- . - e : g o spcl.inf.ethz.ch
ETHzurich = S o W @spcl_eth

SALVATORE DI GIROLAMO <DIGIROLS@INF.ETHZ.CH>

DPHPC: Introduction to OpenMP i 4;,,

Recitation session

'''''

e (R
i <

T _: Rn o e s ¥
e 2 R o 1

n http://openmp

.org/mp-documents/intro_To_OpenMP_Mattson.pdf

R A ” \ BV . ;. | ; 'ﬁ.\

Based o

YW @spcl_eth

ETH:zurich -i- < ~ spcl.inf.ethz.ch

OpenMP — An Introduction

= Whatis it? A set of compiler directives and a runtime library
= #pragma omp parallel num_threads(4)
= #include <omp.h>

= Why do we care? Simplify (& standardizes) how multi-treadthread application are written
= Fortran, C, C++

Thread 1 stack
Stack -

Thread 2 stack
@ et

Thread 3 stack
Cache Cache Cache Cache gl

i) i)

BSS BSS

Data Data

Text Text

- . e N spcl.inf.ethz.ch
ETH:zurich -i- : ' /@2' y @spcl_eth

Systems @ ETH zinen L

OpenMP — An Introduction

= OpenMP is based on Fork/Join model
= When program starts, one Master thread is created
= Master thread executes sequential portions of the program
= At the beginning of parallel region, master thread forks new threads
= All the threads together now forms a “team”
= At the end of the parallel region, the forked threads die

master thread L o - N
e el threads T,

threads .

K . threads .

parallel region parallel region parallel region

.. . . A s B spcl.inf.ethz.ch
ETH:zurich -E- - < /&&J' y @spcl_eth

Systems @ ETH zinen

What’s a Shared-Memory Program?

= One process that spawns multiple threads Thread 1
Private
= Threads can communicate via shared memory HEMET Thread 2
» Read/Write to shared variables Private
= Synchronization can be required! Memory
= (OS decides how to schedule threads Thread 4

Private Thread 3
Memory

Private
Memory

ETH:zurich - (A spcl.inf.ethz.ch
Systemse@ ETH. -

YW @spcl_eth

ztrich

OpenMP: Hello World

= Make “Hello World” multi-threaded

Include OpenMP header

#include “omp.h”

Start parallel region with

int main () { “default” number of threads

int ID=0; int main () {

printf (“*hello(%d) ”, ID);; #pragma omp parallel

printf (“world(%d) \n”, ID);; { m
} int ID = omp get thread num() ;

printf (“hello(%d) ”, ID);;
printf (“world(%d) \n”, ID);;

.. . . A st spcl.inf.ethz.ch
ETH:zurich -i- e /&&2' y @spcl_eth

Systems @ ETH zinen

Parallel Regions

= A parallel region identifies a portion of code that can be executed by different threads
= You can create a parallel region with the “parallel” directive
= You can request a specific number of threads with omp_set _num_threads(N)

double A[1000]; double A[1000];
omp_set_num_threads(4);
#pragma omp parallel #pragma omp parallel num_threads(4)
{ {
int ID = omp_get_thread _num(); int ID = omp_get_thread _num();
pooh(ID,A); pooh(ID,A);
} }

= Each thread will call pooh with a different value of ID

ETH:zurich -i-

Systems @ ETH zinen

Parallel Regions

v

double A[1000]

v

omp_set _num_threads(4)

}

pooh(0, A)

l l

pooh(1, A) pooh(2, A)

v

pooh(3, A)

l

printf(“all done!”);

spcl.inf.ethz.ch
YW @spcl_eth

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel

{

int ID = omp_get_thread _num();
pooh(ID,A);

}
printf(“all done!);

All the threads executed the same code
The A array is shared

Implicit synchronization at the end of the
parallel region

E'H . . h -E- o s P Mg 2 By A spcl.inf.ethz.ch
zZuric R o = " o @spcl_eth
Systems @ ETH zuvic —

Behind the scenes

= The OpenMP compiler generates code logically analogous to that on the right

= All known OpenMP implementations use a thread pool so full cost of threads creation and
destruction is not incurred for reach parallel region.

= Only three threads are created because the last parallel section will be invoked from the
parent thread.

void thunk () {
foobar () ;

}

#pragma omp parallel num threads(4)

{ pthread t tid[4];
— =)
}

for (int i= 1; i< 4; ++1i)
pthread create(&tid[i],0,thunk, 0);

thunk () ;

for (int i = 1; i< 4; ++i)
pthread join(tid[i]);

. . S '}\’)‘ g = Far spcl.inf.ethz.ch
ETHzirich =g™ e Z\Q‘iﬁz < Gorcl sh

Systems @ ETH zinen

Exercise: Compute PI

= Mathematically, we know that computing the
Integral of
4/(1+x*X)
from O to 1 will give us the value of pi —which is
great since it gives us an easy way to check the
answer.

—
o
|

We can approximate the integral as a sum of
rectangles:

4.0/(1+x2)

F(x)

= Where each rectangle has width 'x and height
F(x_i) at the middle of interval i.

- . e N spcl.inf.ethz.ch
ETH:zurich -i- : ' /@2' y @spcl_eth

Systems @ ETH zinen

Computing PI: Sequential Version

#include <stdio.h>
#include <omp.h>
static long num_steps = 100000000;
double step;
int main () {
inti;
double x, pi, sum = 0.0;
double start_time, run_time;

step = 1.0/(double) num_steps;
start_time = omp_get _wtime();

for (i=1;i<= num_steps; i++){
X = (i-0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;
run_time = omp_get_wtime() - start_time;
printf("\n pi with %ld steps is %lf in %lf seconds\n ",num_steps,pi,run_time);

. . e . .‘ e = 3 - spcl.inf.ethz.ch
ETH:zurich -E- o o e Z\@I y @spcl_eth

Systems @ ETH zinen

Parallel PI

Create a parallel version of the pi program using a parallel construct.
Pay close attention to shared versus private variables.

In addition to a parall¢ This pattern is very general and has been used to support

= int omp_get_num_thre: most (if not all) the algorithm strategy patterns.

" intomp_get_thread_nu MPI programs almost always use this pattern ... it is

= double omp_get_wtime probably the most commonly used pattern in the history of
parallel programming.

Possible strategy:
» Run the same program on P processing elements where P can be arbitrarily large.

» Use the rank ... an ID ranging from 0 to (P-1) ... to select between a set of tasks and to manage any shared
data structures.

ETH:zurich -i-

Systems @ ETH zinen

Simple Parallel Pl

#include <omp.h> Promote scalar to an

static long num_steps = 100000; double step; array dimensioned by
#define NUM_THREADS 2 number of threads to

void main () avoid race condition.

{ int i, nthreads; double pi, sum[NUM_THREADS];

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel

{

int i, id,nthrds; Only one thread should copy
. the number of threads to the

(,jOL_lble X; _ [global value to make sure

id = omp_get_thread_num(); multiple threads writing to the

nthrds = omp_get_num_threads(); same address don’t conflict.

if (id == 0) nthreads = nthrds;

for (i=id, suml[id]=0.0;i< num_steps; i=i+nthrds) { —

— (i * : is is a common
x=(i+0.5)"step; \ trick in SPMD
sum(id] += 4.0/(1.0+x"x); programs to create

} a cyclic distribution
} of loop iterations

for(i=0, pi=0.0;i<nthreads;i++)pi += sum(i] * step;

spcl.inf.ethz.ch
/ LS "y @spcl_eth

Original Serial pi program
with 100000000 steps ran in
1.83 seconds.

threads 1st
SPMD

1.86
1.03
1.08
0.97

BN~

Poor scaling!!!

ETH:zurich -E-

spcl.inf.ethz.ch

Systems @ ETH zinen

False Sharin

g

[T

YW @spcl_eth

If independent data elements happen to sit on the same cache line, each update will cause the cache
lines to “slosh back and forth” between threads

HW thrd. O HW thrd. 1

HW thrd. 2 HW thrd. 3

=

Core 0

L1 $ lines I I L1 $ lifs | I
1 1
sum[1] | sum[2] | Sum[3] ‘LLL Sum[0] | Sum[1] Sum[3]

K—CMM/

Shared last level cache and connection to I/0 and DRAM

HotFix: Pad arrays so elements you use are on distinct cache lines.

- . e N spcl.inf.ethz.ch
ETH:zurich : ' /wdf?,&)' y @spcl_eth

ztrich

Padding the PI

#include <omp.h>

static long num_steps = 100000; double step;
#define PAD 8 /[assume 64 byte L1 cache line size
#define NUM_THREADS 2
void main () threads 1st 1st
{ int i, nthreads; double pi, sum[NUM_THREADS][PAD]; SPMD | SPMD
step = 1.0/(double) num_steps; \ padded
omp_set_num_threads(NUM_THREADS); 1 186 186
#pragma omp parallel Pad the array : :
{ int i, id,nthrds; s each sum 2 1.03 1.01
double oo s | 108 | oe9
id = omp_get_thread_num(); cache line 1 0.97 0.53
nthrds = omp_get_num_threads(); : :

if (id == 0) nthreads = nthrds;

for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
X = (i+0.5)*step;
sum[id][0] += 4.0/(1.0+x*x);

}

for(i=0, pi=0.0;i<nthreads;i++)pi += sum([i][0] * step;

ETH:zurich -E- . ey ~ spel.inf.ethz.ch

N/ —— y @spcl_eth
Systems @ ETH zinen Z— —

SPMD vs WorkSharing

= A parallel construct by itself creates an SPMD or “Single Program Multiple Data” program ...
I.e., each thread redundantly executes the same code.

= How do you split up pathways through the code between threads within a team?
= WorkSharing: The OpenMP loop construct (not the only way to go)

= Theloop worksharing construct splits up loop iterations among the threads in a team

#pragma omp parallel

{

#pragma omp for
for (I=0;I<N;l++){

NEAT _STUFF(I);
}

}

The variable | is made “private” to each

thread by default. You could do this
explicitly with a “private(l)” clause

ETH:zurich -i- s T Sy \; %t spcl.inf.ethz.ch
Systems @ ETH. b 2 . ™ YW @spcl_eth

Why should we use it (the loop construct)?
SELVELIETHE for(i=0;i<N;i++) { a[i] = a[i] + bli];}

OpenMP parallel #pragma omp parallel
region: {
Int id, 1, Nthrds, istart, iend;
iId = omp_get_thread_num();
Nthrds = omp_get num_threads();
Istart = id * N / Nthrds;
lend = (id+1) * N / Nthrds;
If (id == Nthrds-1)iend = N;
for(i=istart;i<iend;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel
#pragma omp for
for(i=0;i<N;i++) { a[i] = a[i] + bli];}

OpenMP parallel region
and worksharing:

ETHzurich -i- L S P B AN R Z‘Q@J
) ETH i ~

ystems @

spcl.inf.ethz.ch
YW @spcl_eth

Working with Loops

= Basic approach
» Find compute intensive loops

= Make the loop iterations independent .. So they can safely execute in any order without loop-carried
dependencies

= Place the appropriate OpenMP directive and test

Note: loop index

int i, j, AIMAX]; “I” Is private by int i, A[MAX];

j=5; default #pragma omp parallel for

for (i=0;i< MAX; i++) { for (i=0;i< MAX; i++) {

j +=2; int j =5+ 2%(i+1);
Alil = bigN Remove loop / Ali] = big(j);
carried h

dependence

ETH:zurich -i- At T S '\.‘ kT spcl.inf.ethz.ch
Systems @ ETH. : 2 . ™ YW @spcl_eth

Reduction

= OpenMP reduction clause:
= reduction (op : list)
= Inside a parallel or a work-sharing construct:
= Alocal copy of each list variable is made and initialized depending on the “op” (e.g. O for “+7).
» Updates occur on the local copy.
= Local copies are reduced into a single value and combined with the original global value.

= The variables in “list” must be shared in the enclosing parallel region.

double ave=0.0, A|[MAX]; inti;
#pragma omp parallel for reduction (+:ave)
for (1I=0;i< MAX; i++) {
ave +=Ali];

h
ave = ave/MAX;

.. . . A s B spcl.inf.ethz.ch
ETH:zurich -E- - < /&&J' y @spcl_eth

Systems @ ETH zinen

Pl with loop construct

#include <omp.h>
static long num_steps = 100000; double step;

void main ()
{ Int I; double x, pi, sum = 0.0; [create a team of threads ...
step = 1 0/(double) num StepS' without a parallel construct, you'll
] - ‘ never have more than one thread

#pragma omp parallel

{ Create a scalar local to each thread to hold
double x; € value of x at the center of each interval

#pragma omp for reduction(+:sum)
1=0;1< S+t
for (I O’I _num—fteps’ |){ Break up loop iterations
x = (1+0.5)*step; and assign them to

sUum =sum + 4_0/(1 .0+X*X); threads ... setting up a
reduction into sum.

} Note ... the loop indix is
} local to a thread by default.

pi = step * sum;

