
spcl.inf.ethz.ch

@spcl_eth

SALVATORE DI GIROLAMO <DIGIROLS@INF.ETHZ.CH>

DPHPC: Introduction to OpenMP
Recitation session

Based on http://openmp.org/mp-documents/Intro_To_OpenMP_Mattson.pdf

spcl.inf.ethz.ch

@spcl_eth

 What is it? A set of compiler directives and a runtime library

 #pragma omp parallel num_threads(4)

 #include <omp.h>

 Why do we care? Simplify (& standardizes) how multi-treadthread application are written

 Fortran, C, C++

2

OpenMP – An Introduction

Stack

Text

Data

BSS

Text

Data

BSS

Thread 1 stack

Thread 2 stack

Thread 3 stack

spcl.inf.ethz.ch

@spcl_eth

 OpenMP is based on Fork/Join model

 When program starts, one Master thread is created

 Master thread executes sequential portions of the program

 At the beginning of parallel region, master thread forks new threads

 All the threads together now forms a “team”

 At the end of the parallel region, the forked threads die

3

OpenMP – An Introduction

spcl.inf.ethz.ch

@spcl_eth

 One process that spawns multiple threads

 Threads can communicate via shared memory

 Read/Write to shared variables

 Synchronization can be required!

 OS decides how to schedule threads

4

What’s a Shared-Memory Program?

Shared

Memory

Area

Thread 1

Private

Memory
Thread 2

Private

Memory

Thread 3

Private

Memory

Thread 4

Private

Memory

spcl.inf.ethz.ch

@spcl_eth

5

OpenMP: Hello World

int main(){

int ID=0;

printf(“hello(%d) ”, ID);;

printf(“world(%d)\n”, ID);;

}

#include “omp.h”

int main(){

#pragma omp parallel

{

int ID = omp_get_thread_num();

printf(“hello(%d) ”, ID);;

printf(“world(%d)\n”, ID);;

}

}

 Make “Hello World” multi-threaded

Include OpenMP header

Start parallel region with

“default” number of threads

Who am I?

spcl.inf.ethz.ch

@spcl_eth

 A parallel region identifies a portion of code that can be executed by different threads

 You can create a parallel region with the “parallel” directive

 You can request a specific number of threads with omp_set_num_threads(N)

 Each thread will call pooh with a different value of ID

6

Parallel Regions

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

int ID = omp_get_thread_num();

pooh(ID,A);

}

double A[1000];

#pragma omp parallel num_threads(4)

{

int ID = omp_get_thread_num();

pooh(ID,A);

}

spcl.inf.ethz.ch

@spcl_eth

7

Parallel Regions

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

int ID = omp_get_thread_num();

pooh(ID,A);

}

printf(“all done!);

double A[1000]

omp_set_num_threads(4)

pooh(0, A) pooh(1, A) pooh(2, A) pooh(3, A)

printf(“all done!”);

• All the threads executed the same code

• The A array is shared

• Implicit synchronization at the end of the

parallel region

spcl.inf.ethz.ch

@spcl_eth

 The OpenMP compiler generates code logically analogous to that on the right

 All known OpenMP implementations use a thread pool so full cost of threads creation and

destruction is not incurred for reach parallel region.

 ƒOnly three threads are created because the last parallel section will be invoked from the

parent thread.

8

Behind the scenes

#pragma omp parallel num_threads(4)

{

foobar();

}

void thunk(){

foobar();

}

pthread_t tid[4];

for (int i= 1; i< 4; ++i)

pthread_create(&tid[i],0,thunk, 0);

thunk();

for (int i = 1; i< 4; ++i)

pthread_join(tid[i]);

spcl.inf.ethz.ch

@spcl_eth

9

Exercise: Compute PI

 Mathematically, we know that computing the

integral of

4/(1+x*x)

from 0 to 1 will give us the value of pi – which is

great since it gives us an easy way to check the

answer.

 We can approximate the integral as a sum of

rectangles:

 Where each rectangle has width 'x and height

F(x_i) at the middle of interval i.

spcl.inf.ethz.ch

@spcl_eth

10

Computing PI: Sequential Version
#include <stdio.h>

#include <omp.h>

static long num_steps = 100000000;

double step;

int main () {

int i;

double x, pi, sum = 0.0;

double start_time, run_time;

step = 1.0/(double) num_steps;

start_time = omp_get_wtime();

for (i=1;i<= num_steps; i++){

x = (i-0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

run_time = omp_get_wtime() - start_time;

printf("\n pi with %ld steps is %lf in %lf seconds\n ",num_steps,pi,run_time);

}

spcl.inf.ethz.ch

@spcl_eth

 Create a parallel version of the pi program using a parallel construct.

 Pay close attention to shared versus private variables.

 In addition to a parallel construct, you will need the runtime library routines

 int omp_get_num_threads();

 int omp_get_thread_num();

 double omp_get_wtime();

 Possible strategy:

 Run the same program on P processing elements where P can be arbitrarily large.

 Use the rank ... an ID ranging from 0 to (P-1) ... to select between a set of tasks and to manage any shared

data structures.

11

Parallel PI

This pattern is very general and has been used to support

most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern ... it is

probably the most commonly used pattern in the history of

parallel programming.

spcl.inf.ethz.ch

@spcl_eth

12

Simple Parallel PI

Original Serial pi program

with 100000000 steps ran in

1.83 seconds.

Poor scaling!!!

spcl.inf.ethz.ch

@spcl_eth

13

False Sharing

If independent data elements happen to sit on the same cache line, each update will cause the cache

lines to “slosh back and forth” between threads

HotFix: Pad arrays so elements you use are on distinct cache lines.

spcl.inf.ethz.ch

@spcl_eth

14

Padding the PI

spcl.inf.ethz.ch

@spcl_eth

 A parallel construct by itself creates an SPMD or “Single Program Multiple Data” program ...

i.e., each thread redundantly executes the same code.

 How do you split up pathways through the code between threads within a team?

 WorkSharing: The OpenMP loop construct (not the only way to go)

 The loop worksharing construct splits up loop iterations among the threads in a team

15

SPMD vs WorkSharing

#pragma omp parallel

{

#pragma omp for

for (I=0;I<N;I++){

NEAT_STUFF(I);

}

}

The variable I is made “private” to each

thread by default. You could do this

explicitly with a “private(I)” clause

spcl.inf.ethz.ch

@spcl_eth

16

Why should we use it (the loop construct)?

Sequential:

OpenMP parallel

region:

OpenMP parallel region

and worksharing:

spcl.inf.ethz.ch

@spcl_eth

 Basic approach

 Find compute intensive loops

 Make the loop iterations independent .. So they can safely execute in any order without loop-carried

dependencies

 Place the appropriate OpenMP directive and test

17

Working with Loops

spcl.inf.ethz.ch

@spcl_eth

 OpenMP reduction clause:

 reduction (op : list)

 Inside a parallel or a work-sharing construct:

 A local copy of each list variable is made and initialized depending on the “op” (e.g. 0 for “+”).

 Updates occur on the local copy.

 Local copies are reduced into a single value and combined with the original global value.

 The variables in “list” must be shared in the enclosing parallel region.

18

Reduction

spcl.inf.ethz.ch

@spcl_eth

19

PI with loop construct

