How to Write Fast Numerical Code

Fall 2018

Lecture: Balance Principles, Part II

Instructor: Torsten Hoefler & Markus Püschel

TA: Salvatore Di Girolamo

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

References

- These slides and the work is from Kenneth Czechowksi, Rich Vuduc et al., Georgia Tech
- Kenneth Czechowski, Casey Battaglino, Chris McClanahan, Aparna Chandramowlishwaran, and Richard Vuduc. Balance principles for algorithmarchitecture co-design. In Proc. USENIX Wkshp. Hot Topics in Parallelism (HotPar), May 2011.
- Kenneth Czechowski, Chris McClanahan, Casey Battaglino, Kartik Iyer, P.-K. Yeung, Richard Vuduc. On the communication complexity of 3D FFTs and its implications for exascale. In Proceedings of the ACM International Conference on Supercomputing (ICS), 2012.

2

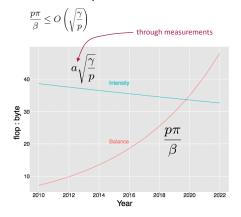
Balance Principles II

Czechowksi et al. 2011

$$T_{\text{mem}} \leq T_{\text{comp}}$$

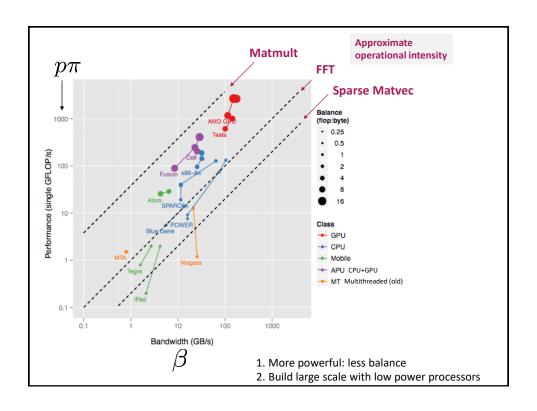
$$\frac{p\pi}{\beta}\left(1+\frac{\alpha\beta/\lambda}{Q/D}\right) \leq \frac{W}{Q\lambda}\left(1+\frac{p}{W/D}\right)$$

3


Application: Analyze Effect of HW Trends

Czechowksi et al. 2012

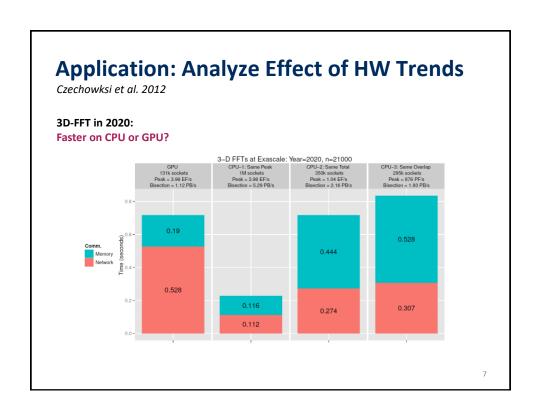
10 year extrapolation (2010 - 2020)


Parameter		2010 values	Doubling time (in years)	10-year increase factor	value
Peak:	C_{CPU} C_{GPU}	50.4 GF/s 515 GF/s	1.7	59.0×	3.0 TF/s 30 TF/s
Cores:a	ρ_{CPU} ρ_{GPU}	6 448	1.87	40.7×	134 18k
Memory bandwidth:	β_{CPU} β_{GPU}	21.3 GB/s 144 GB/s	3.0	9.7×	206 GB/ 1.4 TB/s
Fast memory	Z_{CPU} Z_{GPU}	6 MB $^{2.7}$ MB b	2.0	32.0×	192 MB 86.4 MB
Line size:	L_{CPU} L_{GPU}	64 B 128 B	10.2	$2.0 \times$	128 B 256 B
Link bandwidth:	β_{link}	$10~\mathrm{GB/s}$	2.25	21.8×	218 GB/
Machine peak:	R_{peak}	$4~\mathrm{PF/s}$	1.0	1000×	$4 \; \mathrm{EF/s}$
System memory:	E	635 TB	1.3	208×	132 PB
Nodes $(\frac{R_{\text{peak}}}{C})$:	P_{CPU} P_{GPU}	79,400 7,770	2.4	17.4×	1.3M 135,000

Matrix-multiplication on GPU

Even Matmult on GPU could become memory bound!

4


Application: Analyze Effect of HW Trends

Czechowksi et al. 2012

10 year extrapolation (2010 - 2020)

Parameter		2010 values	Doubling time (in years)	10-year increase factor	value
Peak:	C_{CPU} C_{GPU}	50.4 GF/s 515 GF/s	1.7	59.0×	3.0 TF/s 30 TF/s
Cores: ^a	ρ_{CPU} ρ_{GPU}	6 448	1.87	40.7×	134 18k
Memory bandwidth:	β_{CPU} β_{GPU}	21.3 GB/s 144 GB/s	3.0	9.7×	$206 \mathrm{~GB/s}$ $1.4 \mathrm{~TB/s}$
Fast memory	Z_{CPU}	6 MB $^{2.7}$ MB b	2.0	32.0×	192 MB 86.4 MB
Line size:	L_{CPU} L_{GPU}	64 B 128 B	10.2	2.0×	128 B 256 B
Link bandwidth:	β_{link}	$10~\mathrm{GB/s}$	2.25	21.8×	$218~\mathrm{GB/s}$
Machine peak:	R_{peak}	$4~\mathrm{PF/s}$	1.0	1000×	$4 \; \mathrm{EF/s}$
System memory:	E	635 TB	1.3	208×	132 PB
$(\frac{R_{\text{peak}}}{C})$:	P_{CPU} P_{GPU}	79,400 7,770	2.4	17.4×	1.3M 135,000

6

