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Typical Memory Hierarchy
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▪ Locality: Programs tend to use data and instructions with addresses near or equal to those they have 
used recently, cf. “Denning: “The locality principle”, CACM’05

▪ Temporal locality:  

Recently referenced items are likely 
to be referenced again in the near future

▪ Spatial locality:  

Items with nearby addresses tend 
to be referenced close together in time
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Why Caches Work: Locality

memory

memory
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▪ Definition: Computer memory with short access time used for the storage of frequently or recently used 
instructions or data

▪ Naturally supports temporal locality

▪ Spatial locality is supported by transferring data in blocks

▪ E.g., Intel’s Core family: one block = 64 B = 8 doubles
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▪ Direct mapped cache:

▪ Cache with E = 1

▪ Means every block from memory has a unique location in cache

▪ Fully associative cache

▪ Cache with S = 1 (i.e., maximal E)

▪ Means every block from memory can be mapped to any location in cache

▪ In practice to expensive to build

▪ One can view the register file as a fully associative cache

▪ LRU (least recently used) replacement

▪ when selecting which block should be replaced (happens only for E > 1), the least recently used one is chosen
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Terminology
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▪ Compulsory (cold) miss

Occurs on first access to a block

▪ Capacity miss

Occurs when working set is larger than the cache

▪ Conflict miss

Conflict misses occur when the cache is large enough, but multiple data objects all map to the same slot

▪ Not a clean classification but still useful
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Types of Cache Misses (The 3 C’s)
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▪ What to do on a write-hit?

▪ Write-through: write immediately to memory

▪ Write-back: defer write to memory until replacement of line

▪ What to do on a write-miss?

▪ Write-allocate: load into cache, update line in cache

▪ No-write-allocate: writes immediately to memory
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What about writes?
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▪ Different caches may have a copy of the same memory location!

▪ Cache coherence

▪ Manages existence of multiple copies

▪ Cache architectures

▪ Multi level caches

▪ Shared vs. private (partitioned)

▪ Inclusive vs. exclusive

▪ Write back vs. write through

▪ Victim cache to reduce conflict misses

▪ …
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The actual topic: Cache Coherence in Multiprocessors
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▪ Programmer can hardly deal with unpredictable behavior!

▪ Cache controller maintains data integrity

▪ All writes to different locations are visible
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Cache Coherence Protocol

▪ Snooping

▪ Shared bus or (broadcast) network 

▪ Directory-based 

▪ Record information necessary to maintain coherence: 

E.g., owner and state of a line etc.

Fundamental Mechanisms
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▪ Snooping

▪ Shared bus or (broadcast) network 

▪ Cache controller “snoops” all transactions

▪ Monitors and changes the state of the cache’s data

▪ Works at small scale, challenging at large-scale

E.g., Intel Broadwell

▪ Directory-based 

▪ Record information necessary to maintain coherence 

E.g., owner and state of a line etc.

▪ Central/Distributed directory for cache line ownership

▪ Scalable but more complex/expensive

E.g., Intel Xeon Phi KNC/KNL
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Fundamental CC mechanisms

Source: Intel
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▪ Most common hardware implementation of discussed requirements

aka. “Illinois protocol”

Each line has one of the following states (in a cache):

▪ Modified (M)

▪ Local copy has been modified, no copies in other caches

▪ Memory is stale

▪ Exclusive (E)

▪ No copies in other caches

▪ Memory is up to date

▪ Shared (S)

▪ Unmodified copies may exist in other caches 

▪ Memory is up to date

▪ Invalid (I)

▪ Line is not in cache
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MESI Cache Coherence
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▪ Clean line:

▪ Content of cache line and main memory is identical (also: memory is up to date)

▪ Can be evicted without write-back

▪ Dirty line:

▪ Content of cache line and main memory differ (also: memory is stale)

▪ Needs to be written back eventually

Time depends on protocol details

▪ Bus transaction:

▪ A signal on the bus that can be observed by all caches

▪ Usually blocking

▪ Local read/write:

▪ A load/store operation originating at a core connected to the cache
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Terminology
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▪ State is M

▪ No bus transaction

▪ State is E

▪ No bus transaction

▪ State is S

▪ No bus transaction

▪ State is I

▪ Generate bus read request (BusRd)

May force other cache operations (see later)

▪ Other cache(s) signal “sharing” if they hold a copy

▪ If shared was signaled, go to state S

▪ Otherwise, go to state E

▪ After update: return read value
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Transitions in response to local reads
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▪ State is M

▪ No bus transaction

▪ State is E

▪ No bus transaction

▪ Go to state M

▪ State is S

▪ Line already local & clean

▪ There may be other copies

▪ Generate bus read request for upgrade to exclusive (BusRdX*)

▪ Go to state M

▪ State is I

▪ Generate bus read request for exclusive ownership (BusRdX)

▪ Go to state M
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Transitions in response to local writes
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▪ State is M

▪ Write cache line back to main memory

▪ Signal “shared”

▪ Go to state S  (or E)

▪ State is E

▪ Signal “shared”

▪ Go to state S and signal “shared”

▪ State is S

▪ Signal “shared”

▪ State is I

▪ Ignore
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Transitions in response to snooped BusRd 
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▪ State is M

▪ Write cache line back to memory

▪ Discard line and go to I

▪ State is E

▪ Discard line and go to I

▪ State is S

▪ Discard line and go to I

▪ State is I

▪ Ignore

▪ BusRdX* is handled like BusRdX!
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Transitions in response to snooped BusRdX 
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MESI State Diagram (FSM)
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▪ Look at performance counters!

▪ PAPI http://icl.utk.edu/papi/

▪ perf stat

perf stat –B –e cache-references,cache-misses,cycles

Use perf list to get the list of events you can ask for!
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How to monitor cache misses?

http://icl.utk.edu/papi/
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