
© Torsten Hoefler and Markus Püschel
Computer Science

Design of Parallel and High-Performance
Computing
Fall 2018
Lecture: Scheduling

Instructor: Torsten Hoefler & Markus Püschel

TA: Salvatore Di Girolamo

Overview

 DAGs again: An example

 Scheduling

 Greedy

 Work stealing

 Cilk

 Background material:

 Blumofe, Leiserson:
Scheduling Multithreaded Computations by Work Stealing
Journal ACM, 46(5), 1999

http://dl.acm.org/citation.cfm?id=324234


© Torsten Hoefler and Markus Püschel
Computer Science

Example: Fibonacci Numbers

int fib (int n) { 
if (n<2) return (n); 
else { 
int x,y; 
x = spawn fib(n-1); // can execute in

// parallel with parent 
y = fib(n-2); 
sync; 
return (x+y); 

} 
} 

Stupid way of computing (why?)
But good example

Example: Fibonacci Numbers

int fib (int n) { 
if (n<2) return (n); 
else { 
int x,y; 
x = spawn fib(n-1);
y = fib(n-2); 
sync; 
return (x+y); 

} 
} 

4

3

2

2

1 1 0

1 0

The DAG unfolds dynamically:

Node: Sequence of instructions without call, spawn, sync, return
Edge: Dependency

5 threads

spawn call



© Torsten Hoefler and Markus Püschel
Computer Science

Example: Fibonacci Numbers

4

3

2

2

1 1 0

1 0

Graphs obtained this way are called nested parallel (or fully strict):
• Every thread has one incoming edge (the spawn edge)
• Every join edge from a thread is connected to the parent thread

spawn

join
thread

Assuming every node has unit time:
W = 17, D = 7

How to Schedule on p Processors?

thread



© Torsten Hoefler and Markus Püschel
Computer Science

Greedy Scheduler

 Idea: Do as much as possible in every step

Greedy Scheduler

 Idea: Do as much as possible in every step

 Definition: A node is ready if all 
predecessors have been executed

executed



© Torsten Hoefler and Markus Püschel
Computer Science

Greedy Scheduler

 Idea: Do as much as possible in every step

 Definition: A node is ready if all 
predecessors have been executed

 Complete step: 

 ≥ p nodes are ready

 run any p

executed

ready

p = 3

Greedy Scheduler

 Idea: Do as much as possible in every step

 Definition: A node is ready if all 
predecessors have been executed

 Complete step: 

 ≥ p nodes are ready

 run any p

 Incomplete step:

 < p nodes ready

 run all

 How good is this theoretically?
(blackboard)

executed

ready

p = 3



© Torsten Hoefler and Markus Püschel
Computer Science

Greedy Scheduler: Sketch
Maintain thread pool of live threads, each is ready or not

 Initial: Root thread in thread pool, all processors idle

 At the beginning of each step each processor is idle or has a thread T to 
work on

 If idle

 Get ready thread from pool

 If has thread T

 Case 0: T has another instruction to execute
execute it

 Case 1: thread T spawns thread S
return T to pool, continue with S

 Case 2: T stalls
return T to pool, then idle

 Case 3: T dies
if parent of T has no living children, continue with the parent, otherwise idle

Greedy Scheduler: Problems

 Centralized

 Overhead

 Work stealing scheduler:

 thread pool distributed

 all processors do only useful work and operate locally as long as there is 
work to do

 Good asymptotic behavior, good practical behavior

 Implemented in Cilk runtime system



© Torsten Hoefler and Markus Püschel
Computer Science

Work Stealing Scheduler

 Each processor maintains a “ready deque:” deque of threads ready 
for execution; bottom is manipulated as a stack

spawn

call

call

spawn

spawn

call

processor

ready deque

threads can be added
or removed

(stack discipline)

threads can be removed

thread being executed

Work Stealing Scheduler

 Each processor maintains a “ready deque:” deque of threads ready 
for execution; bottom is manipulated as a stack

spawn

call

call

spawn

call

spawn

call

spawn

call

spawn

call

call

spawn

call

call

call



© Torsten Hoefler and Markus Püschel
Computer Science

Work Stealing Scheduler

 Each processor maintains a “ready deque:” deque of threads ready 
for execution; bottom is manipulated as a stack

spawn

call

call

spawn

call

spawn

call

spawn

call

spawn

call

call

spawn

callcall

spawn

spawn

Work Stealing Scheduler

 Each processor maintains a “ready deque:” deque of threads ready 
for execution; bottom is manipulated as a stack

spawn

call

call

spawn

call

spawn

call

spawn

call

spawn

call

call

spawn

callcall
spawn

call spawn spawn
spawnspawn

call



© Torsten Hoefler and Markus Püschel
Computer Science

Work Stealing Scheduler

 Each processor maintains a “ready deque:” deque of threads ready 
for execution; bottom is manipulated as a stack

spawn

call

call

spawn

call

spawn

call

spawn

call

spawn

call

call

spawn

callcall
spawn

spawnspawn
call

return

Work Stealing Scheduler

 Each processor maintains a “ready deque:” deque of threads ready 
for execution; bottom is manipulated as a stack

spawn

call

call

spawn

spawn

call

spawn

call

spawn

call

call

spawn

callcall
spawn

spawnspawn
call



© Torsten Hoefler and Markus Püschel
Computer Science

Work Stealing Scheduler

 Each processor maintains a “ready deque:” deque of threads ready 
for execution; bottom is manipulated as a stack

 Steal from the top of a randomly selected processor

spawn

call

call

spawn

call

spawn

call

spawn

call

call

spawn

callcall
spawn

spawnspawn
call

steal

Work Stealing Scheduler

 Each processor maintains a “ready deque:” deque of threads ready 
for execution; bottom is manipulated as a stack

 Steal from the top of a randomly selected processor

spawn

call

call

spawn

call

spawn

call

spawn

call

call

spawn

callcall
spawn

spawnspawn
call

steal



© Torsten Hoefler and Markus Püschel
Computer Science

Work Stealing Scheduler

 Each processor maintains a “ready deque:” deque of threads ready 
for execution; bottom is manipulated as a stack

spawn

call

call
spawn

call

spawn

call

spawn

call

call

spawn

callcall
spawn

spawnspawn
call

Work Stealing Scheduler: Sketch

Each processor maintains a ready deque, bottom treated as stack

 Initial: Root thread in deque of a random processor

 Deque not empty:

 Processor takes thread T from bottom and starts working

 T spawns S: Put T on stack, continue with S

 T stalls: Take next thread from stack

 T dies: Take next thread from stack

 If T enables a stalled thread S, S is put on the stack of T’s processor

 Deque empty: 

 Steal thread from the top of a random (uniformly) processor’s deque

 Theoretical performance? (blackboard)



© Torsten Hoefler and Markus Püschel
Computer Science

Cilk

 Extension of C/C++

 Compiler and runtime system

 Developed at MIT, now distributed by Intel

 Cilk home at Intel

http://software.intel.com/en-us/articles/intel-cilk-plus/

