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Lecture 4: Languages, Fast Locks, and Lock-free
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Motivational video: https://www.youtube.com/watch?v=104YViBAGUO

N >
They want
$2,700 for the
server and
$100 for the
iPod.

I will get both and
pay only $2,240
altogether!

Adopted from Jose Nelson Amaral, “How did this get published?”, LCTES'12
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So, a computing scientist entered a store....

Adopted from Jose Nelson Amaral, “How did this get published?”, LCTES'12

MM SPCL

So, a computing scientist entered a store.... B
o But the average of
( 10% and 50% is 30%

and 70% of $3,200
is $2,240.
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Ma’am you
are $560
short.

Adopted from Jose Nelson Amaral, “How did this get published?”, LCTES'12
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So, a computing scientist entered a store....

e -

But... | just came from at
top CS conference in San
Jose where they do it!

Ma’am you cannot take
the arithmetic average
of percentages!

Adopted from Jose Nelson Amaral, “How did this get published?”, LCTES'12

Scientific Benchmarking: The fallacies of summarizing (Rules 3+4)

System B

[Testcase

[Floating-point operations [Gflop] 10,0 15,0 20,0

THR. IEEE/ACM SC15 (full talk at htos: WAWTU)
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Rule 3: Use the arithmetic mean only for summarizing costs.
Use the harmonic mean for summarizing rates.

Rule 4: Avoid izing ratios (e.g., speedup); ize the
costs or rates that the ratios base on instead. Only if these are not
available use the geometric mean for summarizing ratios.

THR Parallel C IEEE/ACM SC15 (fulltalk at hitps:/ tub

(=
Administrivia
= First project presentation: 10/29 (two weeks from now!)

= First presentation to gather feedback
You already know what your peers are doing, now let us know

Some more ideas what to talk about:

What tools/prog ning I b ization scheme do you use?
Which architecture? (we only offer access to Xeon Phi, you may use different)
How to verify correctness of the parallelization?

How to argue about performance (bounds, what to compare to?)
(Somewhat) realistic use-cases and input sets?

What are the key concepts employed?

What are the main obstacles?

Goals of this lecture

= Recap: Correctness in parallel programs
= Covered in PP, here a slimmed down version to make the DPHPC lecture self-contained
Watch for the green bar on the right side
= Languages and Memory Models
= Java/C++ definition
= Recap ial i from the prog ’s perspective
= Races (now in practice)
= Synchronization variables (now in practice)

= Mutual exclusion

= Recap - simple lock properties

= Proving correctness in SC and memory models (x86)

= Locks in practice — performance overhead of memory models!
= Fast (actually practical) locks

= CLH - queue locks

= MCS - “cache coherence optimal” queue locking

l o/ = ETHzirich
Review of last lecture DPHPC Overview
DPHPC
= Directory-based cache coherence
= Simple working with presence/dirty bits 2 locality ’p,a.’a"el'sm
= Case study with Xeon Phi 3 d ~
ase stucy with feon ,' o g - caches vector ISA  shared memory distributed memory
lllustrates performance impact of the protocol and its importance! b= - memory hierarchy
o
2 I cache coherency |
&5 r 1
= Memory models @ memory distributed
= Ordering between accesses to different variables ‘3‘ models algorithms
= Sequential consistency — nice but unrealistic § locks group commu-
Demonstrate how it prevents compiler and architectural optimizations egh ;‘;Sg Nications
linearizability
= Practical memory models ) Amdahl's and Gustafson's law ,
= Overview of various models (TSO, PSO, RMO, ... existing CPUs) » T 1
= Case study of x86 (continuing today) % } m:'r‘;’y b PRAM I} LogP S
3 1/O complexity
balance principles | balance principles Il
Little's Law scheduling
ML MRl v enien ETHzirich

The Eight x86 Principles

“Reads are not reordered with other reads.” (R>R)

“Writes are not reordered with other writes.” (W>W)

“Writes are not reordered with older reads.” (R>W)

“Reads may be reordered with older writes to different locations but not with older writes to the same
location.” (NO W-R!)

5. “In a multiprocessor system, memory ordering obeys causality.” (memory ordering respects transitive
visibility)

dWNPR

6. “In a multiprocessor system, writes to the same location have a total order.” (implied by cache
coherence)

7. “In a multiprocessor system, locked instructions have a total order.” (enables synchronized
programming!)

“« (anahl

8. “Reads and writes are not reordered with locked instructions. synck ized p

w ETHzirich




MG

fethe.ch

ETHzirich

ML

ETHzirich

Principle 1 and 2

Reads are not reordered with other reads. (R>R)
Writes are not reordered with other writes. (W->W)

Reads and writes observed in program order.
Cannot be reordered!

P2

oo
"
W
22
o
W

Memory

If r1 == 2, then r2 must be 1!
Not allowed: r1 ==2,r2 ==

Question: is r1=0, r2=1 allowed?

A

)

R(a) P,

P1

b X

Principle 3

Writes are not reordered with older reads. (R2W)

All values zero initially

Question: is r1==1 and r2==1 allowed?

Question: is r1==0 and r2==0 allowed?

P2

X

, then P2:W(a) = P1:R(a), thus r2 must be 0!
, then P1:W(b) = P1:R(b), thus r1 must be 0!

_—‘—_0.“‘-_

Principle 4

Reads may be reordered with older writes to different locations
but not with older writes to the same location. (NO W->R!)

Question: is r1=1, r2=0 allowed?

Allowed: r1=0, r2=0.

Sequential consistency can be enforced with mfence.
Attention: this rule may allow reads to move into
critical sections!

Principle 5

In a multiprocessor system, memory ordering obeys causality a = 1
(memory ordering respects transitive visibility).

Question: is r1==1, r2==0, r3==1 allowed?

All values zero initially

Ifrl==1and r2 then r3 must read 1.
Not allowed: r1==1, r2
Provides some form of atomicity.

P2 P3
rl =a
b=1 r2 = b
r3 = a
—I-Q
[
I
I
]
&
*
A Y
‘| R(a) mW(b,1) 1 P,
\
\
\
R(b) E)) P3
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Principle 6 o

In a multiprocessor system, writes to the same location
have a total order (implied by cache coherence).

a=1

Question: is r1=0, r2=2, r3=0, r4=1 allowed?

All values zero initially

Memory

* Notallowed: r1==1,r2==2,r3==2,r4 ==

+ If P3 observes P1’s write before P2’s write, then P4 will also
see P1’s write before P2's write

* Provides some form of atomicity

P2 P3 P4
a=2
rl =a r3 = a
r2 = a rd4 = a
I
I
|
1
Iy
&
*
VS
\ E)) R(a) Py
\
\
]
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Principle 7 All values zero initially, registers rl==|
P1 P2 P3 P4
Ina multlpr?cessor system, Iof:ked mstructlor.ls have a xchg(a,r1)  xchg(b,r2)
total order. bles sy d prog 1) MB=a B
r4 = b ré = a

Question: is r3=1, r4=0, r5=0, r6=1 allowed?

ETHzirich

:

* Not allowed: r3==1,r4==0, r5==1, r ==

« If P3 observes ordering P1:xchg = P2:xchg,
then P4 observes the same ordering

* (xchg has implicit lock)

]
]
I
I,
4
N
“ R(a) R(b) Py
\
\
\
R(b) R(a) P,
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All values zero initially but r1 =r3=1

Principle 8 o1 =
Reads and writes are not reordered with locked instructions. xchg(a,r1) xchg(b,r3)
(onahl hronived inol) r2=b rd = a
y 4
X(a,r1)
Memory

* Not allowed: r2 ==0, r4 ==

* Locked instructions have total order, so P1 and P2 agree on
the same order

« If volatile variables use locked instructions = practical
sequential consistency (more later)

% __

An Alternative View: x86-TSO

= Sewell el al.: “x86-TSO: A Rigorous and Usable Programmer’s Model for x86 Multiprocessors”, CACM May
2010

“[...] real multiprocessors typically do not provide the ially memory that is assumed by
most work on semantics and verification. Instead, they have relaxed memory models, varying in subtle ways
between processor families, in which different hardware threads may have only loosely consistent views of a
shared memory. Second, the public vendor architectures, supposedly specifying what programmers can rely
on, are often in ambiguous informal prose (a particularly poor medium for loose specifications), leading to
widespread confusion. [...] We present a new x86-TSO programmer’s model that, to the best of our
knowledge, suffers from none of these problems. It is mathematically precise (rigorously defined in HOL4) but
can be presented as an intuitive abstract machine which should be widely accessible to working
programmers. [...]”

Similar for RMA systems: A. Dan, P. Lam, T. Hoefler, A. Vechev: Modeling and Analysis of Remote Memory Access Programming, ACM OOPSLA'16, best paper

Notions of Correctness

= We discussed so far:
= Read/write of the same location
Cache coherence (write serialization and atomicity)
= Read/write of multiple locations
Memory models (visibility order of updates by cores)

= Now one level up: objects (variables/fields with invariants defined on them)
= Invariants “tie” variables together
= Sequential objects
= Concurrent objects

Sequential Objects

= Each object has a type
= Atype is defined by a class
= Set of fields forms the state of an object
= Set of methods (or free functions) to manipulate the state

* Remark
= An Interface is an abstract type that defines behavior
A class implementing an interface defines several types

plinfeth
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Running Example: FIFO Queue head

tail

= Insert elements at tail

= Remove elements from head
= Initial: head = tail = @
= enq(x)
= enq(y)

= deq() [x]

capacity = 8

ML = ETHzirich

Sequential Queue tail

class Queue {
private:
int head, tail;
std: :vector<Item> items;

public:
Queue(int capacity) {
head = tail = ©;
items.resize(capacity);

¥

15

capacity = 8
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Sequential Queue tail
class Queue {
VZAEEE
public:
void enqg(Item x) {
if((tail+1)%items.size() == head) {
throw FullException;

}
items[tail] = x;
tail = (tail+l)%items.size();

}

Item deq() {
if(tail == head) {
‘throw EmtpyException;

Item item = items[head];
head = (head+1)%items.size();
return item;

s capacity = 8

Sequential Execution head

tail
= (The) one process executes
operations one at a time
= Sequential ©

= Semantics of operation
defined by specification
of the class
= Preconditions and postconditions
e.g., Hoare logic

>

Time >

« ETHZzlrich

Design by Contract! tail
= Preconditions:

= Specify conditions that must
hold before method executes
Involve state and arguments
passed
Specify obligations a client
must meet before calling a
method
= Example: enq()

= Queue must not be full!

class Queue {
W coo
void enq(Item x) {
assert((tail+l)%items.size() != head);

/e

b capacity = 8

Design by Contract! tail

= Postconditions:
= Specify conditions that must
hold after method executed
= Involve old state and
arguments passed

= Example: enq()
* Queue must contain element!
class Queue {
void enq(Item x) {
assert(
(tail == (old_tail + 1)%items.size()) &&
(items[old_tail] == x) );
} capacity = 8

b

e o rns e ETHzirich
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Sequential specification

= if(precondition)
= Objectis in a specified state
= then(postcondition)
= The method returns a particular value or
= Throws a particular exception and
= Leaves the object in a specified state

= Invariants
= Specified conditions (e.g., object state) must hold anytime a client could invoke an objects method!

Advantages of sequential specification

= State between method calls is defined
= Enables reasoning about objects
= Interactions between methods captured by side effects on object state

= Enables reasoning about each method in isolation
= Contracts for each method
= Local state changes global state

= Adding new methods
= Only reason about state changes that the new method causes
= If invariants are kept: no need to check old methods
= Modularity!
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Concurrent execution - State

= Concurrent threads invoke methods on possibly shared objects
= At overlapping time intervals!

State Meaningful only between Overlapping method executions >
method executions object may never be “between
method executions”

v

Time
q.enq(y)
Each method execution
takes some non-zero
8 g.enq(x) amount of time!

Concurrent execution - Reasoning

= Reasoning must now include all possible interleavings

= Of changes caused by methods themselves

That is, now we have to consider
Erope [iyA Seguential what will happen if we execute:

Reasoning Consider each method in Need to consider all possible + enq() concurrently with enq()
isolation; invariants on state  interactions; all intermediate states * deq() concurrently with deq()
before/after execution. during execution * deq() concurrently with enq()

Time

>
>

q.enq(y)

Each method execution
takes some non-zero

q.enq(x)

amount of time!

« ETHzurich

Concurrent execution - Method addition

= Reasoning must now include all possible interleavings
= Of changes caused by and methods themselves

Add Method Without affecting other Everything can potentially interact
methods; invariants on state  with everything else
before/after execution.

= Consider adding a method that returns the last item enqueued

Item peek() { void enq(Item x) { Item deq() {
if(tail == head) throw EmptyException; items[tail] = x; Ttem item = items[head];
return items[head]; tail = (tail+l) % items.size(); head = (head+1) % items.size();
} } }

= If peek() and enq() run concurrently: what if tail has not yet been incremented?
= If peek() and deq() run concurrently: what if last item is being dequeued?

Concurrent objects

= How do we describe one?
= No pre-/postconditions @
* How do we implement one?

= Plan for q ic or ial number of i

and states

*= How do we tell if an object is correct?

= Analyze all quadratic or exponential interactions and states

Is it time to panic for (parallel) software engineers?
Who has a solution?

e o rns Taos ETHzirich
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Lock-based queue tail

class Queue {
private:

int head, tail;
std: :vector<Item> items;
std: :mutex lock;

public:
Queue(int capacity) {
head = tail = 9;
items.resize(capacity);

/.
1

We can use the lock to
protect Queue’s fields.

Lock-based queue

class Queue {

public:
void enqg(Item x) {
[std::lock_guard<std: :mutex> 1(lock); }——
if((tail+l)%items.size()==head) {
throw FullException;

items[tail] = x;
tail = (tail+l)%items.size();

¥

Item deq() {
(std::lock_guard<std::mutex> 1(lock); }——
if(tail == head) {
throw EmptyException;
}
Item item = items[head];
head = (head+1)%items.size();
return item;

EEE tail

Class question: how is the
lock ever unlocked?

> One of C++'s ways of implementing a critical section
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C++ Resource Acquisition is Initialization

= RAIl - suboptimal name
= Can be used for locks (or any other resource acquisition)

= Constructor grabs resource

template <typename mutex_impl>
class lock_guard {
mutex_impl& _mtx; // ref to the mutex

= Destructor frees resource

= Behaves as if
= Implicit unlock at end of block!

public:
lock_guard(mutex_impl& mtx ) : _mtx(mtx) {
_mtx.lock(); // lock mutex in constructor

= Main advantages

~lock_guard
Always unlock/free lock at exit ck_guard() {

_mtx.unlock(); // unlock mutex in destructor

No “lost” locks due to exceptions _)
or strange control flow (goto ©) s
Very easy to use

ETHzirich
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Example execution Ghapg)(Ditspeiedtio it tirintiddeaineleasiednd proceeds.

void enq(Item x) {
std::lock guard<std: :mutex> 1(lock);
f((tail+1)%items.size()==head)

+ FullException; Item deq() {
std: :lock_guard<std: :mutex> 1(lock); enq(x)
items[tail] X;
tail = (tail+l)%items.size(
}
f(tail head)
throw EmptyException;
Item item = items[head]; deq()
head (head+1)%items.size();
turn item;
}

" SPCL
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Correctness — end of interlude

= |s the locked queue correct?
= Yes, only one thread has access if locked correctly
= Allows us again to reason about pre- and postconditions
= Smells a bit like sequential consistency, no?
= Class question: What is the problem with this approach?
= Same as for SC©

It does not scale!
What is the solution here?

Back to memory models: Language Memory Models

= Which transformations/reorderings can be applied to a program
= Affects platform/system
= Compiler, (VM), hardware
= Affects programmer
= What are possible semantics/output
= Which communication between threads is legal?
*=  Without memory model
= Impossible to even define “legal” or “semantics” when data is accessed concurrently
= A memory model is a contract
= Between platform and programmer

AGSPCL
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History of Memory Models

= Java’s original memory model was broken [1]
Difficult to understand => widely violated

Did not allow reorderings as implemented in standard VMs
Final fields could appear to change value without synchronization
Volatile writes could be reordered with normal reads and writes

=> counter-intuitive for most developers
= Java memory model was revised [2]
= Java 1.5 (JSR-133)
= still some issues (operational semantics definition [3])
= C/C++ didn’t even have a memory model until much later
= Not able to make any statement about threaded semantics!
= Introduced in C++11 and C11
= Based on experience from Java, much more conservative

[1] Pugh: “The Java Memory Model is Fatally Flawed", CCPE 2000
[2] Manson, Pugh, Adve: “The Java memory model’, POPL'05
3] Aspinall, Sevcik: “Java memory model examples: Good, bad and ugly”, VAMP'07

spetinfethzch
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Everybody wants to optimize
= Language constructs for synchronization

= Java: volatile, synchronized, ...

= C++: atomic, (NOT volatile!), mutex, ...

b " PP R

pecific)

y
Compiler, (VM), architecture
Reorder and appear to reorder memory operations

Maintain sequential semantics per thread

Other threads may observe any order (have seen examples before)




= Relaxed memory model
= No global visibility ordering of operations
= Allows for standard compiler optimizations
= But

= Visibility function defined
= Correctly synchronized programs
= Guarantee sequential consistency
= Incorrectly synchronized programs
= Java: maintain safety and security guarantees

= C++: undefined behavior
No safety (anything can happen/change)

Java and C++ High-level overview

= Program order for each thread (sequential semantics)
= Partial order on memory operations (with respect to synchronizations)

Type safety etc. (require behavior bounded by causality)

Vo ETHZzirich
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Communication between threads: Intuition

= Not guaranteed unless by:
= Synchronization
= Volatile/atomic variables
= Specialized functions/classes (e.g., java.util.concurrent, ...

Thread 1

x=10 Flag is a synchronization variable
Ve (atomic in C++, volatile in Java),
flag = true:

i.e., all memory written by T1

synchronization

Thread 2 must be visible to T2 after it
if(flag) reads the value true for flag!
print(xsy)

w [ETHzirich

= Local thread view!

Working
Memory

When are values transferred?

Recap: Memory Model (Intuition)

= Abstract relation between threads and memory

Working
Memory

Working
Memory

Abstraction
of caches and
registers.

= Linearizability is a higher-level concept!

= Does not talk about classes, objects, methods, ...

Locks synchronize threads and memory!

= Java C++ (RAII)

synchronized (lock) { {
// critical region unique_lock<mutex> I(lock);

// critical region
}

= Synchronized methods as

" = Many flexible variants
syntactic sugar

Semantics:
= mutual exclusion
= at most one thread may hold a lock at a time
* a thread B trying to acquire a lock held by thread A blocks until thread A
releases the lock
= note: threads may wait forever (no progress guarantee!)

ML

= Similar to synchronization variables

Thread 1
x=10
y=5
unlock(m)
\ Thread 2
Tock(m)
print(x+y)

= All memory accesses before an unlock ...
= are ordered before and are visible to ...
= any memory access after a matching lock!

Memory model semantics of locks

Vonien ETHzirich

PSP
Memory model semantics of synchronization variables

= Variables can be declared volatile (Java) or atomic (C++)

*= Reads and writes to synchronization variables
= Are totally ordered with respect to all threads
= Must not be reordered with normal reads and writes

= Compiler
= Must not allocate synchronization variables in registers
= Must not swap variables with synchronization variables
= May need to issue memory fences/barriers

s ETHzUrich
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Memory model semantics of synchronization variables

= Write to a synchronization variable

= Similar memory semantics as unlock (no process synchronization!)
= Read from a synchronization variable

= Similar memory semantics as lock (no process synchronization!)

class example {
intx=0;
atomic<bool> v = false

public void writer() {

x=4z, Thread 1
v = true;
} Without atomic or

o volatile, a platform may
plijf?::]c(vold reader() { reorder these accesses!

print(x) Thread 2
}

ETHzirich
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Intuitive memory model rules

= Java/C++: Correctly synchronized progi will ially

= Correctly synchronized = data-race free
= iff all sequentially consistent executions are free of data races

= Two accesses to a shared memory location form a data race in the execution of a program if
= The two accesses are from different threads
= At least one access is a write and

= The accesses are not synchronized

Case Study: Implementing locks - lecture goals

= Among the simplest concurrency constructs
= Yet, complex enough to illustrate many optimization principles
* Goal 1: You understand locks in detail
= Requirements / guarantees
= Correctness / validation
= Performance / scalability
Why you do not want to use them in many cases!
= Goal 2: Acquire the ability to design your own locks (and other constructs)
= Understand techniques and weaknesses/traps
= Extend to other concurrent algorithms
Issues are very much the same
= Goal 3: Understand the complexity of shared memory!
= Memory models in realistic settings

spelinfethz.ch
W @spcLeth
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Preliminary Comments

= All code examples are in C/C++ style
Neither C (<11) nor C++ (<11) had a clear memory model
C++ is one of the languages of choice in HPC
Consider source as exemplary (and pay attention to the memory model)!
In fact, many/most textbook examples are incorrect in hing but ial c i y!
In fact, you’ll most likely not need those algorithms, but the principles will be useful!
= x86 is really only used because it is common

= This does not mean that we consider the ISA or memory model elegant!

= We assume atomic memory (or registers)!

Usually given on x86 (easy to enforce)

= Number of threads/processes is p, tid is the thread id

speLinfethz.ch
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Recap Concurrent Updates

movl $1000, %eax
const int n=1000; .L2:
volatile int a=0;

// i=n=1000

movl (%rdx), %ecx // ecx=*a

for (int i=0; i<n; ++i) addl $1, %ecx // ecx++
a++; subl $1, %eax /i—
movl %ecx, (%rdx) // *a=ecx
= Multi-threaded execution! jne .12 //loop if i>0

= Demo: value of a for p=1?
= Demo: value of a for p>1?

Why? Isn’t it a single instruction?
movl $1000, %eax // i=n=1000
movl $0, -24(%rsp) //a=0

const int n=1000; mfence // ais visible!
std::atomic<int> aj L2
a=0; . . . . lock addl $1, -24(%rsp) // (*a)++
for (int i=0; i<n; ++i) subl $1, %eax /] i—

at+; jne .12 // loop if i>0

ETHzirich
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One instruction less! Performance!?

= run with larger n (108)
= Compiler: gcc version 4.9.2 (enabled c++11 support, -03)
= Single-threaded execution only!

const int n = 1e8;
volatile int a=0;

for (int i=@; i<n; ++i) Demo:[0:173
a++;
const int n = 1e8;
std::atomic<int> a;
a=o; Guess!  Demo: 0.55s
for (int i=0; i<n; ++i)
a++;

Schweizer, Besta, Hoefler: “Evaluating the Cost of Atomic Operations on Modern Architectures”, ACM PACT'15
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Some Statistics

= Nondeterministic execution
= Result depends on timing (probably not desired)
= What do you think are the most significant results?
= Running two threads on Core i5 dual core
= 3=1000? 2000? 1500? 1223? 1999?
Demo!

const int n=1000;

volatile int a=0;

for (int i=0; i<n; ++i)
at+;

Some Statistics

SN
o o

>

Probability (sqrt scale)
o

900 1200 1800

1500
Computed value (bin width: 10)

Conflicting Accesses

= (recap) two memory accesses conflict if they can happen at the same time (in happens-before) and one of
them is a write (store)
* Such a code is said to have a “race condition”
= Also data-race
= Trivia around races:
The Therac-25 killed three people
due to a race
A data-race lead to a large blackout
in 2003, leaving 55 million people
without power causing $1bn damage
Can be avoided by critical regions
= Mutually exclusive access to a set of operations

More formal: Mutual Exclusion

= Control access to a critical region
= Memory accesses of all processes happen in program order (a partial order, many interleavings)
An execution history defines a total order of memory accesses
= Some subsets of memory accesses (issued by the same process) need to happen atomically (thread a’s memory
accesses may not be interleaved with other thread’s accesses)
To achieve linearizability!
We need to restrict the valid executions movl
= > Requires synchronization of some sort 12:
= Many possible techniques (e.g., TM, CAS, T&S, ...)
= We first discuss locks which have wait semantics

$1000, %eax //i=1000

movl (%rdx), %ecx // ecx
addl $1, %ecx /] ecx++
subl $1, %eax /] i—

movl %ecx, (%rdx) // *a=ecx
jne .12 // loop if i>0

speLinfethz.ch
eth
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Fixing it with locks
movl $1000, %ebx

42
movq 0(%rbp), %rdi // (SystemV CC)
call omp_set_lock // get lock
movq 0(%rbp), %rdi // (SystemV CC)
movl (%rax), %edx //edx = *a
addl  $1, %edx // edx++
movl %edx, (%rax) // *a=edx

//=1000

const int n=1000;

volatile int a=0;

omp_lock_t 1lck;

for (int i=0; i<n; ++i) {
omp_set_lock(&lck);

a++;
omp_unset_lock(&lck); call omp_unset_lock // release lock
} subl  $1, %ebx /i—
jne L2 // repeat if i>0

What must the functions lock and unlock guarantee?
= #1: prevent two threads from simultaneously entering CR
i.e., accesses to CR must be mutually exclusive!

= #2: ensure consistent memory
i.e., stores must be globally visible before new lock is granted!
= Any performance guesses (remember, 0.23s - 0.78s for atomics)
" 2.26s

spetinfethzch
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Lock Overview

= Lock/unlock or acquire/release
= Lock/acquire: before entering CR
= Unlock/release: after leaving CR
= Semantics:
= Lock/unlock pairs have to match
= Between lock/unlock, a thread holds the lock
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Desired Lock Properties

= Mutual exclusion
= Only one thread is on the critical region
= Consistency
= Memory operations are visible when critical region is left
= Progress
= |f any thread a is not in the critical region, i
= Starvation-freedom (implies deadlock-fr:
= |f a thread is requesting access to a critical r
= Fairness

= Athread a requested access to a critical region before thread b. Did is also granted access to this
region before b?

= Performance
= Scaling to large numbers of contending threads

ot prevent another thread b from entering
om)
ion, then it will eventually be granted access

Simplified Notation (cf. Histories)

= Time defined by precedence (a total order on events)
= Events are instantaneous (linearizable)

Threads produce sequences of events a,,a,,a,,...

Program statements may be repeated, denote i-th instance of a as a'

Event a occurs before event b:a > b
An interval (a,b) is the duration between events a > b
Interval 1,=(a,b) precedes interval I,=(c,d) iff b > ¢
= (Critical regions

= Acritical region CRis an interval (a,b), where a is the first operation in the CR and b the last
= Mutual exclusion

= Critical regions CR, and CR; are mutually exclusive if:

Either CR, - CRg or CRg > CR, for all valid executions!

= Assume atomic registers (for now)

" SPCL e

ETHzirich

spelinfethz.ch
W @spcLeth

MM SPCL

ETHzirich

Peterson’s Two-Thread Lock (1981)

= Combines the first lock (request access) with the second lock (grant access)

volatile int flag[2];
volatile int victim;

void lock() {
int j = 1 - tid;
flag[tid] = 1; // I’m interested
victim = tid; // other goes first
while (flag[j] & victim == tid) {}; // wait

void unlock() {
flag[tid] = @; // I’m not interested
¥

Proof Correctness

= Intuition:
Victim is written once

Pick thread that wrote victim last
Show thread must have read flag==(
Show that no sequentially consistent schedule permits that

speLinfethz.ch
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Starvation Freedom

= (recap) definition: Every thread that calls lock() eventually
gets the lock.

= Implies deadlock-freedom! . .
volatile int flag[2];

’
® lIsPeterson’s lock volatile int victim;

starvation-free?
void lock() {
int j = 1 - tid;
flag[tid] = 1; // I’m interested
victim = tid; // other goes first
while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
flag[tid] = @; // I’m not interested

Proof Starvation Freedom

= Intuition:
= Threads can only wait/starve in while()
Until flag==0 or victim==other
= Other thread enters lock() = sets victim to other
Will definitely “unstuck” first thread
= So other thread can only be stuck in lock()
Will wait for victim==other, victim cannot block both threads = one must leave!
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Case Study: Automatic Reasoning about Semantics

\Cémments on a Problem in Concurrent
Programming Control

Dear Editor:
T would like to comment on Mr. Dijkstra’s solution [Solution
coneurrent programming control. Comm ACM 8
9] to & messy problem that is hardly academic. We
& it now on a multiple computer complex.
there are only two computcrs, the algorithm may be
simplified to the following:

Boolean array 5(0; 1) integer k, 1, j,

comment This is the program for computer i, which may be
cither 0 or 1, computer j 5 7 is the other one, 1 or 0;

i b () = false;

# i then begin

b(j) then go to (2;

i; g0 to Cl end;

else critical seetion;

b(i) := true;

remainder of program;

o 10 C0;

end

CACM
Volume 9 Issue 1, Jan. 1966

Mr. Dijkstra has come up with a clever solution to a really
practical problem.
Harnts Huay
Munitype
New York, New York

ETHzirich

Case Study: Automatic Reasoning about Semantics

bool want[2];
bool turn;
byte cnt;

= Is the proposed algorithm correct?
= We may proof it manually
Using tools from the last lecture
-> reason about the state space of H
= Or use automated proofs (model checking)
E.g., SPIN (Promela syntax)

proctype P(bool i)
{

want[i] = 1;

skip; /* critical section */
cnt = cnt+1;

want(i] =0

init { run P(0); run P(1) }

ETHzirich

Case Study: Automatic Reasoning about Semantics

= Spin tells us quickly that it
found a problem
= Asequentially consistent
order that violates mutual
exclusion!
= It’s not always that easy
= This example comes from the SPIN
tutorial
= More than two threads make it much
more demanding!

= More in the recitation session!

MSPCL
Back to Peterson in Practice ... on x86

= Implement and run our little counter on x86
= 100000 iterations
= 1.6-10°% errors

= What is the
problem?

volatile int flag[2];
volatile int victim;

void lock() {

int j = 1 - tid;

flag[tid] = 1; // I’m interested

victim = tid; // other goes first

while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
flag[tid] = @; // I’m not interested

spelinfethz.ch
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Peterson in Practice ... on x86

= Implement and run our little counter on x86
= 100000 iterations

= 1.6-10%%
o errors volatile int flag[2];

" r:gzteirsnt:‘e volatile int victim;
No sequential void lock() {
consistency int j = 1 - tid;
for W(v) and flag[tid] = 1; // I’m interested
R(flag[j]) victim = tid; // other goes first

asm(“mfence”);
while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
flag[tid] = @; // I’m not interested

ETHzirich

Peterson in Practice ... on x86

= Implement and run our little counter on x86

= Many iterations

* 16-10%
errors volatile int flag[2];

- :Zztelrsnt?he volatile int victim;
No sequential void lock() {
consistency int j = 1 - tid;
for W(v) and flag[tid] = 1; // I’m interested
R(flag[j]) victim = tid; // other goes first
= Still 1.3-10%% asm(“mfence”);
Why? while (flag[j] && victim == tid) {}; // wait

}

void unlock() {
flag[tid] = @; // I’m not interested

spetinfethzch
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Peterson in Practice ... on x86

= Implement and run our little counter on x86
= Many iterations

* 16-10%%
o errors volatile int flag[2];

= Whatisthe volatile int victim;
problem?
No sequential void lock() {
consistency int j = 1 - tid;
for W(v) and flag[tid] = 1; // I’m interested
R(flag[j]) victim = tid; // other goes first
= Still 1.3-10%% asm(“mfence”);
Why? while (flag[j] && victim tid) {}; // wait

}

void unlock() {
asm(“mfence”);
flag[tid] = @; // I’m not interested

Reads may slip into CR!
this fun:

Correct Peterson Lock on x86

= Unoptimized (naive sprinkling of mfences)
= Performance:

= No mfence

375 volatile int flag[2];

ns volatile int victim;

= mfence in lock

379ns void lock() {
= mfence in unlock int j = 1 - tid;

404ns flag[tid] = 1; // I’m interested
= Two mfence victim = tid; // other goes first

asm(“mfence”);
427ns (+14%)

while (flag[j] && victim == tid) {}; // wait
}

void unlock() {
asm(“mfence”);
flag[tid] = @; // I’m not interested

PO e ETHZzUrich

AGIICL vt ETHzirich

Hardware Support?

= Hardware atomic operations:

Test&Set

Write const to memory while returning the old value

Atomic swap

Atomically exchange memory and register

Fetch&Op

Get value and apply operation to memory location
Compare&Swap

Compare two values and swap memory with register if equal
Load-linked/Store-Conditional LL/SC

Loads value from memory, allows operations, commits only if no other updates committed = mini-TM
Intel TSX (transactional synchronization extensions)
Hardware-TM (roll your own atomic operations)

Relative Power of Synchronization

= Design-Problem I: Multi-core Processor
= Which atomic operations are useful?
= Design-Problem II: Complex Application
= What atomic should | use?
= Concept of “consensus number” C if a primitive can be used to solve the “consensus problem” in a finite
number of steps (even if threads stop)
= atomic registers have C=1 (thus locks have C=1!)
= TAS, Swap, Fetch&Op have C=2
= CAS, LL/SC, TM have C=co

ML
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Test-and-Set Locks

= Test-and-Set semantics
= Memoize old value
= Set fixed value TASval (true)
= Return old value

bool TestAndSet (bool *flag) {
bool old = *flag;
*flag = true;
return old;

} // all atomic!

= After execution:
= Post-condition is a fixed (constant) value!

Test-and-Set Locks

= Assume TASval indicates “locked”
= Write something else to indicate “unlocked”
= TAS until return value is != TASval (1 in this example)

=  When will the lock be

granted? e
latile int 1lck = 0;
= Does this work well in votatiie Ant e ’
practice? void lock() {

while (TestAndSet(&lck) == 1);

void unlock() {
1ck = 0;

¥
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Cacheline contention (or: why | told you about MESI and friends)

= On x86, the XCHG instruction is used to implement TAS
= x86 lock is implicit in xchg!

= Cacheline is read and written movl $1, %eax

= Ends up in exclusive state, invalidates other copies xchg  %eax, (%ebx)

= Cacheline is “thrown” around uselessly

= High load on memory subsystem

X86 lock is essentially a full memory barrier &

ETHzirich

MG

ETHziirich
Test-and-Test-and-Set (TATAS) Locks

= Spinning in TAS is not a good idea
= Spin on cache line in shared state
= All threads at the same time, no cache coherency/memory traffic

= Danger!

= Efficient but use with great
care!

volatile int 1lck = ©;

void lock() {
= Generalizations are very do {
dangerous while (lck == 1);

} while (TestAndSet(&lck) == 1);

void unlock() {
1ck = 0;
}

Warning: Even Experts get it wrong!

= Example: Double-Checked Locking

doubl choskad ocang .

1997 Double-Checked Locking
An Optimization Pattern for Effciently
Initializing and Accessing Thread-safe Objects

Problem: Memory ordering leads to race-conditions!

Contention?

= Do TATAS locks still have contention?
= When lock is released, k threads fight for

cache line ownership
One gets the lock, all get the CL exclusively (serially!)
What would be a good
solution? (think “collision
avoidance”)

volatile int 1ck = ©;

void lock() {
do {
while (lck == 1);
} while (TestAndSet(&lck) == 1);
}

void u
1c

}

nlock() {

H

MSPCL
TAS Lock with Exponential Backoff

= p ial backoff

ETHzirich
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TAS Lock with Exponential Backoff

y . p ial backoff contention
= Locks granted in = Locks granted in
unpredictable . . unpredictable volatile int 1ck = 0;
order volatilemintRlcki=Ro; order const int maxtime=1000;
= Starvation possible . = Starvation possible
" void lock() { " q
but unlikely . but unlikely void lock() {
while (TestAndSet(&lck) == 1 q
How can we make waitEtime)' ( ) ) Maximum waiting Whll? (T§5tA"d59t(&1Ck) ==1) {
it even less likely? el o ey q time makes it less wait(time);
time *= 2; // double waiting time Jikely time = min(time * 2, maxtime);
b }
b }
weile] (e () void unlock() {
1ck = 0; 1ck = 0;
b }
Similar to: T. Anderson: “The performance of spin lock for shared y , TPDS, Vol. 1 Issue 1, Jan 1990 Similar to: T. Anderson: “The of spin lock for shared y multi , TPDS, Vol. 1 Issue 1, Jan 1990
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Comparison of TAS Locks

Time per counter increment [ns]

! Lock

Backoff
Peterson
Peterson_1f
Peterson_2f

14
AHIHIHHEHE

TATAS

=)
=3

Lot E

2 3 4 5 6 7 8
# of threads

Improvements?

= Are TAS locks perfect?
= What are the two biggest issues?

= What would be a fix for that?

= Queue locks -- Threads enqueue
= Learn from predecessor if it’s their turn
= Each threads spins at a different location
= FIFO fairness

= Cache coherency traffic (contending on same location with expensive atomics)

—or-

= Critical section underutilization (waiting for backoff times will delay entry to CR)

= How is this solved at airports and shops (often at least)?

w [ETHzirich

Array Queue Lock

= Array to implement

queue
Tail-pointer shows next free
queue position

Each thread spins on own
location
CL padding!
index[] array can be put in TLS
= Soare we done now?

= What'’s wrong?

= Synchronizing M objects

requires ©(NM) storage
= What do we do now?

volatile int array[n] = {1,0,...,0};
volatile int index[n] = {0,0,...,0};
volatile int tail = 0;

void lock() {
index[tid] = GetAndInc(tail) % n;
while (array[index[tid]]); // wait to receive lock

void unlock() {
array[index[tid]] = 0; // | release my lock
array[(index[tid] + 1) % n] = 1; // next one
}

=T =
CLH Lock (1993)

= List-based (same queue
principle)

= Discovered twice by Craig,
Landin, Hagersten 1993/94

= 2N+3M words
= N threads, M locks

* Requires thread-local gnode
pointer
= Can be hidden!

spelinfethz.ch
W @spcLeth

typedef struct gnode {
struct gnode *prev;
int succ_blocked;
}anode;

qnode *Ick = new gnode; // node owned by lock

void lock(gnode *Ick, gnode *gn) {
gn->succ_blocked = 1;
gn->prev = FetchAndSet(Ick, gn);
while (qn->prev->succ_blocked);

}

void unlock(gnode **qn) {
qnode *pred = (*qn)->prev;
(*qgn)->succ_blocked = 0;
*qn = pred;

ETHzirich
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CLH Lock (1993)

= Qnode objects represent
thread state!
= succ_blocked == 1 if waiting
or acquired lock
= succ_blocked == 0 if released
lock
= List is implicit!
= One node per thread
= Spin location changes
NUMA issues (cacheless)
= Can we do better?

clinf.ethz.ch
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typedef struct gnode {
struct gnode *prev;
int succ_blocked;
}anode;

gnode *Ick = new gnode; // node owned by lock

void lock(gnode *Ick, gnode *gn) {
qn->succ_blocked = 1;
qn->prev = FetchAndSet(Ick, qn);
while (qn->prev->succ_blocked);

}

void unlock(gnode **qn) {
qgnode *pred = (*qn)->prev;
(*an)->succ_blocked = 0;
*qn = pred;

}

MR

MCS Lock (1991)

= Make queue explicit
Acquire lock by
appending to queue

Spin on own node
until locked is reset
= Similar advantages
as CLH but
= Only 2N + M words
= Spinning position is fixed!
Benefits cache-less NUMA
* What are the issues?
= Releasing lock spins
= More atomics!

typedef struct gnode {
struct gnode *next;
int succ_blocked;
}anode;

gnode *Ick = NULL;

void lock(gnode *Ick, gnode *gn) {
qgn->next = NULL;
qnode *pred = FetchAndSet(Ick, gn);
if(pred 1= NULL) {
qn->locked = 1;
pred->next = gn;
while(gn->locked);

void unlock(gnode * Ick, gnode *qn) {
if(qn->next == NULL) { // if we’re the last waiter
if(CAS(Ick, gn, NULL)) return;
while(gn->next == NULL); // wait for pred arrival
}
qgn->next->locked = 0; // free next waiter
qgn->next = NULL;
}
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Lessons Learned!

= Key Lesson:
= Reducing memory (coherency) traffic is most important!
= Not always straight-forward (need to reason about CL states)

= MCS: 2006 Dijkstra Prize in distributed computing

= ‘“an outstanding paper on the principles of distributed computing, whose significance and impact on the theory
and/or practice of distributed computing has been evident for at least a decade”
“probably the most influential practical mutual exclusion algorithm ever”

“vastly superior to all previous mutual exclusion algorithms”

fast, fair, scalable > widely used, always compared against!

+a
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Time to Declare Victory?

= Down to memory complexity of 2N+M

= Probably close to optimal
= Only local spinning

= Several variants with low expected contention
= But:we d i i y®
Reality causes trouble sometimes
Sprinkling memory fences may harm performance
Open research on minimally-synching algorithms!
Come and talk to me if you're interested

speLinfethz.ch
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Fighting CPU waste: Condition Variables

= Allow threads to yield CPU and leave the OS run queue
= Other threads can get them back on the queue!
= cond_wait(cond, lock) - yield and go to sleep
= cond_signal(cond) — wake up sleeping threads
= Wait and signal are OS calls
= Often expensive, which one is more expensive?
Wait, because it has to perform a full context switch

When to Spin and When to Block?

= Spinning consumes CPU cycles but is cheap
= “Steals” CPU from other threads
= Blocking has high one-time cost and is then free
= Often hundreds of cycles (trap, save TCB ...)
= Wakeup is also expensive (latency)
Also cache-pollution
= Strategy:
= Poll for a while and then block
But what is a “while”??

ML
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When to Spin and When to Block?

= Optimal time depends on the future
= When will the active thread leave the CR?
= Can compute optimal offline schedule
Q: What is the optimal offline schedule (assuming we know the future, i.e., when the lock will become available)?
= Actual problem is an online problem
= Competitive algorithms
= An algorithm is c-competitive if for a sequence of actions x and a constant a holds:
Clx) S c*Coylx) +a
= What would a good spinning algorithm look like and what is the competitiveness?

spetinfethzch
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Competitive Spinning

= If Tis the overhead to process a wait, then a locking algorithm that spins for time T before it blocks is 2-
competitive!
= Karlin, Manasse, McGeoch, Owicki: “Competitive Randomized Algorithms for Non-Uniform Problems”,
SODA 1989
= If randomized algorithms are used, then
e/(e-1)-competitiveness (~1.58) can be achieved
= See paper above!
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Remember: lock-free vs. wait-free Concept: Consensus Number
= Alock-free method = Each level of the hierarchy has a “ ber” assigned
= guarantees that infinitely often some method call finishes in a finite number of steps = |s the maximum number of threads for which primitives in level x can solve the consensus problem
= A wait-free method = The consensus problem:

= guarantees that each method call finishes in a finite number of steps (implies lock-free)

Has single function: decide(v)
Each thread calls it at most once, the function returns a value that meets two conditions:
= Synchronization instructions are not equally powerful! consistency: all threads get the same value

= Indeed, they form an infinite hierarchy; no instruction (primitive) in level x can be used for lock-/wait-free validity: the value is some thread’s input
implementations of primitives in level z>x. Simplification: binary consensus (inputs in {0,1})

MSPCL e ETHzirich |

Understanding Consensus Starting simple ...

= Can a particular class solve n-thread consensus wait-free? = Binary consensus with two threads (A, B)!

= Aclass Csolves n-thread consensus if there exists a consensus protocol using any number of objects of class C and
any number of atomic registers

The protocol has to be wait-free (bounded number of steps per thread)
The consensus number of a class C is the largest n for which that class solves n-thread consensus (may be infinite)

Assume we have a class D whose objects can be constructed from objects out of class C. If class C has consensus
number n, what does class D have?

Each thread moves until it decides on a value

May update shared objects

Protocol state = state of threads + state of shared objects
Initial state = state before any thread moved

Final state = state after all threads finished

States form a tree, wait-free property guarantees a finite tree

Example with two threads and two moves each!
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Atomic Registers Atomic Registers
= Theorem [Herlihy’91]: Atomic registers have consensus number one = Theorem [Herlihy’91]: Atomic registers have consensus number one

= le., they cannot be used to solve even two-thread consensus! Really?

= Corollary: It is impossible to construct a wait-free implementation of any object with consensus
= Proof outline:

number of >1 using atomic registers
= “perhaps one of the most striking impossibility results in Computer Science” (Herlihy, Shavit)
= - We need hardware atomics or Transactional Memory!

= Assume arbitrary consensus protocol, thread A, B
= Run until it reaches critical state where next action determines outcome (show that it must have a critical state first)
. Shovll all option} using atomic registers and show that they cannot be used to determine one outcome for all = Proof technique borrowed from:
possible executions!
1) Any thread reads (other thread runs solo until end) Impossibility of distributed consensus with one ... - ACM Digita...
2) Threads write to different registers (order doesn’t matter) f' acm.org/citation.cfm?id=214121 ~

by M) Fischer - 1985 - Cited by 4189 - Related ariicles.
3) Threads write to same register (solo thread can start after each write) Apri, The consensus problem involves an asynchronous system of processes,

some of which may be unreliable. The problem is for the reliable

= Very influential paper, always worth a read!
= Nicely shows proof techniques that are central to parallel and distributed computing!
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Other Atomic Operations

Simple RMW operations (Test&Set, Fetch&Op, Swap, basically all functions where the op commutes or
overwrites) have consensus number 2!

= Similar proof technique (bivalence argument)
= CAS and TM have consensus number oo
= Constructive proof!

MG

Compare and Set/Swap Consensus

const int first=-1
volatile int thread =-1;
int proposed|n];

int decide(v) {
proposed|[tid] = v;
if(CAS(thread, first, tid))
return v; // 1 won!
else

return proposed|thread]; // thread won »

= CAS provides an infinite consensus number
= Machines providing CAS are asynchronous computation equivalents of the Turing Machine
= |.e., any concurrent object can be implemented in a wait-free manner (not necessarily fast!)

w [ETHzirich
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Now you know everything ©

= Notreally...;-)
= We'll argue more about performance now!
= Butyou have all the tools for:
= Efficient locks
= Efficient lock-based algorithms
= Efficient lock-free algorithms (or even wait-free)
= Reasoning about parallelism!
=  What now?
= Adifferent class of problems
Impact on wait-free/lock-free on actual performance is not well understood
= Relevant to HPC, applies to shared and distributed memory
- Group communications




