
spcl.inf.ethz.ch

@spcl_eth

T. HOEFLER, M. PUESCHEL

Lecture 9: Finishing consensus, scalable lock study, and oblivious algorithms

Teaching assistant: Salvatore Di Girolamo Motivational video: https://www.youtube.com/watch?v=qx2dRIQXnbs

https://www.youtube.com/watch?v=qx2dRIQXnbs

spcl.inf.ethz.ch

@spcl_eth

2

The latency of
Piz Dora is

1.77us!

How did you
get to this?

I averaged 106

tests, it must be
right!

u
se

c

sample

Why do you think
so? Can I see the

data?

The simplest networking question: ping pong latency!

Rule 5: Report if the measurement values are deterministic. For
nondeterministic data, report confidence intervals of the

measurement.

 CIs allow us to compute the number of required measurements!

 Can be very simple, e.g., single sentence in evaluation:

“We collected measurements until the 99% confidence interval was within 5% of our reported means.”

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

Thou shalt not trust your average textbook!

3

The confidence
interval is 1.765us to

1.775us

Did you assume
normality?

Yes, I used the central
limit theorem to

normalize by summing
subsets of size 100!

Can we test for
normality?

Ugs, the data is not
normal at all! The real CI
is actually 1.6us to 1.9us!

Rule 6: Do not assume normality of collected data (e.g., based on
the number of samples) without diagnostic checking.

 Most events will slow down performance

 Heavy right-tailed distributions

 The Central Limit Theorem only applies asymptotically

 Some papers/textbook mention “30-40 samples”, don’t trust them!

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

4

Thou shalt not trust your system!
Look what
data I got!

Clearly, the
mean/median are

not sufficient!

Try quantile
regression!

Image credit: nersc.gov

S

D

spcl.inf.ethz.ch

@spcl_eth

Quantile Regression

5

Wow, so Pilatus is better for (worst-case)
latency-critical workloads even though

Dora is expected to be faster

Rule 8: Carefully investigate if measures of central tendency
such as mean or median are useful to report. Some problems,

such as worst-case latency, may require other percentiles.

 Check Oliveira et al. “Why you should care about quantile regression”. SIGARCH Computer
Architecture News, 2013.

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

 Final project presentation: last Monday 12/17 during lecture

 Report will be due in January!

Starting to write early is very helpful --- write – rewrite – rewrite (no joke!)

 Coordinate your talk! You have 10 minutes (8 talk + 2 Q&A)

What happened since the intermediate report?

Focus on the key aspects (time is tight)!

Try to wrap up – only minor things left for final report.

Engage the audience 

 Send slides by Sunday night (11:59pm Zurich time) to Salvatore!

We will use a single (windows) laptop to avoid delays when switching

Expect only Windows (powerpoint) or a PDF viewer

The order of talks will again be randomized for fairness

6

Administrivia

spcl.inf.ethz.ch

@spcl_eth

 Lock implementation(s)

 Advanced locks (CLH + MCS)

 Started impossibility of wait-free consensus with atomic registers

 “perhaps one of the most striking impossibility results in Computer Science” (Herlihy, Shavit)

Will continue/finish proof today as starter!

 Theoretical background for performance

 Amdahl’s law

 Models: PRAM, Work/Depth, simple alpha-beta (Hockney) model

 Simple algorithms: reduce, scan, mergesort,

 Brent’s scheduling lemma + Little’s law

 Greedy scheduling + random work stealing

 Practical performance

 Roofline and balance modeling for practical performance optimization

 Vectorization
7

Review of last lecture(s)

spcl.inf.ethz.ch

@spcl_eth

 Quickly recap consensus and first part of valence proof

 impossibility of atomic registers for wait-free consensus

 Complete proof together

 Case study about scalable locking

 Complete correctness section!

 Oblivious algorithms

 How do work-depth graphs relate to practice?

 Strict optimality

 Work/depth tradeoffs and bounds

 Applications of prefix sums

 Parallelize seemingly sequential algorithms

8

Learning goals for today

spcl.inf.ethz.ch

@spcl_eth

9

DPHPC Overview

spcl.inf.ethz.ch

@spcl_eth

 A locked method

 May deadlock (methods may never finish)

 A lock-free method

 Guarantees that infinitely often some method call finishes in a finite number of steps

 A wait-free method

 Guarantees that each method call finishes in a finite number of steps (implies lock-free)

 Synchronization instructions are not equally powerful!

 Indeed, they form an infinite hierarchy; no instruction (primitive) in level x can be used for lock-/wait-free
implementations of primitives in level z>x.

10

Remember: lock-free vs. wait-free

spcl.inf.ethz.ch

@spcl_eth

 Each level of the hierarchy has a “consensus number” assigned.

 Is the maximum number of threads for which primitives in level x can solve the consensus problem

 The consensus problem:

 Has single function: decide(v)

 Each thread calls it at most once, the function returns a value that meets two conditions:

consistency: all threads get the same value

validity: the value is some thread’s input

 Simplification: binary consensus (inputs in {0,1})

11

Concept: Consensus Number

spcl.inf.ethz.ch

@spcl_eth

 Can a particular class solve n-thread consensus wait-free?

 A class C solves n-thread consensus if there exists a consensus protocol using any number of objects of class C
and any number of atomic registers

 The protocol has to be wait-free (bounded number of steps per thread)

 The consensus number of a class C is the largest n for which that class solves n-thread consensus (may be infinite)

 Assume we have a class D whose objects can be constructed from objects out of class C. If class C has consensus
number n, what does class D have?

12

Understanding Consensus

spcl.inf.ethz.ch

@spcl_eth

 Binary consensus with two threads (A, B)!

 Each thread moves until it decides on a value

 May update shared objects

 Protocol state = state of threads + state of shared objects

 Initial state = state before any thread moved

 Final state = state after all threads finished

 States form a tree, wait-free property guarantees a finite tree

Example with two threads and two moves each!

 Define various states

 Bivalent, univalent, critical

 Two helper lemmata

 Lemma 1: the initial state is bivalent

 Lemma 2: every wait-free consensus protocol has a critical state

13

Starting simple …

spcl.inf.ethz.ch

@spcl_eth

 Theorem [Herlihy’91]: Atomic registers have consensus number one

 I.e., they cannot be used to solve even two-thread consensus! Really?

 Proof outline:

 Assume arbitrary consensus protocol, thread A, B

 Run until it reaches critical state where next action determines outcome (show that it must have a critical state first)

 Show all options using atomic registers and show that they cannot be used to determine one outcome for all
possible executions!

1) Any thread reads (other thread runs solo until end)

2) Threads write to different registers (order doesn’t matter)

3) Threads write to same register (solo thread can start after each write)

14

Atomic Registers

spcl.inf.ethz.ch

@spcl_eth

 Theorem [Herlihy’91]: Atomic registers have consensus number one

 Corollary: It is impossible to construct a wait-free implementation of any object with
consensus number of >1 using atomic registers

 “perhaps one of the most striking impossibility results in Computer Science” (Herlihy, Shavit)

 We need hardware atomics or Transactional Memory!

 Proof technique borrowed from:

 Very influential paper, always worth a read!

 Nicely shows proof techniques that are central to parallel and distributed computing!

15

Atomic Registers

spcl.inf.ethz.ch

@spcl_eth

 Simple RMW operations (Test&Set, Fetch&Op, Swap, basically all functions where the op
commutes or overwrites) have consensus number 2!

 Similar proof technique (bivalence argument)

 CAS and TM have consensus number ∞

 Constructive proof:

 Machines providing CAS are asynchronous computation equivalents of the Turing Machine

I.e., any concurrent object can be implemented in a wait-free manner (not necessarily fast!)
16

Other Atomic Operations

const int first = -1
volatile int thread = -1;
int proposed[n];

int decide(v) {
proposed[tid] = v;
if(CAS(thread, first, tid))
return v; // I won!

else
return proposed[thread]; // thread won

}

spcl.inf.ethz.ch

@spcl_eth

 At least a lot … ;-)
 We’ll argue more about performance now!

 You have all the tools for:
 Efficient locks

 Efficient lock-based algorithms

 Reasoning about parallelism!

 What now?
 Now you understand practice and will appreciate theory

Wasn’t that all too messy ?

 Focus on (parallel) performance, techniques, and algorithms

 But let’s start with another case study about locks
 Research (best) paper published at a top-tier conference some years ago

So you get a feeling of the field – and deepen understanding of MCS locks in practice

17

Now you know everything about parallel program correctness 

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

Various
performance

penalties

LOCKS An example
structure

Inuitive
semantics

Case study: Fast Large-scale Locking in Practice

spcl.inf.ethz.ch

@spcl_eth

P1 P2

P3 P4

Calciu et al.: NUMA-aware reader-writer locks, PPoPP’13

Locks: Challenges

spcl.inf.ethz.ch

@spcl_eth

P

P

P

P

P
P

P

P

P P

P

P

We need intra- and inter-
node topology-awareness

We need to cover
arbitrary topologies

Locks: Challenges

spcl.inf.ethz.ch

@spcl_eth

Reader Reader

Reader

Reader

Reader

Reader

Reader
Reader

Writer

Writer

[1] V. Venkataramani et al. Tao: How facebook serves the social graph. SIGMOD’12.

We need to distinguish between
readers and writers

We need flexible performance
for both types of processes

Locks: Challenges

spcl.inf.ethz.ch

@spcl_eth

What will we use in the
design?

spcl.inf.ethz.ch

@spcl_eth

Proc

Pointer to the
queue tail

Can
enter

Next
proc

Proc

Cannot
enter

Next
proc

Proc

Cannot
enter

Next
proc ...

Proc

Cannot
enter

Next
proc

Can
enter

Mellor-Crummey and Scott: Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors, ACM TOCS’91

Ingredient 1 - MCS Locks

spcl.inf.ethz.ch

@spcl_eth

...

W

R

R

R

R

Ingredient 2 - Reader-Writer Locks

spcl.inf.ethz.ch

@spcl_eth

How to manage the design
complexity?

How to ensure tunable
performance?

What mechanism to use for
efficient implementation?

spcl.inf.ethz.ch

@spcl_eth

REMOTE MEMORY ACCESS (RMA) PROGRAMMING

Memory Memory

Cray

BlueWaters

put

Process p Process q

A

B
get

B

A

B

flush

A

B

TH, J. Dinan, R. Thakur, B. Barrett, P. Balaji, W. Gropp, K. Underwood: Remote Memory Access Programming in MPI-3, ACM TOPC’15

spcl.inf.ethz.ch

@spcl_eth

REMOTE MEMORY ACCESS PROGRAMMING

 Implemented in hardware in NICs in the majority of HPC
networks (RDMA support).

spcl.inf.ethz.ch

@spcl_eth

Memory Memoryput

Process p Process q

3
6

6

get

3
3

Fetch-and-Add (FAA)6
39

replace
3

3

6
6

Compare-and-Swap (CAS)
3

T

3

8

8

3

RMA-RW - Required Operations

spcl.inf.ethz.ch

@spcl_eth

 Windows expose memory

 Created explicitly

 Remote accesses

 Put, get

 Atomics

Accumulate (also atomic Put)

Get_accumulate (also atomic Get)

Fetch and op (faster single-word get_accumulate)

Compare and swap

 Synchronization

 Two modes: passive and active target

We use passive target today, similar to shared memory!

Synchronization: flush, flush_local

 Memory model

 Unified (coherent) and separate (not coherent) view - it’s complicated but versatile

30

MPI RMA primer ([much] more in the recitation sessions)

Process 1 Process 2 Process 3

Private

Memory

Private

Memory

Private

Memory

Process 0

Private

Memory

Remotely

Accessible

Memory

Remotely

Accessible

Memory

Remotely

Accessible

Memory

Remotely

Accessible

Memory

Global
Address
Space

Private

Memory

Private

Memory

Private

Memory

Private

Memory

spcl.inf.ethz.ch

@spcl_eth

How to manage the design
complexity?

How to ensure tunable
performance?

What mechanism to use for
efficient implementation?

spcl.inf.ethz.ch

@spcl_eth

Each element has its own
distributed MCS queue

(DQ) of writers

MCS queues
form a

distributed
tree (DT)

Readers and writers
synchronize with a

distributed counter (DC)

W3 W5 W8

How to manage the design complexity?

Modular
design

W8W7W3 W5 W6W2W1 W4

W1

2 2 3 2

...

W8W3

R9R2

R1

R4
R3 R7 R9R2

R1 R6

R5
R8

P. Schmid, M. Besta, TH: High-Performance Distributed RMA Locks, ACM HPDC’16, best paper

spcl.inf.ethz.ch

@spcl_eth

DT: a
parameter for

the throughput
of readers vs

writers

Each DQ: fairness vs
throughput of writers

DC: a parameter for the
latency of readers vs

writers

W3 W5 W8

How to ensure tunable performance?

W8W7W3 W5 W6W2W1 W4

W1

R4
R3 R7 R9R2

R1 R6

R5
R8

2 2 2 2

A tradeoff
parameter
for every
structure

...
R9R2

R1

W8W3

P. Schmid, M. Besta, TH: High-Performance Distributed RMA Locks, ACM HPDC’16, best paper

spcl.inf.ethz.ch

@spcl_eth

Distributed MCS Queues (DQs) - Throughput vs Fairness

W8

W3 W5

W3

W8

W8W7W3 W5 W6W2W1 W4

W1

Each DQ: The
maximum number of
lock passings within a
DQ at level i, before it
is passed to another

DQ at i. 𝑇𝐿,𝑖

𝑇𝐿,1 𝑇𝐿,1 𝑇𝐿,1 𝑇𝐿,1

𝑇𝐿,2 𝑇𝐿,2

Larger : more
throughput at level i.

Smaller : more
fairness at level i.

𝑇𝐿,𝑖

𝑇𝐿,𝑖

𝑇𝐿,3

P. Schmid, M. Besta, TH: High-Performance Distributed RMA Locks, ACM HPDC’16, best paper

spcl.inf.ethz.ch

@spcl_eth

DT: The maximum
number of consecutive

lock passings within
readers ().𝑇𝑅

𝑇𝐿,2

W8

W3 W5

W3

W8

W8W7W3 W5 W6W2W1 W4

W1

𝑇𝐿,1 𝑇𝐿,1 𝑇𝐿,1 𝑇𝐿,1

𝑇𝐿,2

...
R9R2

R1

𝑇𝐿,3

P. Schmid, M. Besta, TH: High-Performance Distributed RMA Locks, ACM HPDC’16, best paper

Distributed Tree of Queues (DT) - Throughput of readers vs writers

spcl.inf.ethz.ch

@spcl_eth

DC: every kth compute node
hosts a partial counter, all of

which constitute the DC.

𝑘 = 𝑇𝐷𝐶

R4
R3 R7 R9R2

R1

R6

R5
R8

0|9|7 0|8|5 0|5|30|3|1

b|x|yA writer holds
the lock

Readers that
arrived at the CS

Readers that left
the CS

𝑇𝐷𝐶 = 1

𝑇𝐷𝐶 = 2

0|12|8 0|13|8
P. Schmid, M. Besta, TH: High-Performance Distributed RMA Locks, ACM HPDC’16, best paper

Distributed Counter (DC) - Latency of readers vs writers

spcl.inf.ethz.ch

@spcl_eth

Design space

𝑇𝐷𝐶

𝑇𝑅

Higher throughput of writers vs readers

𝑇𝐿,𝑖

Lo
ca

lit
y

vs
 f

ai
rn

e
ss

(f
o

r
w

ri
te

rs
)

Design ADesign B

P. Schmid, M. Besta, TH: High-Performance Distributed RMA Locks, ACM HPDC’16, best paper

spcl.inf.ethz.ch

@spcl_eth

Lock Acquire by Readers A lightweight acquire protocol for
readers: only one atomic fetch-

and-add (FAA) operation

R4

R3R2

R10|7|7 0|1|1

b|x|yA writer holds
the lock

Readers that
arrived at the CS

Readers that left
the CS

FAA

FAA

FAA FAA

0|8|70|9|7 0|2|10|3|1

P. Schmid, M. Besta, TH: High-Performance Distributed RMA Locks, ACM HPDC’16, best paper

spcl.inf.ethz.ch

@spcl_eth

W8

W3 W5

W3

W8

W8W7W3 W5 W6W2W1 W4

W1

...
R9R2

R1

W9

Acquire MCS

W9

Acquire MCS

W9

Acquire the main
MCS lock

0|9|9 0|3|3 0|8|8 0|5|5

Acquire the main lock

1|9|9 1|3|3 1|8|8 1|5|5

P. Schmid, M. Besta, TH: High-Performance Distributed RMA Locks, ACM HPDC’16, best paper

Lock Acquire by Writers

spcl.inf.ethz.ch

@spcl_eth

 CSCS Piz Daint (Cray XC30)

 5272 compute nodes

 8 cores per node

 169TB memory

 Microbenchmarks: acquire/release: latency,
throughput

 Distributed hashtable

EVALUATION

spcl.inf.ethz.ch

@spcl_eth

Throughput, 2% writers

Single-operation benchmark

0|9|7 0|3|1

0|12|8

P. Schmid, M. Besta, TH: High-Performance Distributed RMA Locks, ACM HPDC’16, best paper

Evaluation - Distributed Counter Analysis

spcl.inf.ethz.ch

@spcl_eth

Throughput, 0.2% writers,

Empty-critical-section benchmark

P. Schmid, M. Besta, TH: High-Performance Distributed RMA Locks, ACM HPDC’16, best paper

Evaluation - Reader Threshold Analysis

spcl.inf.ethz.ch

@spcl_eth

[1] R. Gerstenberger et al. Enabling Highly-scalable Remote Memory Access Programming with MPI-3 One Sided. ACM/IEEE Supercomputing 2013.

Evaluation - Comparison to the State-of-the-Art

spcl.inf.ethz.ch

@spcl_eth

Throughput, single-operation benchmark

[1] R. Gerstenberger et al. Enabling Highly-scalable Remote Memory Access Programming with MPI-3 One Sided. ACM/IEEE Supercomputing 2013.

Evaluation - Comparison to the State-of-the-Art

spcl.inf.ethz.ch

@spcl_eth

20% writers 10% writers

[1] R. Gerstenberger et al. Enabling Highly-scalable Remote Memory Access Programming with MPI-3 One Sided. ACM/IEEE Supercomputing 2013.

Evaluation - Distributed Hashtable

spcl.inf.ethz.ch

@spcl_eth

2% of writers 0% of writers

[1] R. Gerstenberger et al. Enabling Highly-scalable Remote Memory Access Programming with MPI-3 One Sided. ACM/IEEE Supercomputing 2013.

Evaluation - Distributed Hashtable

spcl.inf.ethz.ch

@spcl_eth

 MPI-RMA for distributed databases?

47

Another application area - Databases

Sort-JoinHash-Join

C. Barthels, et al., TH: Distributed Join Algorithms on Thousands of Cores presented in Munich, Germany, VLDB Endowment, Aug. 2017

spcl.inf.ethz.ch

@spcl_eth

 MPI-RMA for distributed databases on Piz Daint

48

Another application area - Databases

C. Barthels, et al., TH: Distributed Join Algorithms on Thousands of Cores presented in Munich, Germany, VLDB Endowment, Aug. 2017

Network dominating

Compute dominating

spcl.inf.ethz.ch

@spcl_eth

 MPI-RMA for distributed databases on Piz Daint

49

Another application area - Databases

C. Barthels, et al., TH: Distributed Join Algorithms on Thousands of Cores presented in Munich, Germany, VLDB Endowment, Aug. 2017

spcl.inf.ethz.ch

@spcl_eth

 Oblivious parallel algorithms

 Fixed structure work-depth graphs

 Nonoblivious parallel algorithms

 Data-dependent structure work-depth graphs

 Data movement and I/O complexity

 Communication complexity

50

Now on to parallel algorithms!

spcl.inf.ethz.ch

@spcl_eth

“An algorithm is execution-oblivious if, for each problem size, the sequence of instructions executed,
the set of memory locations read and the set of memory locations written by each executed instruction
are determined by the input size and are independent of the values of the other inputs”

51

Work/Depth in Practice – Oblivious Algorithms

int reduce(int n, arr[n]) {

for(int i=0; i<n; ++i)

sum += arr[i];

}

int findmin(int n, a[n]) {

for(int i=1; i<n; i++)

if(a[i]<a[0]) a[0] = a[i];

}

int finditem(list_t list)

item = list.head;

while(item.value!=0 && item.next!=NULL)

item=item.next;

}

Execution oblivious or not?

 Quicksort?

 Prefix sum on an array?

 Simple dense matrix multiplication?

 Dense matrix vector product?

 Sparse matrix vector product?

 Queue-based breadth-first search?

spcl.inf.ethz.ch

@spcl_eth

52

Obliviousness as property of an execution

“An algorithm is execution-oblivious if, for each problem size, the sequence of instructions executed,
the set of memory locations read and the set of memory locations written by each executed instruction
are determined by the input size and are independent of the values of the other inputs”

int reduce(int n, arr[n]) {

for(int i=0; i<n; ++i)

sum += arr[i];

}

int findmin(int n, a[n]) {

for(int i=1; i<n; i++)

if(a[i]<a[0]) a[0] = a[i];

}

int finditem(list_t list)

item = list.head;

while(item.value!=0 && item.next!=NULL)

item=item.next;

}

 Class question: Can an algorithm decide whether a program is oblivious or not?

 Answer: no, proof similar to decision problem whether a program always outputs zero or not

spcl.inf.ethz.ch

@spcl_eth

53

Structural obliviousness as stronger property

“A program is structurally-oblivious if any value used in a conditional branch, and any value used to
compute indices or pointers is structurally-dependent only in the input variable(s) that contains the
problem size but not on any other input”

int reduce(int n, arr[n]) {

for(int i=0; i<n; ++i)

sum += arr[i];

}

int oblivious(int n, a[n], b[n]) {

for(int i=0; i<n; ++i) {
x = a[i] + 1;

if (x > a[i]) b[i] = 1;

else b[i] = 2;
} }

int finditem(list_t list)

item = list.head;

while(item.value!=0 && item.next!=NULL)

item=item.next;

}

 Clear that structurally oblivious programs are also execution oblivious

 Can be programmatically (statically decided)

 Sufficient for practical use

 The middle example is not structurally oblivious but execution oblivious

 First branch is always taken (assuming no overflow) but static dependency analysis is conservative

Structurally oblivious or not?

spcl.inf.ethz.ch

@spcl_eth

 We can easily reason about oblivious algorithms

 Execution DAG can be constructed “statically”

 We have done this in the last weeks intuitively but you never asked how to do it for BFS for example 

 Simple example (that you know): parallel summation

 Question: what is W(n) and D(n) of sequential summation?

W(n)=D(n)=n-1

 Question: is this optimal? How would you define optimality?

Separate for W and D! Typically try to achieve both!

 Question: what is W(n) and D(n) of the optimal parallel summation?

W(n)=n-1 D(n)=⌈log2 𝑛⌉

Are both W and D optimal?

Yes!

54

Why obliviousness?

spcl.inf.ethz.ch

@spcl_eth

 Next example you know: scan!

 For a vector [𝑥1, 𝑥2, … , 𝑥𝑛] compute vector of n results: [𝑥1; 𝑥1 + 𝑥2; 𝑥1 + 𝑥2 + 𝑥3; … ; 𝑥1 + 𝑥2 + 𝑥𝑖 …+ 𝑥𝑛−1 + 𝑥𝑛]

 Simple serial schedule

55

Starting simple: optimality?

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8

∑
∑

∑
∑

∑
∑

∑

𝑥1 𝑥1 + 𝑥2
𝑥1 +⋯+ 𝑥3

𝑥1 +⋯+ 𝑥4
𝑥1 +⋯+ 𝑥5

𝑥1 +⋯+ 𝑥6
𝑥1 +⋯+ 𝑥7

𝑥1 +⋯+ 𝑥8

Class question: work and depth?

W(n) = n-1, D(n) = n-1

Class question: is this optimal?

spcl.inf.ethz.ch

@spcl_eth

 Recursive to get to 𝑾 = 𝑶 𝒏 and 𝑫 = 𝑶(𝒍𝒐𝒈 𝒏)! Assume 𝒏 = 𝟐𝒌 for simplicity!

 Sounds “optimal”, doesn’t it? Well, let’s look at the constants!

 Algorithm

56

What did we learn earlier?

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8

෍

1

4

෍

3

4

෍

5

6

෍

7

8

෍

1

2

෍

5

8
෍

1

8

෍

1

3

෍

1

5

෍

1

6

෍

1

7

Class question: work?
(hint: after the way up, all powers of two are

done, all others require another operation each)

𝑊 𝑛 = 2𝑛 − log2 𝑛 − 1

Class question: what happened to optimality?

Class question: depth?
(needs to go up and down the tree)

D 𝑛 = 2 log2 𝑛 − 1

spcl.inf.ethz.ch

@spcl_eth

 Dissemination/recursive doubling – another well-known algorithmic technique – similar to trees

57

Oh no, not good, another algorithm to the rescue!

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8

෍

1

2

෍

2

3

෍

3

4

෍

4

5

෍

5

6

෍

6

7

෍

7

8

෍

1

3

෍

1

4

෍

2

5

෍

3

6

෍

4

7

෍

5

8

෍

1

5

෍

1

6

෍

1

7

෍

1

8

Class question: work?
(hint: number of count number of omitted ops)

𝑊 𝑛 = 𝑛 log2 𝑛 − 𝑛 + 1

Class question: is this now optimal?

Class question: depth?

D 𝑛 = log2 𝑛

spcl.inf.ethz.ch

@spcl_eth

 Obvious question: is there a depth- and work-optimal algorithm?

 This took years to settle! The answer is surprisingly: no

 We know, for parallel prefix: 𝑊 +𝐷 ≥ 2𝑛 − 2

58

Oh no, three non-optimal algorithms so far!

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8

𝑥1 +⋯+ 𝑥8

Output tree:
• leaves are all inputs, rooted at 𝑥𝑛
• binary due to binary operation
• 𝑊 = 𝑛 − 1, 𝐷 = 𝐷𝑜

Input tree:
• rooted at 𝑥1, leaves are all outputs
• not binary (simultaneous read)
• 𝑊 = 𝑛 − 1

trees may only overlap
at the “ridge”

Ridge can be at most 𝐷𝑜long!
Now add trees and subtract shared vertices:
𝑛 − 1 + 𝑛 − 1 − 𝐷𝑜 = 2𝑛 − 2 − 𝐷𝑜 ≤ 𝑊

q.e.d.

spcl.inf.ethz.ch

@spcl_eth

59

Work-Depth Tradeoffs and deficiency

“The deficiency of a prefix circuit 𝑐 is defined as def 𝑐 = 𝑊𝑐 + 𝐷𝑐 − (2𝑛 − 2)”

1960

W-D tradeoff: 1986

From Zhu et al.: “Construction of Zero-Deficiency Parallel Prefix Circuits”

Latest 2006 result for zero-deficiency
construction for 𝑛 > 𝐹 𝐷 + 3 − 1

(𝑓 𝑛 is inverse)

spcl.inf.ethz.ch

@spcl_eth

 Work-optimal?

 Only sequential! Why?

 𝑊 = 𝑛 − 1, thus 𝐷 = 2𝑛 − 2 −𝑊 = 𝑛 − 1 q.e.d. 

 Depth-optimal?

 Ladner and Fischer propose a construction for work-efficient circuits with minimal depth

𝐷 = ⌈log2 𝑛⌉, 𝑊 ≤ 4𝑛

Simple set of recursive construction rules (boring for class, check 1980’s paper if needed)

Has an unbounded fan-out! May thus not be practical 

 Depth-optimal with bounded fan-out?

 Some constructions exist, interesting open problem

 Nice research topic to define optimal circuits

60

Work- and depth-optimal constructions

spcl.inf.ethz.ch

@spcl_eth

 It’s the simplest problem to demonstrate W-D tradeoffs

 And it’s one of the most important parallel primitives

 Prefix summation as function composition is extremely powerful!

 Many seemingly sequential problems can be parallelized!

 Simple first example: binary adder – 𝑠 = 𝑎 + 𝑏 (n-bit numbers)

 Starting with single-bit (full) adder for bit i

61

But why do we care about this prefix sum so much?

+

𝑎𝑖 𝑏𝑖

𝑐𝑖𝑛, 𝑖 𝑐𝑜𝑢𝑡, 𝑖

𝑠𝑖

𝑠𝑖 = 𝑎𝑖 xor 𝑏𝑖 xor 𝑐𝑖𝑛,𝑖

𝑐𝑜𝑢𝑡,𝑖 = 𝑎𝑖 and 𝑏𝑖 or 𝑐𝑖𝑛,𝑖 and (𝑎𝑖 xor 𝑏𝑖)

Example 4-bit ripple carry adder

source: electronics-tutorials.ws

Show example 4-bit addition!

Question: what is work and depth?

Question: what are the functions for 𝑠𝑖and 𝑐𝑜𝑢𝑡,𝑖?

spcl.inf.ethz.ch

@spcl_eth

 We only want 𝒔!

 Requires 𝑐𝑖𝑛,1, 𝑐𝑖𝑛,2, … , 𝑐𝑖𝑛,𝑛 though 

 Carry bits can be computed with a scan!

 Model carry bit as state starting with 0

Encode state as 1-hot vector: 𝑞0 =
1
0

, 𝑞1 =
0
1

 Each full adder updates the carry bit state according to 𝑎𝑖 and 𝑏𝑖
State update is now represented by matrix operator, depending on 𝑎𝑖 and 𝑏𝑖 (𝑀𝑎𝑖𝑏𝑖):

𝑀00 =
1 1
0 0

, 𝑀10 = 𝑀01 =
0 1
1 0

, 𝑀11 =
0 0
1 1

 Operator composition is defined on algebraic ring ({0, 1, or, and}) – i.e., replace “+” with “and” and “*” with “or”

Prefix sum on the states computes now all carry bits in parallel!

 Example: a=011, b=101 𝑴𝟏𝟏, 𝑴𝟏𝟎, 𝑴𝟎𝟏

 Scan computes: 𝑀11=
0 0
1 1

; 𝑀11𝑀10 =
0 0
1 1

; 𝑀11𝑀10𝑀01 =
0 0
1 1

in parallel

 All carry states and 𝑠𝑖 can now be computed in parallel by multiplying scan result with 𝑞0
62

Seems very sequential, can this be parallelized?

source: electronics-tutorials.ws

𝑠𝑖 = 𝑎𝑖 xor 𝑏𝑖 xor 𝑐𝑖𝑛,𝑖

𝑐𝑜𝑢𝑡,𝑖 = 𝑎𝑖 and 𝑏𝑖 or 𝑐𝑖𝑛,𝑖 and (𝑎𝑖 xor 𝑏𝑖)

spcl.inf.ethz.ch

@spcl_eth

 Any time a sequential chain can be modeled as function composition!

 Let 𝑓1, … , 𝑓𝑛 be an ordered set of functions and 𝑓0 𝑥 = 𝑥

 Define ordered function compositions: 𝑓1(𝑥); 𝑓2(𝑓1 𝑥); … ; 𝑓𝑛(…𝑓1 𝑥)

 If we can write function composition 𝑔 𝑥 = 𝑓𝑖(𝑓𝑖−1 𝑥 as 𝑔 = 𝑓𝑖 ∘ 𝑓𝑖−1 then we can compute ∘ with a prefix sum!

We saw an example with the adder (𝑀𝑎𝑏 were our functions)

 Example: linear recurrence 𝒇𝒊 𝒙 = 𝒂𝒊𝒇𝒊−𝟏 𝒙 + 𝒃𝒊 with 𝒇𝟎 𝒙 =x

 Write as matrix form 𝑓𝑖
𝑥
1

=
𝑎𝑖 𝑏𝑖
0 1

𝑓𝑖−1
𝑥
1

 Function composition is now simple matrix multiplication!

For example: 𝑓2
𝑥
1

=
𝑎2 𝑏2
0 1

𝑎1 𝑏1
0 1

𝑓0
𝑥
1

=
𝑎1𝑎2 𝑎2𝑏1 + 𝑏2
0 1

𝑥
1

 Most powerful! Homework:

 Parallelize tridiagonal solve

 Parallelize string parsing

63

Prefix sums as magic bullet for other seemingly sequential algorithms

spcl.inf.ethz.ch

@spcl_eth

 Radix sort works bit-by-bit

 Sorts k-bit numbers in k iterations

 In each iteration 𝑖 stably sort all values by the 𝑖-th bit

 Example, k=1:

Iteration 0: 101 111 010 011 110 001

Iteration 1: 010 110 101 111 011 001

Iteration 2: 101 001 010 110 111 011

Iteration 3: 001 010 011 101 110 111

 Now on n processors

 Each processor owns single k-bit number, each iteration

low = prefix_scan(!bit, sum)

high = n-1-backwards_prefix_scan(bit, sum)

new_idx = (bit == 0) : low ? high

b[new_idx] = a[i]

swap(a,b)
64

Another use for prefix sums: Parallel radix sort

Show one example iteration!

Question: work and depth?

spcl.inf.ethz.ch

@spcl_eth

 Seems paradoxical but isn’t (may just not be most efficient)

 Use adjacency matrix representation of graph – “compute with all zeros”

65

Oblivious graph algorithms

1

3

4
5

2

6

0 1 1 0 0 0

0 0 0 0 1 1

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

i

j

1

3

4
5

2

6

0 2 3 0 0 0

0 0 0 0 3 1

0 0 0 0 0 2

0 0 4 0 0 0

0 0 0 7 0 0

0 0 0 0 8 0

i

j

Unweighted graph – binary matrix Weighted graph – general matrix

spcl.inf.ethz.ch

@spcl_eth

 A semiring is an algebraic structure that

 Has two binary operations called “addition” and “multiplication”

 Addition must be associative ((a+b)+c = a+(b+c)) and commutative ((a+b=b+a)) and have an identity element

 Multiplication must be associative and have an identity element

 Multiplication distributes over addition (a*(b+c) = a*b+a*c) and multiplication by additive identity annihilates

 Semirings are denoted by tuples (S, +, *, 0, 1)

“Standard” ring of rational numbers: (ℝ, +, *, 0, 1)

Boolean semiring: ({0,1}, ∨, ∧, 0, 1)

Tropical semiring: (ℝ ∪ {∞}, min, +, ∞, 0) (also called min-plus semiring)

66

Algebraic semirings

spcl.inf.ethz.ch

@spcl_eth

 Construct distance matrix from adjacency matrix by replacing all off-diagonal
zeros with ∞

 Initialize distance vector 𝒅𝟎of size n to ∞ everywhere but zero at start vertex

 E.g., 𝐝𝟎 = ∞,𝟎,∞,∞,∞,∞ 𝑻

Show evolution when multiplied!

 SSSP can be performed with n+1 matrix-vector multiplications!

 Question: total work and depth?

𝑊 = 𝑂(𝑛3), 𝐷 = 𝑂(𝑛 log 𝑛)

 Question: Is this good? Optimal?

Dijkstra = 𝑂(𝐸 + 𝑉 log 𝑉)

 Homework:

 Define a similar APSP algorithm with

𝑊 = 𝑂(𝑛3 log 𝑛), 𝐷 = 𝑂(log2 𝑛)

67

Oblivious shortest path search

0 2 3 ∞ ∞ ∞

∞ 0 ∞ ∞ 3 1

∞ ∞ 0 ∞ ∞ 2

∞ ∞ 4 0 ∞ ∞

∞ ∞ ∞ 7 0 ∞

∞ ∞ ∞ ∞ 8 0

1

3

4
5

2

6

spcl.inf.ethz.ch

@spcl_eth

 Question: How could we compute the transitive closure of a graph?

 Multiply the matrix (𝐴 + 𝐼) 𝑛 times with itself in the Boolean semiring!

 Why?

Demonstrate that 𝐴 + 𝐼 2 has 1s for each path of at most length 1

By induction show that 𝐴 + 𝐼 𝑘 has 1s for each path of at most length k

 What is work and depth of transitive closure?

 Repeated squaring! 𝑊 = 𝑂(𝑛3log 𝑛) 𝐷 = 𝑂(log2𝑛)

 How to get to connected components from a transitive closure matrix?

 Each component needs unique label

 Create label matrix 𝐿𝑖𝑗 = 𝑗 iff 𝐴𝐼
𝑛
𝑖𝑗 = 1 and 𝐿𝑖𝑗 = ∞ otherwise

 For each row (vertex) perform min-reduction to determine its component label!

 Overall work and depth?

𝑊 = 𝑂(𝑛3log 𝑛), 𝐷 = 𝑂(log2𝑛)

68

Oblivious connected components
0 1 1 0 0 0

0 0 0 0 1 1

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

i

j

1 1 1 0 0 0

0 1 0 0 1 1

0 0 1 0 0 1

0 0 1 1 0 0

0 0 0 1 1 0

0 0 0 0 1 1

+I

spcl.inf.ethz.ch

@spcl_eth

 Not clear whether they are most efficient

 Efforts such as GraphBLAS exploit existing BLAS implementations and techniques

 Generalizations to other algorithms possible

 Can everything be modeled as tensor computations on the right ring?

 E. Solomonik, TH: “Sparse Tensor Algebra as a Parallel Programming Model”

 Much of machine learning/deep learning is oblivious

 Many algorithms get non-oblivious though

 All sparse algorithms are data-dependent!

 E.g., use sparse graphs for graph algorithms on semirings (if 𝐸 < 𝑉 2/log|𝑉|)

May recover some of the lost efficiency by computing zeros!

 Now moving to non-oblivious 

69

Many if not all graph problems have oblivious or tensor variants!

