
spcl.inf.ethz.ch

@spcl_eth

T. HOEFLER, M. PUESCHEL

Lecture 4: Languages, Fast Locks, and Lock-free

Teaching assistant: Salvatore Di Girolamo                               Motivational video: https://www.youtube.com/watch?v=1o4YViBAGU0

spcl.inf.ethz.ch

@spcl_eth

http://archive.constantcontact.com/fs042/1101916237075/archive/1102594461324.html http://bitchmagazine.org/post/beyond-the-panel-an-
interview-with-danielle-corsetto-of-girls-with-slingshots

So, a computing scientist entered a store….

Adopted from Jose Nelson Amaral, “How did this get published?”, LCTES’12

spcl.inf.ethz.ch

@spcl_eth

So, a computing scientist entered a store….

http://bitchmagazine.org/post/beyond-the-panel-an-
interview-with-danielle-corsetto-of-girls-with-slingshots

$ 3,000.00

$ 200.00

They want 
$2,700 for the 

server and 
$100 for the 

iPod.

I will get both and 
pay only $2,240

altogether!

Adopted from Jose Nelson Amaral, “How did this get published?”, LCTES’12

spcl.inf.ethz.ch

@spcl_eth

So, a computing scientist entered a store….

http://bitchmagazine.org/post/beyond-the-panel-an-
interview-with-danielle-corsetto-of-girls-with-slingshots

Ma’am you 
are $560 

short. 

http://www.businessinsider.com/10-ways-to-fix-googles-busted-android-app-market-2010-1?op=1
$ 3,000.00

$ 200.00

But the average of 
10% and 50% is 30% 
and 70% of $3,200 

is $2,240.

Adopted from Jose Nelson Amaral, “How did this get published?”, LCTES’12

spcl.inf.ethz.ch

@spcl_eth

So, a computing scientist entered a store….

http://bitchmagazine.org/post/beyond-the-panel-an-
interview-with-danielle-corsetto-of-girls-with-slingshotshttp://www.businessinsider.com/10-ways-to-fix-googles-busted-android-app-market-2010-1?op=1

$ 3,000.00

$ 200.00

Adopted from Jose Nelson Amaral, “How did this get published?”, LCTES’12

Ma’am you cannot take 
the arithmetic average 

of percentages!

But… I just came from at 
top CS conference in San 

Jose where they do it!

spcl.inf.ethz.ch

@spcl_eth

6

Scientific Benchmarking: The fallacies of summarizing (Rules 3+4) 

System A System B

Testcase I II III I II III

Floating-point operations [Gflop] 10,0 15,0 20,0 10,0 15,0 20,0

Time [seconds] 2,0 1,3 0,7 1,1 1,3 2,0

Flop Rate [Gflop/s] 5,0 11,5 28,6 9,1 11,5 10,0

Arithmetic Mean of Flop Rates [Gflop/s] 15,0 10,2

Harmonic Mean of Flop Rates [Gflop/s] 9,3 10,1

Flop Rate by Dividing Totals [Gflop/s] 11,3 10,2

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)



spcl.inf.ethz.ch

@spcl_eth

7TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

RULE 3 and 4

System A System B

Testcase I II III I II III

Floating-point operations [Gflop] 10,0 15,0 20,0 10,0 15,0 20,0

Time [seconds] 2,0 1,3 0,7 1,1 1,3 2,0

Flop Rate [Gflop/s] 5,0 11,5 28,6 9,1 11,5 10,0

Arithmetic Mean of Flop Rates [Gflop/s] 15,0 10,2

Harmonic Mean of Flop Rates [Gflop/s] 9,3 10,1

Flop Rate by Dividing Totals [Gflop/s] 11,3 10,2

Rule 3: Use the arithmetic mean only for summarizing costs. 
Use the harmonic mean for summarizing rates.

Rule 4: Avoid summarizing ratios (e.g., speedup); summarize the 
costs or rates that the ratios base on instead. Only if these are not 

available use the geometric mean for summarizing ratios.

spcl.inf.ethz.ch

@spcl_eth

 First project presentation: 10/29 (two weeks from now!)

 First presentation to gather feedback

You already know what your peers are doing, now let us know

 Some more ideas what to talk about:

What tools/programming language/parallelization scheme do you use?

Which architecture? (we only offer access to Xeon Phi, you may use different)

How to verify correctness of the parallelization?

How to argue about performance (bounds, what to compare to?)

(Somewhat) realistic use-cases and input sets?

What are the key concepts employed?

What are the main obstacles?

8

Administrivia

spcl.inf.ethz.ch

@spcl_eth

 Directory-based cache coherence

 Simple working with presence/dirty bits

 Case study with Xeon Phi

Illustrates performance impact of the protocol and its importance!

 Memory models

 Ordering between accesses to different variables

 Sequential consistency – nice but unrealistic

Demonstrate how it prevents compiler and architectural optimizations

 Practical memory models

 Overview of various models (TSO, PSO, RMO, … existing CPUs)

 Case study of x86 (continuing today)

9

Review of last lecture

spcl.inf.ethz.ch

@spcl_eth

11

DPHPC Overview

spcl.inf.ethz.ch

@spcl_eth

 Recap: Correctness in parallel programs

 Covered in PP, here a slimmed down version to make the DPHPC lecture self-contained

Watch for the green bar on the right side

 Languages and Memory Models

 Java/C++ definition

 Recap sequential consistency from the programmer’s perspective

 Races (now in practice)

 Synchronization variables (now in practice)

 Mutual exclusion

 Recap – simple lock properties

 Proving correctness in SC and memory models (x86)

 Locks in practice – performance overhead of memory models!

 Fast (actually practical) locks

 CLH – queue locks

 MCS – “cache coherence optimal” queue locking

12

Goals of this lecture

spcl.inf.ethz.ch

@spcl_eth

1. “Reads are not reordered with other reads.” (RR)

2. “Writes are not reordered with other writes.” (WW)

3. “Writes are not reordered with older reads.” (RW)

4. “Reads may be reordered with older writes to different locations but not with older writes to the same 
location.” (NO WR!)

5. “In a multiprocessor system, memory ordering obeys causality.“ (memory ordering respects transitive 
visibility)

6. “In a multiprocessor system, writes to the same location have a total order.” (implied by cache 
coherence)

7. “In a multiprocessor system, locked instructions have a total order.“ (enables synchronized 
programming!)

8. “Reads and writes are not reordered with locked instructions. “ (enables synchronized programming!)

13

The Eight x86 Principles



spcl.inf.ethz.ch

@spcl_eth

Reads are not reordered with other reads. (RR)

Writes are not reordered with other writes. (WW)

14

Principle 1 and 2
P1

a = 1
b = 2

P2

r1 = b
r2 = a

All values zero initially. r1 and r2 are registers.

P1

P2

Memory

W(a,1)

If r1 == 2, then r2 must be 1!
Not allowed: r1 == 2, r2 == 0

W(b,2)

R(a)R(b)

Order: from left to right

Reads and writes observed in program order.
Cannot be reordered!

Question: is r1=0, r2=1 allowed?

spcl.inf.ethz.ch

@spcl_eth

Writes are not reordered with older reads. (RW)

15

Principle 3 P1

r1 = a
b = 1

P2

r2 = b
a = 1

All values zero initially

If r1 == 1, then P2:W(a)  P1:R(a), thus r2 must be 0!
If r2 == 1, then P1:W(b)  P1:R(b), thus r1 must be 0!

P1

P2

Memory

R(a) W(b,1)

W(a,1)R(b)

Question: is r1==1 and r2==1 allowed?

Question: is r1==0 and r2==0 allowed?

spcl.inf.ethz.ch

@spcl_eth

Reads may be reordered with older writes to different locations 
but not with older writes to the same location. (NO WR!)

16

Principle 4
P1

a = 1
r1 = b

P2

b = 1
r2 = a

All values zero initially

Allowed: r1=0, r2=0.
Sequential consistency can be enforced with mfence.
Attention: this rule may allow reads to move into 
critical sections!

P1

P2

Memory

W(a,1) R(b)

R(a)W(b,1)

Question: is r1=1, r2=0 allowed?

OK

OK

spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, memory ordering obeys causality 
(memory ordering respects transitive visibility). 

17

Principle 5
P1

a = 1

P2

r1 = a
b = 1

P3

r2 = b
r3 = a

If r1 == 1 and r2==1, then r3 must read 1.
Not allowed: r1 == 1, r2 == 1, and r3 == 0.
Provides some form of atomicity.

P1

P3

Memory

W(a,1)

R(a)R(b)

Question: is r1==1, r2==0, r3==1 allowed?

P2R(a) W(b,1)

All values zero initially

spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, writes to the same location 
have a total order (implied by cache coherence).

18

Principle 6
P1

a=1

P2

a=2

P3

r1 = a
r2 = a

P4

r3 = a
r4 = a

All values zero initially

P1

P4

Memory

W(a,1)

R(a)

Question: is r1=0, r2=2, r3=0, r4=1 allowed?

P3R(a)

P2W(a,2)

R(a)

R(a)

• Not allowed: r1 == 1, r2 == 2, r3 == 2, r4 == 1
• If P3 observes P1’s write before P2’s write, then P4 will also 
see P1’s write before P2’s write 
• Provides some form of atomicity

spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, locked instructions have a 
total order. (enables synchronized programming!)

19

Principle 7
P1

xchg(a,r1)

P2

xchg(b,r2)

P3

r3 = a
r4 = b

P4

r5 = b
r6 = a

All values zero initially, registers r1==r2==1

• Not allowed: r3 == 1, r4 == 0, r5 == 1, r6 ==0
• If P3 observes ordering P1:xchg  P2:xchg, 

then P4 observes the same ordering
• (xchg has implicit lock)

P1

P4

X(a,r1)

R(b)

Question: is r3=1, r4=0, r5=0, r6=1 allowed?

P3R(a)

P2X(b,r2)

R(b)

R(a)

Memory



spcl.inf.ethz.ch

@spcl_eth

Reads and writes are not reordered with locked instructions.

(enables synchronized programming!)

20

Principle 8
P1

xchg(a,r1)
r2 = b

P2

xchg(b,r3)
r4 = a

All values zero initially but r1 = r3 = 1

• Not allowed: r2 == 0, r4 == 0
• Locked instructions have total order, so P1 and P2 agree on 

the same order
• If volatile variables use locked instructions  practical 

sequential consistency (more later)

P1

P2

X(a,r1)

X(b,r3) R(a)

Memory

R(b)

spcl.inf.ethz.ch

@spcl_eth

 Sewell el al.: “x86-TSO: A Rigorous and Usable Programmer’s Model for x86 Multiprocessors”, CACM May 
2010

“[…] real multiprocessors typically do not provide the sequentially consistent memory that is assumed by 
most work on semantics and verification. Instead, they have relaxed memory models, varying in subtle ways 
between processor families, in which different hardware threads may have only loosely consistent views of a 
shared memory. Second, the public vendor architectures, supposedly specifying what programmers can rely 
on, are often in ambiguous informal prose (a particularly poor medium for loose specifications), leading to 
widespread confusion. [...] We present a new x86-TSO programmer’s model that, to the best of our 
knowledge, suffers from none of these problems. It is mathematically precise (rigorously defined in HOL4) but 
can be presented as an intuitive abstract machine which should be widely accessible to working 
programmers.  […]”

21

An Alternative View: x86-TSO

Similar for RMA systems: A. Dan, P. Lam, T. Hoefler, A. Vechev: Modeling and Analysis of Remote Memory Access Programming, ACM OOPSLA’16, best paper

scale

spcl.inf.ethz.ch

@spcl_eth

 We discussed so far:

 Read/write of the same location

Cache coherence (write serialization and atomicity)

 Read/write of multiple locations

Memory models (visibility order of updates by cores)

 Now one level up: objects (variables/fields with invariants defined on them)

 Invariants “tie” variables together

 Sequential objects

 Concurrent objects

22

Notions of Correctness

spcl.inf.ethz.ch

@spcl_eth

 Each object has a type

 A type is defined by a class

 Set of fields forms the state of an object

 Set of methods (or free functions) to manipulate the state

 Remark

 An Interface is an abstract type that defines behavior

A class implementing an interface defines several types

23

Sequential Objects

spcl.inf.ethz.ch

@spcl_eth

Running Example: FIFO Queue

 Insert elements at tail

 Remove elements from head

 Initial: head = tail = 0

 enq(x)

 enq(y)

 deq() [x]

 …

24

head tail

0

2

1

5 4

3

yx

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

25

Sequential Queue

class Queue {
private:
int head, tail;
std::vector<Item> items;

public:
Queue(int capacity) {
head = tail = 0;
items.resize(capacity);

}

// ...

};

head tail

0

2

1

5 4

3

yx

capacity = 8

7

6



spcl.inf.ethz.ch

@spcl_eth

26

Sequential Queue

class Queue {
// ...

public:
void enq(Item x) {
if((tail+1)%items.size() == head) {
throw FullException;

}
items[tail] = x;
tail = (tail+1)%items.size();

}

Item deq() {
if(tail == head) {
throw EmtpyException;

}
Item item = items[head];
head = (head+1)%items.size();
return item;

}
};

head tail

0

2

1

5 4

3

yx

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

 (The) one process executes
operations one at a time

 Sequential 

 Semantics of operation
defined by specification
of the class

 Preconditions and postconditions

e.g., Hoare logic 

27

Sequential Execution head tail

0

2

1

5 4

3

y

7

6

P

Time

enq(x) enq(y) deq()

spcl.inf.ethz.ch

@spcl_eth

 Preconditions:

 Specify conditions that must 
hold before method executes

 Involve state and arguments 
passed

 Specify obligations a client 
must meet before calling a 
method

 Example: enq()

 Queue must not be full!

28

Design by Contract!

class Queue {
// ...
void enq(Item x) {
assert((tail+1)%items.size() != head);
// ...

}
};

head tail

0

2

1

5 4

3

yx

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

 Postconditions:

 Specify conditions that must 
hold after method executed

 Involve old state and 
arguments  passed

 Example: enq()

 Queue must contain element!

29

Design by Contract!

class Queue {
// ...
void enq(Item x) {
// ...
assert(
(tail == (old_tail + 1)%items.size()) &&
(items[old_tail] == x) );

}
};

head tail

0

2

1

5 4

3

yx

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

 if(precondition)

 Object is in a specified state

 then(postcondition)

 The method returns a particular value or

 Throws a particular exception and

 Leaves the object in a specified state

 Invariants

 Specified conditions (e.g., object state) must hold anytime a client could invoke an objects method!

30

Sequential specification

spcl.inf.ethz.ch

@spcl_eth

 State between method calls is defined

 Enables reasoning about objects

 Interactions between methods captured by side effects on object state

 Enables reasoning about each method in isolation

 Contracts for each method

 Local state changes global state

 Adding new methods

 Only reason about state changes that the new method causes

 If invariants are kept: no need to check old methods 

 Modularity!

31

Advantages of sequential specification



spcl.inf.ethz.ch

@spcl_eth

 Concurrent threads invoke methods on possibly shared objects

 At overlapping time intervals!

32

Concurrent execution - State

Property Sequential Concurrent

State Meaningful only between 
method executions 

Overlapping method executions 
object may never be “between 
method executions”

Each method execution 
takes some non-zero 
amount of time!

P1

Time

P2

P3

q.enq(y)

q.enq(x)

q.deq()

spcl.inf.ethz.ch

@spcl_eth

 Reasoning must now include all possible interleavings

 Of changes caused by methods themselves

33

Concurrent execution - Reasoning

Property Sequential Concurrent

Reasoning Consider each method in 
isolation; invariants on state 
before/after execution.

Need to consider all possible 
interactions; all intermediate states 
during execution

Each method execution 
takes some non-zero 
amount of time!

P1

Time

P2

P3

q.enq(y)

q.enq(x)

q.deq()

That is, now we have to consider 
what will happen if we execute: 
• enq() concurrently with enq() 
• deq() concurrently with deq() 
• deq() concurrently with enq() 

spcl.inf.ethz.ch

@spcl_eth

 Reasoning must now include all possible interleavings

 Of changes caused by and methods themselves

 Consider adding a method that returns the last item enqueued

 If peek() and enq() run concurrently: what if tail has not yet been incremented?

 If peek() and deq() run concurrently: what if last item is being dequeued?

34

Concurrent execution - Method addition

Property Sequential Concurrent

Add Method Without affecting other
methods; invariants on state 
before/after execution.

Everything can potentially interact 
with everything else 

Item peek() {
if(tail == head) throw EmptyException;
return items[head];

}

void enq(Item x) {
items[tail] = x;
tail = (tail+1) % items.size();

}

Item deq() {
Item item = items[head];
head = (head+1) % items.size();

}

spcl.inf.ethz.ch

@spcl_eth

 How do we describe one?

 No pre-/postconditions 

 How do we implement one?

 Plan for quadratic or exponential number of interactions and states

 How do we tell if an object is correct?

 Analyze all quadratic or exponential interactions and states

35

Concurrent objects

Is it time to panic for (parallel) software engineers?
Who has a solution?

spcl.inf.ethz.ch

@spcl_eth

36

Lock-based queue

class Queue {
private:
int head, tail;
std::vector<Item> items;
std::mutex lock;

public:
Queue(int capacity) {
head = tail = 0;
items.resize(capacity);

}
// ...

};

We can use the lock to 
protect Queue’s fields.

head tail

0

2

1

5 4

3

yx

7

6

spcl.inf.ethz.ch

@spcl_eth

class Queue {
// ...

public:
void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
throw FullException;

}
items[tail] = x;
tail = (tail+1)%items.size();

}

Item deq() {
std::lock_guard<std::mutex> l(lock);
if(tail == head) {
throw EmptyException;

}
Item item = items[head];
head = (head+1)%items.size();
return item;

}
};

37

Lock-based queue

One of C++’s ways of implementing a critical section

head tail

0

2

1

5 4

3

yx

7

6

Class question: how is the 
lock ever unlocked?



spcl.inf.ethz.ch

@spcl_eth

 RAII – suboptimal name

 Can be used for locks (or any other resource acquisition)

 Constructor grabs resource

 Destructor frees resource

 Behaves as if

 Implicit unlock at end of block!

 Main advantages

 Always unlock/free lock at exit

 No “lost” locks due to exceptions
or strange control flow (goto )

 Very easy to use

38

C++ Resource Acquisition is Initialization

template <typename mutex_impl>
class lock_guard {

mutex_impl& _mtx; // ref to the mutex

public:
lock_guard(mutex_impl& mtx ) : _mtx(mtx) {

_mtx.lock(); // lock mutex in constructor
}

~lock_guard() {
_mtx.unlock(); // unlock mutex in destructor

}
};

spcl.inf.ethz.ch

@spcl_eth

39

Example execution

void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
throw FullException;

}
items[tail] = x;
tail = (tail+1)%items.size();

}

Item deq() {
std::lock_guard<std::mutex> l(lock);

if(tail == head) {
throw EmptyException;

}
Item item = items[head];
head = (head+1)%items.size();
return item;

}

enq() is calledThe lock is acquireddeq() is called by another threaddeq() has to wait for the lock to be releasedenq() releases the lock; deq() acquires it and proceeds.deq() releases the lock

enq(x)

deq()

Methods effectively execute one after another, sequentially.

spcl.inf.ethz.ch

@spcl_eth

 Is the locked queue correct?

 Yes, only one thread has access if locked correctly

 Allows us again to reason about pre- and postconditions

 Smells a bit like sequential consistency, no?

 Class question: What is the problem with this approach?

 Same as for SC 

41

Correctness – end of interlude

It does not scale!
What is the solution here?

spcl.inf.ethz.ch

@spcl_eth

 Which transformations/reorderings can be applied to a program

 Affects platform/system

 Compiler, (VM), hardware

 Affects programmer

 What are possible semantics/output

 Which communication between threads is legal?

 Without memory model

 Impossible to even define “legal” or “semantics” when data is accessed concurrently

 A memory model is a contract

 Between platform and programmer

42

Back to memory models: Language Memory Models

spcl.inf.ethz.ch

@spcl_eth

 Java’s original memory model was broken [1]

 Difficult to understand => widely violated

 Did not allow reorderings as implemented in standard VMs

 Final fields could appear to change value without synchronization

 Volatile writes could be reordered with normal reads and writes

=> counter-intuitive for most developers

 Java memory model was revised [2]

 Java 1.5 (JSR-133)

 Still some issues (operational semantics definition [3])

 C/C++ didn’t even have a memory model until much later

 Not able to make any statement about threaded semantics!

 Introduced in C++11 and C11

 Based on experience from Java, much more conservative

43

History of Memory Models

[1] Pugh: “The Java Memory Model is Fatally Flawed”, CCPE 2000
[2] Manson, Pugh, Adve: “The Java memory model”, POPL’05 
[3] Aspinall, Sevcik: “Java memory model examples: Good, bad and ugly”, VAMP’07

spcl.inf.ethz.ch

@spcl_eth

 Language constructs for synchronization

 Java: volatile, synchronized, …

 C++: atomic, (NOT volatile!), mutex, …

 Without synchronization (defined language-specific)

 Compiler, (VM), architecture

 Reorder and appear to reorder memory operations

 Maintain sequential semantics per thread

 Other threads may observe any order (have seen examples before)

44

Everybody wants to optimize



spcl.inf.ethz.ch

@spcl_eth

 Relaxed memory model

 No global visibility ordering of operations

 Allows for standard compiler optimizations

 But

 Program order for each thread (sequential semantics)

 Partial order on memory operations (with respect to synchronizations)

 Visibility function defined

 Correctly synchronized programs

 Guarantee sequential consistency

 Incorrectly synchronized programs

 Java: maintain safety and security guarantees

Type safety etc. (require behavior bounded by causality)

 C++: undefined behavior

No safety (anything can happen/change)

45

Java and C++ High-level overview

spcl.inf.ethz.ch

@spcl_eth

 Not guaranteed unless by:

 Synchronization

 Volatile/atomic variables

 Specialized functions/classes (e.g., java.util.concurrent, …)

46

Communication between threads: Intuition

x = 10
y = 5
flag = true

if(flag)
print(x+y)

synchronization

Thread 1

Thread 2

Flag is a synchronization variable 
(atomic in C++, volatile in Java),

i.e., all memory written by T1 
must be visible to T2 after it
reads the value true for flag!

spcl.inf.ethz.ch

@spcl_eth

 Abstract relation between threads and memory

 Local thread view!

 Does not talk about classes, objects, methods, …

 Linearizability is a higher-level concept!

47

Recap: Memory Model (Intuition)

When are values transferred?

Abstraction 
of caches and 
registers.

P2P1

Working 
Memory

Main Memory

Working 
Memory

P3

Working 
Memory

spcl.inf.ethz.ch

@spcl_eth

48

Locks synchronize threads and memory!

 Java

 Synchronized methods as 
syntactic  sugar

 C++ (RAII)

 Many flexible variants

synchronized (lock) {
// critical region

}

{
unique_lock<mutex> l(lock); 
// critical region

}

 Semantics:
mutual exclusion
 at most one thread may hold a lock at a time
 a thread B trying to acquire a lock held by thread A blocks until thread A 

releases the lock
 note: threads may wait forever (no progress guarantee!)

spcl.inf.ethz.ch

@spcl_eth

 Similar to synchronization variables

 All memory accesses before an unlock …

 are ordered before and are visible to …

 any memory access after a matching lock!

49

Memory model semantics of locks

x = 10
…
y = 5
…
unlock(m)

lock(m)
print(x+y)

Thread 1

Thread 2

spcl.inf.ethz.ch

@spcl_eth

 Variables can be declared volatile (Java) or atomic (C++)

 Reads and writes to synchronization variables 

 Are totally ordered with respect to all threads

 Must not be reordered with normal reads and writes

 Compiler

 Must not allocate synchronization variables in registers

 Must not swap variables with synchronization variables

 May need to issue memory fences/barriers

 …

50

Memory model semantics of synchronization variables



spcl.inf.ethz.ch

@spcl_eth

 Write to a synchronization variable

 Similar memory semantics as unlock (no process synchronization!)

 Read from a synchronization variable

 Similar memory semantics as lock (no process synchronization!)

51

Memory model semantics of synchronization variables

class example {
int x = 0;
atomic<bool> v = false

public void writer() {
x = 42;
v = true;

} 

public void reader() {
if(v) {
print(x)
}

}

Thread 1    

Thread 2    

Without atomic or
volatile, a platform may 
reorder these accesses!

spcl.inf.ethz.ch

@spcl_eth

 Java/C++: Correctly synchronized programs will execute sequentially consistent

 Correctly synchronized = data-race free

 iff all sequentially consistent executions are free of data races

 Two accesses to a shared memory location form a data race in the execution of a program if

 The two accesses are from different threads

 At least one access is a write and

 The accesses are not synchronized

52

Intuitive memory model rules

int x = 10

T1 T2 T3

read read
write

spcl.inf.ethz.ch

@spcl_eth

 Among the simplest concurrency constructs

 Yet, complex enough to illustrate many optimization principles

 Goal 1: You understand locks in detail

 Requirements / guarantees

 Correctness / validation

 Performance / scalability

Why you do not want to use them in many cases!

 Goal 2: Acquire the ability to design your own locks (and other constructs)

 Understand techniques and weaknesses/traps

 Extend to other concurrent algorithms

Issues are very much the same 

 Goal 3: Understand the complexity of shared memory!

 Memory models in realistic settings

53

Case Study: Implementing locks - lecture goals

spcl.inf.ethz.ch

@spcl_eth

 All code examples are in C/C++ style

 Neither C (<11) nor C++ (<11) had a clear memory model

 C++ is one of the languages of choice in HPC

 Consider source as exemplary (and pay attention to the memory model)!

In fact, many/most textbook examples are incorrect in anything but sequential consistency!

In fact, you’ll most likely not need those algorithms, but the principles will be useful!

 x86 is really only used because it is common

 This does not mean that we consider the ISA or memory model elegant!

 We assume atomic memory (or registers)!

Usually given on x86 (easy to enforce)

 Number of threads/processes is p, tid is the thread id

54

Preliminary Comments

spcl.inf.ethz.ch

@spcl_eth

 Multi-threaded execution!

 Demo: value of a for p=1?

 Demo: value of a for p>1?

Why? Isn’t it a single instruction?

55

Recap Concurrent Updates

const int n=1000;
volatile int a=0;
for (int i=0; i<n; ++i) 
a++;

gcc -O3

movl $1000, %eax // i=n=1000
.L2:

movl (%rdx), %ecx // ecx = *a
addl $1, %ecx // ecx++
subl $1, %eax // i—
movl %ecx, (%rdx)    // *a = ecx
jne .L2                     // loop if i>0  

movl $1000, %eax // i=n=1000
movl $0, -24(%rsp)  // a = 0
mfence // a is visible!

.L2:
lock addl $1 , -24(%rsp)  // (*a)++
subl $1, %eax // i—
jne .L2                     // loop if i>0  

const int n=1000;
std::atomic<int> a;
a=0;
for (int i=0; i<n; ++i) 
a++;

g++ -O3

spcl.inf.ethz.ch

@spcl_eth

 run with larger n (108)

 Compiler: gcc version 4.9.2 (enabled c++11 support, -O3)

 Single-threaded execution only!

56

One instruction less! Performance!?

const int n = 1e8;
volatile int a=0;
for (int i=0; i<n; ++i) 
a++;

const int n = 1e8;
std::atomic<int> a;
a=0;
for (int i=0; i<n; ++i) 
a++;

Demo: 0.17s

Guess! Demo: 0.55s

Schweizer, Besta, Hoefler: “Evaluating the Cost of Atomic Operations on Modern Architectures”, ACM PACT’15



spcl.inf.ethz.ch

@spcl_eth

 Nondeterministic execution

 Result depends on timing  (probably not desired)

 What do you think are the most significant results? 

 Running two threads on Core i5 dual core

 a=1000? 2000? 1500? 1223? 1999?

Demo!

57

Some Statistics

const int n=1000;
volatile int a=0;
for (int i=0; i<n; ++i) 
a++;

spcl.inf.ethz.ch

@spcl_eth

58

Some Statistics

spcl.inf.ethz.ch

@spcl_eth

 (recap) two memory accesses conflict if they can happen at the same time (in happens-before) and one of 
them is a write (store)

 Such a code is said to have a “race condition”

 Also data-race

 Trivia around races:

The Therac-25 killed three people 
due to a race

A data-race lead to a large blackout 
in 2003, leaving 55 million people 
without power causing $1bn damage

 Can be avoided by critical regions

 Mutually exclusive access to a set of operations

59

Conflicting Accesses

spcl.inf.ethz.ch

@spcl_eth

 Control access to a critical region

 Memory accesses of all processes happen in program order (a partial order, many interleavings)

An execution history defines a total order of memory accesses

 Some subsets of memory accesses (issued by the same process) need to happen atomically (thread a’s memory 
accesses may not be interleaved with other thread’s accesses)

To achieve linearizability!

We need to restrict the valid executions

  Requires synchronization of some sort

 Many possible techniques (e.g., TM, CAS, T&S, …)

 We first discuss locks which have wait semantics

60

More formal: Mutual Exclusion

movl $1000, %eax // i=1000
.L2:

movl (%rdx), %ecx // ecx = *a
addl $1, %ecx // ecx++
subl $1, %eax // i—
movl %ecx, (%rdx)    // *a = ecx
jne .L2                     // loop if i>0  

spcl.inf.ethz.ch

@spcl_eth

61

Fixing it with locks

 What must the functions lock and unlock guarantee?

 #1: prevent two threads from simultaneously entering CR

i.e., accesses to CR must be mutually exclusive!

 #2: ensure consistent memory

i.e., stores must be globally visible before new lock is granted!

 Any performance guesses (remember, 0.23s  0.78s for atomics)

 2.26s

const int n=1000;
volatile int a=0;
omp_lock_t lck; 
for (int i=0; i<n; ++i) {
omp_set_lock(&lck); 
a++;
omp_unset_lock(&lck);

}

gcc -O3

movl $1000, %ebx // i=1000
.L2:

movq 0(%rbp), %rdi // (SystemV CC)
call omp_set_lock // get lock
movq 0(%rbp), %rdi // (SystemV CC)
movl (%rax), %edx // edx = *a
addl $1, %edx // edx++
movl %edx, (%rax)   // *a = edx
call omp_unset_lock // release lock
subl $1, %ebx // i—
jne .L2                   // repeat if i>0

spcl.inf.ethz.ch

@spcl_eth

 Lock/unlock or acquire/release

 Lock/acquire: before entering CR

 Unlock/release: after leaving CR

 Semantics:

 Lock/unlock pairs have to match

 Between lock/unlock, a thread holds the lock

62

Lock Overview



spcl.inf.ethz.ch

@spcl_eth

?

 Mutual exclusion 
 Only one thread is on the critical region 

 Consistency
 Memory operations are visible when critical region is left

 Progress
 If any thread a is not in the critical region, it cannot prevent another thread b from entering

 Starvation-freedom (implies deadlock-freedom)
 If a thread is requesting access to a critical region, then it will eventually be granted access

 Fairness
 A thread a requested access to a critical region before thread b. Did is also granted access to this 

region before b?

 Performance
 Scaling to large numbers of contending threads

63

Desired Lock Properties

spcl.inf.ethz.ch

@spcl_eth

 Time defined by precedence (a total order on events)

 Events are instantaneous (linearizable)

 Threads produce sequences of events a0,a1,a2,…

 Program statements may be repeated, denote i-th instance of a as ai

 Event a occurs before event b: a → b

 An interval (a,b) is the duration between events a → b

 Interval I1=(a,b) precedes interval I2=(c,d) iff b → c

 Critical regions

 A critical region CR is an interval (a,b), where a is the first operation in the CR and b the last

 Mutual exclusion

 Critical regions CRA and CRB are mutually exclusive if:

Either CRA → CRB or CRB → CRA  for all valid executions!

 Assume atomic registers (for now)

64

Simplified Notation (cf. Histories)

spcl.inf.ethz.ch

@spcl_eth

 Combines the first lock (request access) with the second lock (grant access) 

74

Peterson’s Two-Thread Lock (1981)

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1; // I’m interested
victim = tid; // other goes first
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = 0; // I’m not interested

}

spcl.inf.ethz.ch

@spcl_eth

 Intuition:

 Victim is written once

 Pick thread that wrote victim last

 Show thread must have read flag==0

 Show that no sequentially consistent schedule permits that

75

Proof Correctness

spcl.inf.ethz.ch

@spcl_eth

 (recap) definition: Every thread that calls lock() eventually 
gets the lock.

 Implies deadlock-freedom!

 Is Peterson’s lock 
starvation-free?

76

Starvation Freedom

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1; // I’m interested
victim = tid; // other goes first
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = 0; // I’m not interested

}

spcl.inf.ethz.ch

@spcl_eth

 Intuition:

 Threads can only wait/starve in while()

Until flag==0 or victim==other

 Other thread enters lock()  sets victim to other

Will definitely “unstuck” first thread

 So other thread can only be stuck in lock()

Will wait for victim==other, victim cannot block both threads  one must leave!

77

Proof Starvation Freedom



spcl.inf.ethz.ch

@spcl_eth

78

Case Study: Automatic Reasoning about Semantics

CACM 
Volume 9 Issue 1, Jan. 1966 

spcl.inf.ethz.ch

@spcl_eth

bool want[2];
bool turn;
byte cnt;

proctype P(bool i)
{
want[i] = 1;
do
:: (turn != i) ->

(!want[1-i]);
turn = i

:: (turn == i) ->
break

od;
skip; /* critical section */
cnt = cnt+1;
assert(cnt == 1);
cnt = cnt-1;
want[i] = 0

}

init { run P(0); run P(1) }

 Is the proposed algorithm correct?

 We may proof it manually 

Using tools from the last lecture

→ reason about the state space of H

 Or use automated proofs (model checking)

E.g., SPIN (Promela syntax)

79

Case Study: Automatic Reasoning about Semantics

spcl.inf.ethz.ch

@spcl_eth

 Spin tells us quickly that it 
found a problem

 A sequentially consistent
order that violates mutual
exclusion!

 It’s not always that easy

 This example comes from the SPIN
tutorial

 More than two threads make it much 
more demanding!

 More in the recitation session!

80

Case Study: Automatic Reasoning about Semantics

spcl.inf.ethz.ch

@spcl_eth

 Implement and run our little counter on x86

 100000 iterations

 1.6 ∙ 10-6% errors

 What is the 
problem?

81

Back to Peterson in Practice … on x86

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1; // I’m interested
victim = tid; // other goes first
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = 0; // I’m not interested

}

spcl.inf.ethz.ch

@spcl_eth

 Implement and run our little counter on x86

 100000 iterations

 1.6 ∙ 10-6% errors

 What is the 
problem?

No sequential
consistency
for W(v) and 

R(flag[j])

82

Peterson in Practice … on x86

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1; // I’m interested
victim = tid; // other goes first
asm(“mfence”);
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = 0; // I’m not interested

}

spcl.inf.ethz.ch

@spcl_eth

 Implement and run our little counter on x86

 Many iterations

 1.6 ∙ 10-6% errors

 What is the 
problem?

No sequential
consistency
for W(v) and 

R(flag[j])

 Still 1.3 ∙ 10-6%

Why?

83

Peterson in Practice … on x86

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1; // I’m interested
victim = tid; // other goes first
asm(“mfence”);
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = 0; // I’m not interested

}



spcl.inf.ethz.ch

@spcl_eth

 Implement and run our little counter on x86

 Many iterations

 1.6 ∙ 10-6% errors

 What is the 
problem?

No sequential
consistency
for W(v) and 

R(flag[j])

 Still 1.3 ∙ 10-6%

Why?

Reads may slip into CR!

84

Peterson in Practice … on x86

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1; // I’m interested
victim = tid; // other goes first
asm(“mfence”);
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
asm(“mfence”);
flag[tid] = 0; // I’m not interested

}

The compiler may inline 
this function 

spcl.inf.ethz.ch

@spcl_eth

 Unoptimized (naïve sprinkling of mfences)

 Performance:

 No mfence

375ns

 mfence in lock

379ns

 mfence in unlock

404ns

 Two mfence

427ns (+14%)

85

Correct Peterson Lock on x86

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1; // I’m interested
victim = tid; // other goes first
asm(“mfence”);
while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
asm(“mfence”);
flag[tid] = 0; // I’m not interested

}

spcl.inf.ethz.ch

@spcl_eth

 Hardware atomic operations:

 Test&Set

Write const to memory while returning the old value

 Atomic swap

Atomically exchange memory and register

 Fetch&Op

Get value and apply operation to memory location

 Compare&Swap

Compare two values and swap memory with register if equal

 Load-linked/Store-Conditional LL/SC

Loads value from memory, allows operations, commits only if no other updates committed mini-TM

 Intel TSX (transactional synchronization extensions)

Hardware-TM (roll your own atomic operations)

95

Hardware Support?

spcl.inf.ethz.ch

@spcl_eth

 Design-Problem I: Multi-core Processor

 Which atomic operations are useful?

 Design-Problem II: Complex Application

 What atomic should I use?

 Concept of “consensus number” C if a primitive can be used to solve the “consensus problem” in a finite 
number of steps (even if threads stop)

 atomic registers have C=1 (thus locks have C=1!)

 TAS, Swap, Fetch&Op have C=2

 CAS, LL/SC, TM have C=∞

96

Relative Power of Synchronization

spcl.inf.ethz.ch

@spcl_eth

 Test-and-Set semantics

 Memoize old value

 Set fixed value TASval (true)

 Return old value

 After execution:

 Post-condition is a fixed (constant) value!

97

Test-and-Set Locks

bool TestAndSet (bool *flag) {
bool old = *flag;
*flag = true;
return old;

} // all atomic!

spcl.inf.ethz.ch

@spcl_eth

 Assume TASval indicates “locked”

 Write something else to indicate “unlocked”

 TAS until return value is != TASval (1 in this example)

 When will the lock be 
granted?

 Does this work well in 
practice?

98

Test-and-Set Locks

volatile int lck = 0;

void lock() {
while (TestAndSet(&lck) == 1);

}

void unlock() {
lck = 0;

}



spcl.inf.ethz.ch

@spcl_eth

 On x86, the XCHG instruction is used to implement TAS

 x86 lock is implicit in xchg!

 Cacheline is read and written

 Ends up in exclusive state, invalidates other copies

 Cacheline is “thrown” around uselessly

 High load on memory subsystem

x86 lock is essentially a full memory barrier 

99

Cacheline contention (or: why I told you about MESI and friends)

movl $1, %eax
xchg %eax, (%ebx)

spcl.inf.ethz.ch

@spcl_eth

 Spinning in TAS is not a good idea

 Spin on cache line in shared state

 All threads at the same time,  no cache coherency/memory traffic

 Danger!

 Efficient but use with great 
care!

 Generalizations are very
dangerous

100

Test-and-Test-and-Set (TATAS) Locks

volatile int lck = 0;

void lock() {
do {

while (lck == 1);
} while (TestAndSet(&lck) == 1);

}

void unlock() {
lck = 0;

}

spcl.inf.ethz.ch

@spcl_eth

 Example: Double-Checked Locking

101

Warning: Even Experts get it wrong!

Problem: Memory ordering leads to race-conditions!

1997

spcl.inf.ethz.ch

@spcl_eth

 Do TATAS locks still have contention?

 When lock is released, k threads fight for 
cache line ownership

 One gets the lock, all get the CL exclusively (serially!)

 What would be a good 
solution? (think “collision
avoidance”)

102

Contention?

volatile int lck = 0;

void lock() {
do {
while (lck == 1);

} while (TestAndSet(&lck) == 1);
}

void unlock() {
lck = 0;

}

spcl.inf.ethz.ch

@spcl_eth

 Exponential backoff eliminates contention statistically

 Locks granted in
unpredictable
order

 Starvation possible
but unlikely

How can we make
it even less likely?

103

TAS Lock with Exponential Backoff

volatile int lck = 0;

void lock() {
while (TestAndSet(&lck) == 1) {
wait(time);
time *= 2; // double waiting time 

}
}

void unlock() {
lck = 0;

}

Similar to: T. Anderson: “The performance of spin lock alternatives for shared-memory multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990

spcl.inf.ethz.ch

@spcl_eth

 Exponential backoff eliminates contention statistically

 Locks granted in
unpredictable
order

 Starvation possible
but unlikely

Maximum waiting
time makes it less
likely

104

TAS Lock with Exponential Backoff

volatile int lck = 0;
const int maxtime=1000;

void lock() {
while (TestAndSet(&lck) == 1) {
wait(time);
time = min(time * 2, maxtime); 

}
}

void unlock() {
lck = 0;

}

Similar to: T. Anderson: “The performance of spin lock alternatives for shared-memory multiprocessors”, TPDS, Vol. 1 Issue 1, Jan 1990



spcl.inf.ethz.ch

@spcl_eth

105

Comparison of TAS Locks

spcl.inf.ethz.ch

@spcl_eth

 Are TAS locks perfect?

 What are the two biggest issues?

 Cache coherency traffic (contending on same location with expensive atomics)

-- or --

 Critical section underutilization (waiting for backoff times will delay entry to CR)

 What would be a fix for that? 

 How is this solved at airports and shops (often at least)?

 Queue locks -- Threads enqueue

 Learn from predecessor if it’s their turn

 Each threads spins at a different location

 FIFO fairness

106

Improvements?

spcl.inf.ethz.ch

@spcl_eth

 Array to implement 
queue

 Tail-pointer shows next free 
queue position

 Each thread spins on own 
location

CL padding!

 index[] array can be put in TLS

 So are we done  now?

 What’s wrong?

 Synchronizing M objects 
requires Θ(NM) storage

 What do we do now?

107

Array Queue Lock

volatile int array[n] = {1,0,…,0};
volatile int index[n] = {0,0,…,0};
volatile int tail = 0;

void lock() {
index[tid] = GetAndInc(tail) % n;
while (!array[index[tid]]); // wait to receive lock

}

void unlock() {
array[index[tid]] = 0; // I release my lock
array[(index[tid] + 1) % n] = 1; // next one

}

spcl.inf.ethz.ch

@spcl_eth

 List-based (same queue 
principle)

 Discovered twice by Craig, 
Landin, Hagersten 1993/94

 2N+3M words

 N threads, M locks

 Requires thread-local qnode
pointer

 Can be hidden!

108

CLH Lock (1993)

typedef struct qnode {
struct qnode *prev;
int succ_blocked;

} qnode;

qnode *lck = new qnode; // node owned by lock

void lock(qnode *lck, qnode *qn) {
qn->succ_blocked = 1;
qn->prev = FetchAndSet(lck, qn);
while (qn->prev->succ_blocked);

}

void unlock(qnode **qn) {
qnode *pred = (*qn)->prev;
(*qn)->succ_blocked = 0;
*qn = pred;

}

spcl.inf.ethz.ch

@spcl_eth

 Qnode objects represent 
thread state!

 succ_blocked == 1 if waiting 
or acquired lock

 succ_blocked == 0 if released 
lock

 List is implicit!

 One node per thread

 Spin location changes

NUMA issues (cacheless)

 Can we do better?

109

CLH Lock (1993)

typedef struct qnode {
struct qnode *prev;
int succ_blocked;

} qnode;

qnode *lck = new qnode; // node owned by lock

void lock(qnode *lck, qnode *qn) {
qn->succ_blocked = 1;
qn->prev = FetchAndSet(lck, qn);
while (qn->prev->succ_blocked);

}

void unlock(qnode **qn) {
qnode *pred = (*qn)->prev;
(*qn)->succ_blocked = 0;
*qn = pred;

}

spcl.inf.ethz.ch

@spcl_eth

 Make queue explicit

 Acquire lock by 
appending to queue

 Spin on own node 
until locked is reset

 Similar advantages
as CLH but

 Only 2N + M words

 Spinning position is fixed!

Benefits cache-less NUMA

 What are the issues?

 Releasing lock spins

 More atomics!

110

MCS Lock (1991)

typedef struct qnode {
struct qnode *next;
int succ_blocked;

} qnode;

qnode *lck = NULL; 

void lock(qnode *lck, qnode *qn) {
qn->next = NULL;
qnode *pred = FetchAndSet(lck, qn);
if(pred != NULL) {

qn->locked = 1;
pred->next = qn;
while(qn->locked);

} }

void unlock(qnode * lck, qnode *qn) {
if(qn->next == NULL) { // if we’re the last waiter

if(CAS(lck, qn, NULL)) return;
while(qn->next == NULL); // wait for pred arrival

}
qn->next->locked = 0; // free next waiter
qn->next = NULL;

}



spcl.inf.ethz.ch

@spcl_eth

 Key Lesson:

 Reducing memory (coherency) traffic is most important!

 Not always straight-forward (need to reason about CL states)

 MCS: 2006 Dijkstra Prize in distributed computing

 “an outstanding paper on the principles of distributed computing, whose significance and impact on the theory 
and/or practice of distributed computing has been evident for at least a decade”

 “probably the most influential practical mutual exclusion algorithm ever”

 “vastly superior to all previous mutual exclusion algorithms”

 fast, fair, scalable  widely used, always compared against!

111

Lessons Learned!

spcl.inf.ethz.ch

@spcl_eth

 Down to memory complexity of 2N+M

 Probably close to optimal

 Only local spinning

 Several variants with low expected contention

 But: we assumed sequential consistency 

 Reality causes trouble sometimes

 Sprinkling memory fences may harm performance

 Open research on minimally-synching algorithms!

Come and talk to me if you’re interested

112

Time to Declare Victory?

spcl.inf.ethz.ch

@spcl_eth

 Allow threads to yield CPU and leave the OS run queue

 Other threads can get them back on the queue!

 cond_wait(cond, lock) – yield and go to sleep

 cond_signal(cond) – wake up sleeping threads

 Wait and signal are OS calls

 Often expensive, which one is more expensive?

Wait, because it has to perform a full context switch

113

Fighting CPU waste: Condition Variables

spcl.inf.ethz.ch

@spcl_eth

 Spinning consumes CPU cycles but is cheap

 “Steals” CPU from other threads

 Blocking has high one-time cost and is then free

 Often hundreds of cycles (trap, save TCB …)

 Wakeup is also expensive (latency)

Also cache-pollution

 Strategy:

 Poll for a while and then block

But what is a “while”??

115

When to Spin and When to Block?

spcl.inf.ethz.ch

@spcl_eth

 Optimal time depends on the future

 When will the active thread leave the CR?

 Can compute optimal offline schedule

Q: What is the optimal offline schedule (assuming we know the future, i.e., when the lock will become available)?

 Actual problem is an online problem

 Competitive algorithms

 An algorithm is c-competitive if for a sequence of actions x and a constant a holds:

C(x) ≤ c*Copt(x) + a

 What would a good spinning algorithm look like and what is the competitiveness?

116

When to Spin and When to Block?

spcl.inf.ethz.ch

@spcl_eth

 If T is the overhead to process a wait, then a locking algorithm that spins for time T before it blocks is 2-
competitive!

 Karlin, Manasse, McGeoch, Owicki: “Competitive Randomized Algorithms for Non-Uniform Problems”, 
SODA 1989 

 If randomized algorithms are used, then 
e/(e-1)-competitiveness (~1.58) can be achieved

 See paper above!

117

Competitive Spinning



spcl.inf.ethz.ch

@spcl_eth

 A lock-free method

 guarantees that infinitely often some method call finishes in a finite number of steps

 A wait-free method

 guarantees that each method call finishes in a finite number of steps (implies lock-free)

 Synchronization instructions are not equally powerful!

 Indeed, they form an infinite hierarchy; no instruction (primitive) in level x can be used for lock-/wait-free 
implementations of primitives in level z>x.

118

Remember: lock-free vs. wait-free

spcl.inf.ethz.ch

@spcl_eth

 Each level of the hierarchy has a “consensus number” assigned.

 Is the maximum number of threads for which primitives in level x can solve the consensus problem

 The consensus problem: 

 Has single function: decide(v)

 Each thread calls it at most once, the function returns a value that meets two conditions:

consistency: all threads get the same value

validity: the value is some thread’s input

 Simplification: binary consensus (inputs in {0,1})

119

Concept: Consensus Number

spcl.inf.ethz.ch

@spcl_eth

 Can a particular class solve n-thread consensus wait-free?

 A class C solves n-thread consensus if there exists a consensus protocol using any number of objects of class C and 
any number of atomic registers

 The protocol has to be wait-free (bounded number of steps per thread)

 The consensus number of a class C is the largest n for which that class solves n-thread consensus (may be infinite)

 Assume we have a class D whose objects can be constructed from objects out of class C. If class C has consensus 
number n, what does class D have?

120

Understanding Consensus

spcl.inf.ethz.ch

@spcl_eth

 Binary consensus with two threads (A, B)!

 Each thread moves until it decides on a value

 May update shared objects

 Protocol state = state of threads + state of shared objects

 Initial state = state before any thread moved

 Final state = state after all threads finished

 States form a tree, wait-free property guarantees a finite tree

Example with two threads and two moves each!

121

Starting simple …

spcl.inf.ethz.ch

@spcl_eth

 Theorem [Herlihy’91]: Atomic registers have consensus number one

 I.e., they cannot be used to solve even two-thread consensus! Really?

 Proof outline:

 Assume arbitrary consensus protocol, thread A, B

 Run until it reaches critical state where next action determines outcome (show that it must have a critical state first)

 Show all options using atomic registers and show that they cannot be used to determine one outcome for all 
possible executions!

1) Any thread reads (other thread runs solo until end)

2) Threads write to different registers (order doesn’t matter)

3) Threads write to same register (solo thread can start after each write)

122

Atomic Registers

spcl.inf.ethz.ch

@spcl_eth

 Theorem [Herlihy’91]: Atomic registers have consensus number one

 Corollary: It is impossible to construct a wait-free implementation of any object with consensus 
number of >1 using atomic registers

 “perhaps one of the most striking impossibility results in Computer Science” (Herlihy, Shavit)

 We need hardware atomics or Transactional Memory!

 Proof technique borrowed from:

 Very influential paper, always worth a read!

 Nicely shows proof techniques that are central to parallel and distributed computing!

123

Atomic Registers



spcl.inf.ethz.ch

@spcl_eth

 Simple RMW operations (Test&Set, Fetch&Op, Swap, basically all functions where the op commutes or 
overwrites) have consensus number 2!

 Similar proof technique (bivalence argument)

 CAS and TM have consensus number ∞

 Constructive proof!

124

Other Atomic Operations

spcl.inf.ethz.ch

@spcl_eth

 CAS provides an infinite consensus number

 Machines providing CAS are asynchronous computation equivalents of the Turing Machine

 I.e., any concurrent object can be implemented in a wait-free manner (not necessarily fast!)

125

Compare and Set/Swap Consensus

const int first = -1
volatile int thread = -1;
int proposed[n];

int decide(v) {
proposed[tid] = v;
if(CAS(thread, first, tid))
return v; // I won!

else
return proposed[thread]; // thread won

}

spcl.inf.ethz.ch

@spcl_eth

 Not really … ;-)

 We’ll argue more about performance now!

 But you have all the tools for:

 Efficient locks

 Efficient lock-based algorithms

 Efficient lock-free algorithms (or even wait-free)

 Reasoning about parallelism!

 What now?

 A different class of problems

Impact on wait-free/lock-free on actual performance is not well understood

 Relevant to HPC, applies to shared and distributed memory

 Group communications

126

Now you know everything 


