
spcl.inf.ethz.ch

@spcl_eth

SALVATORE DI GIROLAMO <DIGIROLS@INF.ETHZ.CH>

DPHPC: Caches
Recitation session

spcl.inf.ethz.ch

@spcl_eth

2

Typical Memory Hierarchy

register
s

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

on-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved from
L2 cache

CPU registers hold words retrieved from
L1 cache

L2 cache holds cache lines retrieved
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

spcl.inf.ethz.ch

@spcl_eth

▪ Locality: Programs tend to use data and instructions with addresses near or equal to those they have
used recently, cf. “Denning: “The locality principle”, CACM’05

▪ Temporal locality:

Recently referenced items are likely
to be referenced again in the near future

▪ Spatial locality:

Items with nearby addresses tend
to be referenced close together in time

3

Why Caches Work: Locality

memory

memory

spcl.inf.ethz.ch

@spcl_eth

▪ Definition: Computer memory with short access time used for the storage of frequently or recently used
instructions or data

▪ Naturally supports temporal locality

▪ Spatial locality is supported by transferring data in blocks

▪ E.g., Intel’s Core family: one block = 64 B = 8 doubles

4

Cache

Main
Memory

CPU Cache

spcl.inf.ethz.ch

@spcl_eth

▪ Direct mapped cache:

▪ Cache with E = 1

▪ Means every block from memory has a unique location in cache

▪ Fully associative cache

▪ Cache with S = 1 (i.e., maximal E)

▪ Means every block from memory can be mapped to any location in cache

▪ In practice to expensive to build

▪ One can view the register file as a fully associative cache

▪ LRU (least recently used) replacement

▪ when selecting which block should be replaced (happens only for E > 1), the least recently used one is chosen

5

Terminology

spcl.inf.ethz.ch

@spcl_eth

▪ Compulsory (cold) miss

Occurs on first access to a block

▪ Capacity miss

Occurs when working set is larger than the cache

▪ Conflict miss

Conflict misses occur when the cache is large enough, but multiple data objects all map to the same slot

▪ Not a clean classification but still useful

6

Types of Cache Misses (The 3 C’s)

spcl.inf.ethz.ch

@spcl_eth

▪ What to do on a write-hit?

▪ Write-through: write immediately to memory

▪ Write-back: defer write to memory until replacement of line

▪ What to do on a write-miss?

▪ Write-allocate: load into cache, update line in cache

▪ No-write-allocate: writes immediately to memory

7

What about writes?

Write-back/write-allocate (Core)

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

1: load

2: updateupdate

Write-through/no-write-allocate

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

1: update

2: update update

spcl.inf.ethz.ch

@spcl_eth

▪ Different caches may have a copy of the same memory location!

▪ Cache coherence

▪ Manages existence of multiple copies

▪ Cache architectures

▪ Multi level caches

▪ Shared vs. private (partitioned)

▪ Inclusive vs. exclusive

▪ Write back vs. write through

▪ Victim cache to reduce conflict misses

▪ …

8

The actual topic: Cache Coherence in Multiprocessors

spcl.inf.ethz.ch

@spcl_eth

▪ Programmer can hardly deal with unpredictable behavior!

▪ Cache controller maintains data integrity

▪ All writes to different locations are visible

9

Cache Coherence Protocol

▪ Snooping

▪ Shared bus or (broadcast) network

▪ Directory-based

▪ Record information necessary to maintain coherence:

E.g., owner and state of a line etc.

Fundamental Mechanisms

spcl.inf.ethz.ch

@spcl_eth

▪ Snooping

▪ Shared bus or (broadcast) network

▪ Cache controller “snoops” all transactions

▪ Monitors and changes the state of the cache’s data

▪ Works at small scale, challenging at large-scale

E.g., Intel Broadwell

▪ Directory-based

▪ Record information necessary to maintain coherence

E.g., owner and state of a line etc.

▪ Central/Distributed directory for cache line ownership

▪ Scalable but more complex/expensive

E.g., Intel Xeon Phi KNC/KNL

10

Fundamental CC mechanisms

Source: Intel

Core Core Core

Core Core Core

GDDR5

GDDR5

GDDR5

GDDR5

TD TD

TD TD

spcl.inf.ethz.ch

@spcl_eth

▪ Most common hardware implementation of discussed requirements

aka. “Illinois protocol”

Each line has one of the following states (in a cache):

▪ Modified (M)

▪ Local copy has been modified, no copies in other caches

▪ Memory is stale

▪ Exclusive (E)

▪ No copies in other caches

▪ Memory is up to date

▪ Shared (S)

▪ Unmodified copies may exist in other caches

▪ Memory is up to date

▪ Invalid (I)

▪ Line is not in cache

11

MESI Cache Coherence

spcl.inf.ethz.ch

@spcl_eth

▪ Clean line:

▪ Content of cache line and main memory is identical (also: memory is up to date)

▪ Can be evicted without write-back

▪ Dirty line:

▪ Content of cache line and main memory differ (also: memory is stale)

▪ Needs to be written back eventually

Time depends on protocol details

▪ Bus transaction:

▪ A signal on the bus that can be observed by all caches

▪ Usually blocking

▪ Local read/write:

▪ A load/store operation originating at a core connected to the cache

12

Terminology

spcl.inf.ethz.ch

@spcl_eth

▪ State is M

▪ No bus transaction

▪ State is E

▪ No bus transaction

▪ State is S

▪ No bus transaction

▪ State is I

▪ Generate bus read request (BusRd)

May force other cache operations (see later)

▪ Other cache(s) signal “sharing” if they hold a copy

▪ If shared was signaled, go to state S

▪ Otherwise, go to state E

▪ After update: return read value

13

Transitions in response to local reads

spcl.inf.ethz.ch

@spcl_eth

▪ State is M

▪ No bus transaction

▪ State is E

▪ No bus transaction

▪ Go to state M

▪ State is S

▪ Line already local & clean

▪ There may be other copies

▪ Generate bus read request for upgrade to exclusive (BusRdX*)

▪ Go to state M

▪ State is I

▪ Generate bus read request for exclusive ownership (BusRdX)

▪ Go to state M

14

Transitions in response to local writes

spcl.inf.ethz.ch

@spcl_eth

▪ State is M

▪ Write cache line back to main memory

▪ Signal “shared”

▪ Go to state S (or E)

▪ State is E

▪ Signal “shared”

▪ Go to state S and signal “shared”

▪ State is S

▪ Signal “shared”

▪ State is I

▪ Ignore

15

Transitions in response to snooped BusRd

spcl.inf.ethz.ch

@spcl_eth

▪ State is M

▪ Write cache line back to memory

▪ Discard line and go to I

▪ State is E

▪ Discard line and go to I

▪ State is S

▪ Discard line and go to I

▪ State is I

▪ Ignore

▪ BusRdX* is handled like BusRdX!

16

Transitions in response to snooped BusRdX

spcl.inf.ethz.ch

@spcl_eth

17

MESI State Diagram (FSM)

M E

IS

BusRd/-

PrRd/-
PrWr/-

PrWr/
BusRdX

BusRd/
Flush

PrWr/
BusRdX

BusRdX/
Flush

PrWr/-

PrRd/-
PrRd/BusRd(S)

BusRdX/Flush

BusRdX/
Flush

PrRd/-
BusRd(S)

PrRd/-

spcl.inf.ethz.ch

@spcl_eth

▪ Look at performance counters!

▪ PAPI http://icl.utk.edu/papi/

▪ perf stat

perf stat –B –e cache-references,cache-misses,cycles

Use perf list to get the list of events you can ask for!

18

How to monitor cache misses?

http://icl.utk.edu/papi/

spcl.inf.ethz.ch

@spcl_eth

19

Block 0 Block 1

Set 0

Set 1

Set 2

Set 3

Address Tag Set Offset Miss?

0x050 0 2 16 Y

0x028

0x158

0x0E0

0x040

0x080

spcl.inf.ethz.ch

@spcl_eth

20

