
spcl.inf.ethz.ch

@spcl_eth

T. HOEFLER, M. PUESCHEL

Lecture 5: Fast practical locks, lock-free, consensus, and scalable locks

Teaching assistant: Salvatore Di Girolamo Motivational video: https://www.youtube.com/watch?v=qx2dRIQXnbs

spcl.inf.ethz.ch

@spcl_eth

2

Nondeterminism in [most] performance measurements!

const int n=1000;
volatile int a=0;
for (int i=0; i<n; ++i)
a++;

Same code executed 1000 times.
Two metrics measured each time.

One is amazingly stable. The other—not at all!

How do we report measurements
showing high variation?

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

spcl.inf.ethz.ch

@spcl_eth

Nondeterminism in [most] performance measurements!

3

const int n=1000;
volatile int a=0;
for (int i=0; i<n; ++i)
a++;

Same code executed 1000 times.
Two metrics measured each time.

One is amazingly stable. The other—not at all!

How do we report measurements
showing high variation?

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

Rule 5: Report if the measurement values are deterministic. For
nondeterministic data, report confidence intervals of the

measurement

spcl.inf.ethz.ch

@spcl_eth

 Intermediate project presentation: next Monday 10/29 during lecture

 Report will be due in January!

Starting to write early is very helpful --- write – rewrite – rewrite (no joke!)

 Coordinate your talk! You have 10 minutes (8 talk + 2 Q&A)

What will you be speaking about?

Focus on the key aspects (time is tight)!

Who will be speaking (up to you).

Engage the audience 

 Send slides by Sunday night (11:59pm CH time) to Salvatore!

We will use a single (windows) laptop to avoid delays when switching

Expect only Windows (powerpoint) or a PDF viewer

The order of talks will be randomized for fairness

4

Administrivia

spcl.inf.ethz.ch

@spcl_eth

 Memory models in practical parallel programming

 Synchronized programming

 How locks synchronize processes and memory!

 Proving program correctness

 Pre-/postconditions – sequential

 Lifting to parallel

How to prove locked programs correct (nearly trivial)

 Lock implementation

 Peterson lock – proof of correctness (using read/write histories, program and visibility orders)

With x86 memory model!

 Lock performance

Simple x86 – how much does memory model correctness cost?

5

Review of last lecture

spcl.inf.ethz.ch

@spcl_eth

7

DPHPC Overview

spcl.inf.ethz.ch

@spcl_eth

 Fast and scalable practical locks!

 Based on atomic operations

 Why do we need atomic operations?

 Recap lock-free and wait-free programming

 Proof that wait-free consensus is impossible without atomics

Valence argument: a proof technique similar to showing that atomics are needed for locks

 Locks in practical setting

 How to block?

 When to block?

 How long to block?

Simple proof of competitiveness

 Case study: large-scale distributed memory locking

 Problems and outline to next class
8

Goals of this lecture

spcl.inf.ethz.ch

@spcl_eth

 Implement and run our little counter on x86

 100000 iterations

 1.6 ∙ 10-6% errors

 What is the
problem?

9

Back to Peterson in Practice … on x86

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1; // I’m interested
victim = tid; // other goes first
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = 0; // I’m not interested

}

spcl.inf.ethz.ch

@spcl_eth

 Implement and run our little counter on x86

 100000 iterations

 1.6 ∙ 10-6% errors

 What is the
problem?

No sequential
consistency
for W(v) and

R(flag[j])

10

Peterson in Practice … on x86

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1; // I’m interested
victim = tid; // other goes first
asm(“mfence”);
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = 0; // I’m not interested

}

spcl.inf.ethz.ch

@spcl_eth

 Implement and run our little counter on x86

 Many iterations

 1.6 ∙ 10-6% errors

 What is the
problem?

No sequential
consistency
for W(v) and

R(flag[j])

 Still 1.3 ∙ 10-6%

Why?

11

Peterson in Practice … on x86

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1; // I’m interested
victim = tid; // other goes first
asm(“mfence”);
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = 0; // I’m not interested

}

spcl.inf.ethz.ch

@spcl_eth

 Implement and run our little counter on x86

 Many iterations

 1.6 ∙ 10-6% errors

 What is the
problem?

No sequential
consistency
for W(v) and

R(flag[j])

 Still 1.3 ∙ 10-6%

Why?

Reads may slip into CR!

12

Peterson in Practice … on x86

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1; // I’m interested
victim = tid; // other goes first
asm(“mfence”);
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
asm(“mfence”);
flag[tid] = 0; // I’m not interested

}

The compiler may inline
this function 

spcl.inf.ethz.ch

@spcl_eth

 Unoptimized (naïve sprinkling of mfences)

 Performance:

 No mfence

375ns

 mfence in lock

379ns

 mfence in unlock

404ns

 Two mfence

427ns (+14%)

13

Correct Peterson Lock on x86

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1; // I’m interested
victim = tid; // other goes first
asm(“mfence”);
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
asm(“mfence”);
flag[tid] = 0; // I’m not interested

}

spcl.inf.ethz.ch

@spcl_eth

 Hardware atomic operations:

 Test&Set

Write const to memory while returning the old value

 Atomic swap

Atomically exchange memory and register

 Fetch&Op

Get value and apply operation to memory location

 Compare&Swap

Compare two values and swap memory with register if equal

 Load-linked/Store-Conditional LL/SC (or load-acquire (LDA) store-release (STL) on ARM)

Loads value from memory, allows operations, commits only if no other updates committed mini-TM

 Intel TSX (transactional synchronization extensions)

Hardware-TM (roll your own atomic operations)

14

Hardware Support?

spcl.inf.ethz.ch

@spcl_eth

 Design-Problem I: Multi-core Processor

 Which atomic operations are useful?

 Design-Problem II: Complex Application

 What atomic should I use?

 Generally hard to answer 

 Depends on too many systems details (access patterns, CC implementation, contention, algorithm …)

 Concept of “consensus number” C if a primitive can be used to solve the “consensus problem” in a finite
number of steps (even if threads stop)

 atomic registers have C=1 (thus locks have C=1!)

 TAS, Swap, Fetch&Op have C=2

 CAS, LL/SC, TM have C=∞

15

Relative Power of Synchronization

spcl.inf.ethz.ch

@spcl_eth

 Test-and-Set semantics

 Memoize old value

 Set fixed value TASval (true)

 Return old value

 After execution:

 Post-condition is a fixed (constant) value!

16

Test-and-Set Locks

bool TestAndSet (bool *flag) {
bool old = *flag;
*flag = true;
return old;

} // all atomic!

spcl.inf.ethz.ch

@spcl_eth

 Assume TASval indicates “locked”

 Write something else to indicate “unlocked”

 TAS until return value is != TASval (1 in this example)

 When will the lock be
granted?

 Does this work well in
practice?

17

Test-and-Set Locks

volatile int lck = 0;

void lock() {
while (TestAndSet(&lck) == 1);

}

void unlock() {
lck = 0;

}

bool TestAndSet (bool *flag) {
bool old = *flag;
*flag = true;
return old;

} // all atomic!

spcl.inf.ethz.ch

@spcl_eth

 On x86, the XCHG instruction is used to implement TAS

 x86 lock is implicit in xchg!

 Cacheline is read and written

 Ends up in exclusive state, invalidates other copies

 Cacheline is “thrown” around uselessly

 High load on memory subsystem

x86 lock is essentially a full memory barrier 

18

Cacheline contention (or: why I told you about MESI and friends)

movl $1, %eax
xchg %eax, (%ebx)

spcl.inf.ethz.ch

@spcl_eth

 Spinning in TAS is not a good idea

 Spin on cache line in shared state

 All threads at the same time, no cache coherency/memory traffic

 Danger!

 Efficient but use with great
care!

 Generalizations are very
dangerous

19

Test-and-Test-and-Set (TATAS) Locks

volatile int lck = 0;

void lock() {
do {

while (lck == 1);
} while (TestAndSet(&lck) == 1);

}

void unlock() {
lck = 0;

}

spcl.inf.ethz.ch

@spcl_eth

 Example: Double-Checked Locking

20

Warning: Even Experts get it wrong!

Problem: Memory ordering leads to race-conditions!

1997

2018

spcl.inf.ethz.ch

@spcl_eth

 Do TATAS locks still have contention?

 When lock is released, k threads fight for
cache line ownership

 One gets the lock, all get the CL exclusively (serially!)

 What would be a good
solution? (think “collision
avoidance”)

21

Contention?

volatile int lck = 0;

void lock() {
do {
while (lck == 1);

} while (TestAndSet(&lck) == 1);
}

void unlock() {
lck = 0;

}

spcl.inf.ethz.ch

@spcl_eth

 Exponential backoff eliminates contention statistically

 Locks granted in
unpredictable
order

 Starvation possible
but unlikely

How can we make
it even less likely?

22

TAS Lock with Exponential Backoff

volatile int lck = 0;

void lock() {
while (TestAndSet(&lck) == 1) {
wait(time);
time *= 2; // double waiting time

}
}

void unlock() {
lck = 0;

}

Similar to: T. Anderson: “The performance of spin lock alternatives for shared-memory multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990

spcl.inf.ethz.ch

@spcl_eth

 Exponential backoff eliminates contention statistically

 Locks granted in
unpredictable
order

 Starvation possible
but unlikely

Maximum waiting
time makes it less
likely

23

TAS Lock with Exponential Backoff

volatile int lck = 0;
const int maxtime=1000;

void lock() {
while (TestAndSet(&lck) == 1) {
wait(time);
time = min(time * 2, maxtime);

}
}

void unlock() {
lck = 0;

}

Similar to: T. Anderson: “The performance of spin lock alternatives for shared-memory multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990

spcl.inf.ethz.ch

@spcl_eth

24

Perofmance of Locks

spcl.inf.ethz.ch

@spcl_eth

 Are TAS locks perfect?

 What are the two biggest issues?

 Cache coherency traffic (contending on same location with expensive atomics)

-- or --

 Critical section underutilization (waiting for backoff times will delay entry to CR)

 What would be a fix for that?

 How is this solved at airports and shops (often at least)?

 Queue locks -- Threads enqueue

 Learn from predecessor if it’s their turn

 Each threads spins at a different location

 FIFO fairness

25

Improvements?

spcl.inf.ethz.ch

@spcl_eth

 Array to implement queue

 Tail-pointer shows next free
queue position

 Each thread spins on own
location

CL padding!

 index[] array can be put in TLS

 So are we done now?

 What’s wrong?

 Synchronizing M objects
requires Θ(NM) storage

 What do we do now?

26

Array Queue Lock

volatile int array[n] = {1,0,…,0};
volatile int index[n] = {0,0,…,0};
volatile int tail = 0;

void lock() {
index[tid] = GetAndInc(tail) % n;
while (!array[index[tid]]); // wait to receive lock
}

void unlock() {
array[index[tid]] = 0; // I release my lock
array[(index[tid] + 1) % n] = 1; // next one
}

spcl.inf.ethz.ch

@spcl_eth

 List-based (same queue
principle)

 Discovered twice by Craig,
Landin, Hagersten 1993/94

 2N+3M words

 N threads, M locks

 Requires thread-local qnode
pointer

 Can be hidden!

27

CLH Lock (1993)

void lock(qnode *lck, qnode *qn) {
qn->succ_blocked = 1;
qn->prev = FetchAndSet(lck, qn);
while (qn->prev->succ_blocked);

}

void unlock(qnode **qn) {
qnode *pred = (*qn)->prev;
(*qn)->succ_blocked = 0;
*qn = pred;

}

typedef struct qnode {
struct qnode *prev;
int succ_blocked;

} qnode;

qnode *lck = new qnode; // node owned by lock

spcl.inf.ethz.ch

@spcl_eth

 Qnode objects represent
thread state!

 succ_blocked == 1 if waiting
or acquired lock

 succ_blocked == 0 if released
lock

 List is implicit!

 One node per thread

 Spin location changes

NUMA issues (cacheless)

 Can we do better?

28

CLH Lock (1993)

void lock(qnode *lck, qnode *qn) {
qn->succ_blocked = 1;
qn->prev = FetchAndSet(lck, qn);
while (qn->prev->succ_blocked);

}

void unlock(qnode **qn) {
qnode *pred = (*qn)->prev;
(*qn)->succ_blocked = 0;
*qn = pred;

}

typedef struct qnode {
struct qnode *prev;
int succ_blocked;

} qnode;

qnode *lck = new qnode; // node owned by lock

spcl.inf.ethz.ch

@spcl_eth

 Make queue explicit

 Acquire lock by
appending to queue

 Spin on own node
until locked is reset

 Similar advantages
as CLH but

 Only 2N + M words

 Spinning position is fixed!

Benefits cache-less NUMA

 What are the issues?

 Releasing lock spins

 More atomics!

29

MCS Lock (1991)

void lock(qnode *lck, qnode *qn) {
qn->next = NULL;
qnode *pred = FetchAndSet(lck, qn);
if(pred != NULL) {
qn->locked = 1;
pred->next = qn;
while(qn->locked);

}
}

void unlock(qnode * lck, qnode *qn) {
if(qn->next == NULL) { // if we’re the last waiter
if(CAS(lck, qn, NULL)) return;
while(qn->next == NULL); // wait for pred arrival

}
qn->next->locked = 0; // free next waiter
qn->next = NULL;

}

typedef struct qnode {
struct qnode *next;
int succ_blocked;

} qnode;

qnode *lck = NULL;

spcl.inf.ethz.ch

@spcl_eth

 Key Lesson:

 Reducing memory (coherency) traffic is most important!

 Not always straight-forward (need to reason about CL states)

 MCS: 2006 Dijkstra Prize in distributed computing

 “an outstanding paper on the principles of distributed computing, whose significance and impact on the theory
and/or practice of distributed computing has been evident for at least a decade”

 “probably the most influential practical mutual exclusion algorithm ever”

 “vastly superior to all previous mutual exclusion algorithms”

 fast, fair, scalable  widely used, always compared against!

30

Lessons Learned!

spcl.inf.ethz.ch

@spcl_eth

 Down to memory complexity of 2N+M

 Probably close to optimal

 Only local spinning

 Several variants with low expected contention

 But: we assumed sequential consistency 

 Reality causes trouble sometimes

 Sprinkling memory fences may harm performance

 Open research on minimally-synching algorithms!

Come and talk to me if you’re interested

31

Time to Declare Victory?

spcl.inf.ethz.ch

@spcl_eth

 Allow threads to yield CPU and leave the OS run queue

 Other threads can get them back on the queue!

 cond_wait(cond, lock) – yield and go to sleep

 cond_signal(cond) – wake up sleeping threads

 Wait and signal are OS calls

 Often expensive, which one is more expensive?

Wait, because it has to perform a full context switch

32

Fighting CPU waste: Condition Variables

spcl.inf.ethz.ch

@spcl_eth

 Spinning consumes CPU cycles but is cheap

 “Steals” CPU from other threads

 Blocking has high one-time cost and is then free

 Often hundreds of cycles (trap, save TCB …)

 Wakeup is also expensive (latency)

Also cache-pollution

 Strategy:

 Poll for a while and then block

But what is a “while”??

33

When to Spin and When to Block?

spcl.inf.ethz.ch

@spcl_eth

 Optimal time depends on the future

 When will the active thread leave the CR?

 Can compute optimal offline schedule

Q: What is the optimal offline schedule (assuming we know the future, i.e., when the lock will become available)?

 Actual problem is an online problem

 Competitive algorithms

 An algorithm is c-competitive if for a sequence of actions x and a constant a holds:

C(x) ≤ c*Copt(x) + a

 What would a good spinning algorithm look like and what is the competitiveness?

34

When to Spin and When to Block?

spcl.inf.ethz.ch

@spcl_eth

 If T is the overhead to process a wait, then a locking algorithm that spins for time T before it blocks is 2-
competitive!

 Karlin, Manasse, McGeoch, Owicki: “Competitive Randomized Algorithms for Non-Uniform Problems”,
SODA 1989

 If randomized algorithms are used, then e/(e-1)-competitiveness (~1.58) can be achieved

 See paper above!

35

Competitive Spinning

spcl.inf.ethz.ch

@spcl_eth

 A lock-free method

 guarantees that infinitely often some method call finishes in a finite number of steps

 A wait-free method

 guarantees that each method call finishes in a finite number of steps (implies lock-free)

 Synchronization instructions are not equally powerful!

 Indeed, they form an infinite hierarchy; no instruction (primitive) in level x can be used for lock-/wait-free
implementations of primitives in level z>x.

36

Remember: lock-free vs. wait-free

spcl.inf.ethz.ch

@spcl_eth

 Each level of the hierarchy has a “consensus number” assigned.

 Is the maximum number of threads for which primitives in level x can solve the consensus problem

 The consensus problem:

 Has single function: decide(v)

 Each thread calls it at most once, the function returns a value that meets two conditions:

consistency: all threads get the same value

validity: the value is some thread’s input

 Simplification: binary consensus (inputs in {0,1})

37

Concept: Consensus Number

spcl.inf.ethz.ch

@spcl_eth

 Can a particular class solve n-thread consensus wait-free?

 A class C solves n-thread consensus if there exists a consensus protocol using any number of objects of class C and
any number of atomic registers

 The protocol has to be wait-free (bounded number of steps per thread)

 The consensus number of a class C is the largest n for which that class solves n-thread consensus (may be infinite)

 Assume we have a class D whose objects can be constructed from objects out of class C. If class C has consensus
number n, what does class D have?

38

Understanding Consensus

spcl.inf.ethz.ch

@spcl_eth

 Binary consensus with two threads (A, B)!

 Each thread moves until it decides on a value

 May update shared objects

 Protocol state = state of threads + state of shared objects

 Initial state = state before any thread moved

 Final state = state after all threads finished

 States form a tree, wait-free property guarantees a finite tree

Example with two threads and two moves each!

39

Starting simple …

spcl.inf.ethz.ch

@spcl_eth

 Theorem [Herlihy’91]: Atomic registers have consensus number one

 I.e., they cannot be used to solve even two-thread consensus! Really?

 Proof outline:

 Assume arbitrary consensus protocol, thread A, B

 Run until it reaches critical state where next action determines outcome (show that it must have a critical state first)

 Show all options using atomic registers and show that they cannot be used to determine one outcome for all
possible executions!

1) Any thread reads (other thread runs solo until end)

2) Threads write to different registers (order doesn’t matter)

3) Threads write to same register (solo thread can start after each write)

40

Atomic Registers

spcl.inf.ethz.ch

@spcl_eth

 Theorem [Herlihy’91]: Atomic registers have consensus number one

 Corollary: It is impossible to construct a wait-free implementation of any object with consensus number
of >1 using atomic registers

 “perhaps one of the most striking impossibility results in Computer Science” (Herlihy, Shavit)

 We need hardware atomics or Transactional Memory!

 Proof technique borrowed from:

 Very influential paper, always worth a read!

 Nicely shows proof techniques that are central to parallel and distributed computing!

41

Atomic Registers

spcl.inf.ethz.ch

@spcl_eth

 Simple RMW operations (Test&Set, Fetch&Op, Swap, basically all functions where the op commutes or
overwrites) have consensus number 2!

 Similar proof technique (bivalence argument)

 CAS and TM have consensus number ∞

 Constructive proof!

42

Other Atomic Operations

spcl.inf.ethz.ch

@spcl_eth

 CAS provides an infinite consensus number

 Machines providing CAS are asynchronous computation equivalents of the Turing Machine

 I.e., any concurrent object can be implemented in a wait-free manner (not necessarily fast!)

43

Compare and Set/Swap Consensus

const int first = -1
volatile int thread = -1;
int proposed[n];

int decide(v) {
proposed[tid] = v;
if(CAS(thread, first, tid))
return v; // I won!

else
return proposed[thread]; // thread won

}

spcl.inf.ethz.ch

@spcl_eth

 Not really … ;-)

 We’ll argue more about performance now!

 But you have all the tools for:

 Efficient locks

 Efficient lock-based algorithms

 Efficient lock-free algorithms (or even wait-free)

 Reasoning about parallelism!

 What now?

 A different class of problems

Impact on wait-free/lock-free on actual performance is not well understood

 Relevant to HPC, applies to shared and distributed memory

 Group communications

44

Now you know everything 

spcl.inf.ethz.ch

@spcl_eth

Proc qProc p

Various
performance

penalties

LOCKS An example
structure

Inuitive
semantics

Case study: Fast Large-scale Locking in Practice

spcl.inf.ethz.ch

@spcl_eth

P1 P2

P3 P4

Calciu et al.: NUMA-aware reader-writer locks, PPoPP’13

Locks: Challenges

spcl.inf.ethz.ch

@spcl_eth

P

P

P

P

P
P

P

P

P P

P

P

We need intra- and inter-
node topology-awareness

We need to cover
arbitrary topologies

Locks: Challenges

spcl.inf.ethz.ch

@spcl_eth

Reader Reader

Reader

Reader

Reader

Reader

Reader
Reader

Writer

Writer

[1] V. Venkataramani et al. Tao: How facebook serves the social graph. SIGMOD’12.

We need to distinguish between
readers and writers

We need flexible performance
for both types of processes

Locks: Challenges

spcl.inf.ethz.ch

@spcl_eth

What will we use in the
design?

spcl.inf.ethz.ch

@spcl_eth

Proc

Pointer to the
queue tail

Can
enter

Next
proc

Proc

Cannot
enter

Next
proc

Proc

Cannot
enter

Next
proc ...

Proc

Cannot
enter

Next
proc

Can
enter

Mellor-Crummey and Scott: Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors, ACM TOCS’91

Ingredient 1 - MCS Locks

spcl.inf.ethz.ch

@spcl_eth

...

W

R

R

R

R

Ingredient 2 - Reader-Writer Locks

spcl.inf.ethz.ch

@spcl_eth

How to manage the design
complexity?

How to ensure tunable
performance?

What mechanism to use for
efficient implementation?

spcl.inf.ethz.ch

@spcl_eth

REMOTE MEMORY ACCESS (RMA) PROGRAMMING

Memory Memory

Cray

BlueWaters

put

Process p Process q

A

B
get

B

A

B

flush

A

B

TH, J. Dinan, R. Thakur, B. Barrett, P. Balaji, W. Gropp, K. Underwood: Remote Memory Access Programming in MPI-3, ACM TOPC’15

spcl.inf.ethz.ch

@spcl_eth

REMOTE MEMORY ACCESS PROGRAMMING

 Implemented in hardware in NICs in the majority of HPC
networks (RDMA support).

spcl.inf.ethz.ch

@spcl_eth

Memory Memoryput

Process p Process q

3
6

6

get

3
3

Fetch-and-Add (FAA)6
39

replace
3

3

6
6

Compare-and-Swap (CAS)
3

T

3

8

8

3

RMA-RW - Required Operations

spcl.inf.ethz.ch

@spcl_eth

 Windows expose memory

 Created explicitly

 Remote accesses

 Put, get

 Atomics

Accumulate (also atomic Put)

Get_accumulate (also atomic Get)

Fetch and op (faster single-word get_accumulate)

Compare and swap

 Synchronization

 Two modes: passive and active target

We use passive target today, similar to shared memory!

Synchronization: flush, flush_local

 Memory model

 Unified (coherent) and separate (not coherent) view - it’s complicated but versatile

57

MPI RMA primer ([much] more in the recitation sessions)

Process 1 Process 2 Process 3

Private

Memory

Private

Memory

Private

Memory

Process 0

Private

Memory

Remotely

Accessible

Memory

Remotely

Accessible

Memory

Remotely

Accessible

Memory

Remotely

Accessible

Memory

Global
Address
Space

Private

Memory

Private

Memory

Private

Memory

Private

Memory

spcl.inf.ethz.ch

@spcl_eth

How to manage the design
complexity?

How to ensure tunable
performance?

What mechanism to use for
efficient implementation?

spcl.inf.ethz.ch

@spcl_eth

Each element has its own
distributed MCS queue

(DQ) of writers

MCS queues
form a

distributed
tree (DT)

Readers and writers
synchronize with a

distributed counter (DC)

W3 W5 W8

How to manage the design complexity?

Modular
design

W8W7W3 W5 W6W2W1 W4

W1

2 2 3 2

...

W8W3

R9R2

R1

R4
R3 R7 R9R2

R1 R6

R5
R8

P. Schmid, M. Besta, TH: High-Performance Distributed RMA Locks, ACM HPDC’16, best paper

spcl.inf.ethz.ch

@spcl_eth

DT: a
parameter for

the throughput
of readers vs

writers

Each DQ: fairness vs
throughput of writers

DC: a parameter for the
latency of readers vs

writers

W3 W5 W8

How to ensure tunable performance?

W8W7W3 W5 W6W2W1 W4

W1

R4
R3 R7 R9R2

R1 R6

R5
R8

2 2 2 2

A tradeoff
parameter
for every
structure

...
R9R2

R1

W8W3

P. Schmid, M. Besta, TH: High-Performance Distributed RMA Locks, ACM HPDC’16, best paper

spcl.inf.ethz.ch

@spcl_eth

Distributed MCS Queues (DQs) - Throughput vs Fairness

W8

W3 W5

W3

W8

W8W7W3 W5 W6W2W1 W4

W1

Each DQ: The
maximum number of
lock passings within a
DQ at level i, before it
is passed to another

DQ at i. 𝑇𝐿,𝑖

𝑇𝐿,1 𝑇𝐿,1 𝑇𝐿,1 𝑇𝐿,1

𝑇𝐿,2 𝑇𝐿,2

Larger : more
throughput at level i.

Smaller : more
fairness at level i.

𝑇𝐿,𝑖

𝑇𝐿,𝑖

𝑇𝐿,3

P. Schmid, M. Besta, TH: High-Performance Distributed RMA Locks, ACM HPDC’16, best paper

spcl.inf.ethz.ch

@spcl_eth

DT: The maximum
number of consecutive

lock passings within
readers ().𝑇𝑅

𝑇𝐿,2

W8

W3 W5

W3

W8

W8W7W3 W5 W6W2W1 W4

W1

𝑇𝐿,1 𝑇𝐿,1 𝑇𝐿,1 𝑇𝐿,1

𝑇𝐿,2

...
R9R2

R1

𝑇𝐿,3

P. Schmid, M. Besta, TH: High-Performance Distributed RMA Locks, ACM HPDC’16, best paper

Distributed Tree of Queues (DT) - Throughput of readers vs writers

spcl.inf.ethz.ch

@spcl_eth

DC: every kth compute node
hosts a partial counter, all of

which constitute the DC.

𝑘 = 𝑇𝐷𝐶

R4
R3 R7 R9R2

R1

R6

R5
R8

0|9|7 0|8|5 0|5|30|3|1

b|x|yA writer holds
the lock

Readers that
arrived at the CS

Readers that left
the CS

𝑇𝐷𝐶 = 1

𝑇𝐷𝐶 = 2

0|12|8 0|13|8
P. Schmid, M. Besta, TH: High-Performance Distributed RMA Locks, ACM HPDC’16, best paper

Distributed Counter (DC) - Latency of readers vs writers

spcl.inf.ethz.ch

@spcl_eth

Design space

𝑇𝐷𝐶

𝑇𝑅

Higher throughput of writers vs readers

𝑇𝐿,𝑖

Lo
ca

lit
y

vs
 f

ai
rn

e
ss

(f
o

r
w

ri
te

rs
)

Design ADesign B

P. Schmid, M. Besta, TH: High-Performance Distributed RMA Locks, ACM HPDC’16, best paper

spcl.inf.ethz.ch

@spcl_eth

Lock Acquire by Readers A lightweight acquire protocol for
readers: only one atomic fetch-

and-add (FAA) operation

R4

R3R2

R10|7|7 0|1|1

b|x|yA writer holds
the lock

Readers that
arrived at the CS

Readers that left
the CS

FAA

FAA

FAA FAA

0|8|70|9|7 0|2|10|3|1

P. Schmid, M. Besta, TH: High-Performance Distributed RMA Locks, ACM HPDC’16, best paper

spcl.inf.ethz.ch

@spcl_eth

W8

W3 W5

W3

W8

W8W7W3 W5 W6W2W1 W4

W1

...
R9R2

R1

W9

Acquire MCS

W9

Acquire MCS

W9

Acquire the main
MCS lock

0|9|9 0|3|3 0|8|8 0|5|5

Acquire the main lock

1|9|9 1|3|3 1|8|8 1|5|5

P. Schmid, M. Besta, TH: High-Performance Distributed RMA Locks, ACM HPDC’16, best paper

Lock Acquire by Writers

spcl.inf.ethz.ch

@spcl_eth

 CSCS Piz Daint (Cray XC30)

 5272 compute nodes

 8 cores per node

 169TB memory

 Microbenchmarks: acquire/release: latency,
throughput

 Distributed hashtable

EVALUATION

spcl.inf.ethz.ch

@spcl_eth

Throughput, 2% writers

Single-operation benchmark

0|9|7 0|3|1

0|12|8

P. Schmid, M. Besta, TH: High-Performance Distributed RMA Locks, ACM HPDC’16, best paper

Evaluation - Distributed Counter Analysis

spcl.inf.ethz.ch

@spcl_eth

Throughput, 0.2% writers,

Empty-critical-section benchmark

P. Schmid, M. Besta, TH: High-Performance Distributed RMA Locks, ACM HPDC’16, best paper

Evaluation - Reader Threshold Analysis

spcl.inf.ethz.ch

@spcl_eth

[1] R. Gerstenberger et al. Enabling Highly-scalable Remote Memory Access Programming with MPI-3 One Sided. ACM/IEEE Supercomputing 2013.

Evaluation - Comparison to the State-of-the-Art

spcl.inf.ethz.ch

@spcl_eth

Throughput, single-operation benchmark

[1] R. Gerstenberger et al. Enabling Highly-scalable Remote Memory Access Programming with MPI-3 One Sided. ACM/IEEE Supercomputing 2013.

Evaluation - Comparison to the State-of-the-Art

spcl.inf.ethz.ch

@spcl_eth

20% writers 10% writers

[1] R. Gerstenberger et al. Enabling Highly-scalable Remote Memory Access Programming with MPI-3 One Sided. ACM/IEEE Supercomputing 2013.

Evaluation - Distributed Hashtable

spcl.inf.ethz.ch

@spcl_eth

2% of writers 0% of writers

[1] R. Gerstenberger et al. Enabling Highly-scalable Remote Memory Access Programming with MPI-3 One Sided. ACM/IEEE Supercomputing 2013.

Evaluation - Distributed Hashtable

spcl.inf.ethz.ch

@spcl_eth

 MPI-RMA for distributed databases?

74

Another application area - Databases

Sort-JoinHash-Join

C. Barthels, et al.: Distributed Join Algorithms on Thousands of Cores presented in Munich, Germany, VLDB Endowment, Aug. 2017

spcl.inf.ethz.ch

@spcl_eth

 MPI-RMA for distributed databases on Piz Daint

75

Another application area - Databases

C. Barthels, et al.: Distributed Join Algorithms on Thousands of Cores presented in Munich, Germany, VLDB Endowment, Aug. 2017

Network dominating

Compute dominating

spcl.inf.ethz.ch

@spcl_eth

 MPI-RMA for distributed databases on Piz Daint

76

Another application area - Databases

C. Barthels, et al.: Distributed Join Algorithms on Thousands of Cores presented in Munich, Germany, VLDB Endowment, Aug. 2017

