Design of Parallel and High-Performance Computing

Fall 2018

Lecture: Roofline model

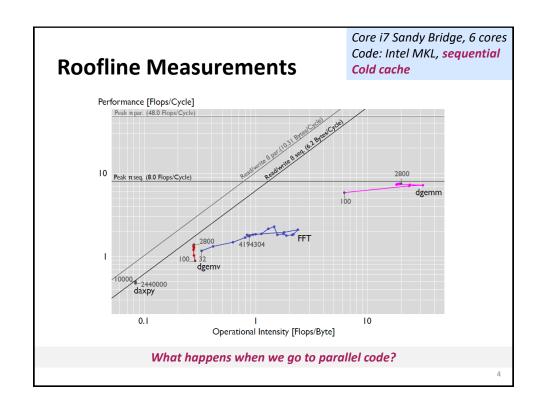
Instructor: Torsten Hoefler & Markus Püschel

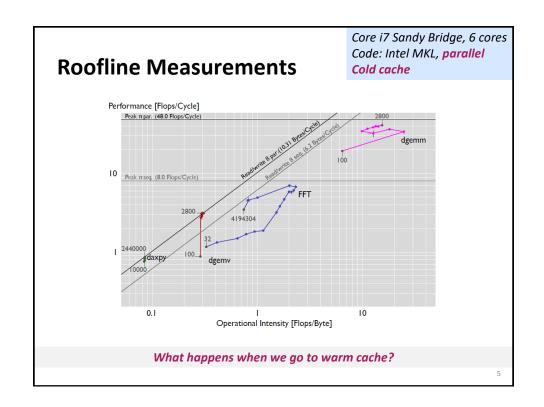
TA: Salvatore Di Girolamo

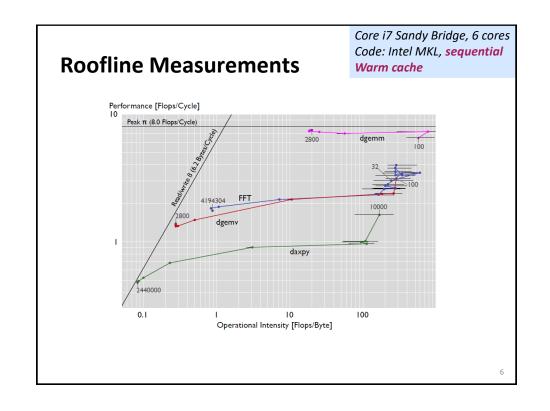
ETH

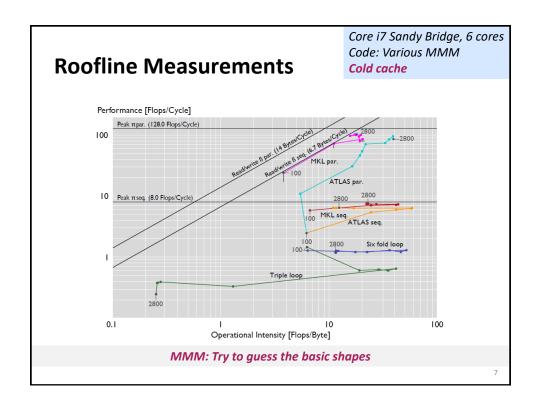
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Roofline model (Williams et al. 2008) Roofline model Example: one core with $\pi = 2$ and $\beta = 1$ and no SSE Resources in a processor that bound performance: ops are double precision flops • peak performance [flops/cycle] · memory bandwidth [bytes/cycle] <others> [ops/cycle] Platform model , bound based on β bound based on $\boldsymbol{\pi}$ Bandwidth β ← carefully measured π = 2 -[bytes/cycle] • raw bandwidth from manual is unattainable (maybe 60% is) B: 1 -1/2 compute bound • Stream benchmark may be conservative 1/4 1/2 1 Peak performance π [ops/cycle] [ops/bytes] some function Algorithm model (n is the input size) Bound based on β? Operational intensity I(n) = W(n)/Q(n) =assume program as operational intensity of x ops/byte number of flops (cost) number of bytes transferred it can get only β bytes/cycle hence: performance = $y \le \beta x$ in log scale: $log_2(y) \le log_2(\beta) + log_2(x)$ between memory and cache line with slope 1; $y = \beta$ for x = 1Q(n): assumes empty cache; **Variations** best measured with performance counters vector instructions: peak bound goes up (e.g., 4 times for AVX) multiple cores: peak bound goes up (p times for p cores) program has uneven mix adds/mults: peak bound comes down (note: now this bound is program specific) In general, Q and hence W/Q depend on the cache size m [bytes]. accesses with little spatial locality: operational intensity For some functions the optimal achievable W/Q is known: FFT/sorting: Θ(log(m)) decreases (because entire cache blocks are loaded) Matrix multiplication: Θ(sqrt(m))


Roofline Measurements


- Tool developed in our group (G. Ofenbeck, R. Steinmann, V. Caparros-Cabezas, D. Spampinato) http://www.spiral.net/software/roofline.html
- Example plots follow
- Get (non-asymptotic) bounds on I:


daxpy: y = αx+y
 dgemv: y = Ax + y
 dgemm: C = AB + C


FFT

3

Summary

- Roofline plots distinguish between memory and compute bound
- Can be used on paper
- Measurements difficult (performance counters) but doable
- Interesting insights: use in your project!

8

References

- Samuel Williams, Andrew Waterman, David Patterson
 Roofline: an insightful visual performance model for multicore architectures
 Communications ACM 55(6): 121-130 (2012)
- Georg Ofenbeck, Ruedi Steinmann, Victoria Caparros, Daniele G. Spampinato and Markus Püschel

Applying the Roofline Model

Proc. IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), 2014, pp. 76-85

Victoria Caparros and Markus Püschel
 Extending the Roofline Model: Bottleneck Analysis with Microarchitectural Constraints
 Proc. IEEE International Symposium on Workload Characterization (IISWC), pp. 222-231, 2014

9