ghost cell exchange

 Passive mode: asynchronous data movement
 Useful when dataset is large, requiring memory of multiple nodes

 Also, when data access and synchronization pattern is dynamic

 Common use case: distributed, shared arrays

 Passive target locking mode
 Lock/unlock – Useful when exclusive epochs are needed

 Lock_all/unlock_all – Useful when only shared epochs are needed
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MPI RMA Memory Model

 MPI-3 provides two memory models: separate and 
unified

 MPI-2: Separate Model
 Logical public and private copies

 MPI provides software coherence between window copies

 Extremely portable, to systems that don’t provide 
hardware coherence

 MPI-3: New Unified Model
 Single copy of the window

 System must provide coherence

 Superset of separate semantics

E.g. allows concurrent local/remote access

 Provides access to full performance potential of hardware

Public
Copy

Private
Copy

Unified
Copy
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MPI RMA Memory Model (separate windows)

 Very portable, compatible with non-coherent memory systems

 Limits concurrent accesses to enable software coherence

Public
Copy

Private
Copy

Same source
Same epoch Diff. Sources

load store store

X

X
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MPI RMA Memory Model (unified windows)

 Allows concurrent local/remote accesses

 Concurrent, conflicting operations are allowed (not invalid)
 Outcome is not defined by MPI (defined by the hardware)

 Can enable better performance by reducing synchronization

Unified
Copy

Same source
Same epoch Diff. Sources

load store store

X


