
spcl.inf.ethz.ch

@spcl_eth

T. HOEFLER, M. PUESCHEL

Lecture 3: Memory Models

Teaching assistant: Salvatore Di Girolamo Motivational video: https://www.youtube.com/watch?v=tW2hT0g4OUs

https://www.youtube.com/watch?v=tW2hT0g4OUs

spcl.inf.ethz.ch

@spcl_eth

2TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

Scientific Benchmarking: Benchmark Selection (Rule 2)

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch

@spcl_eth

2

Based on the presented data, one may
conclude that using -O3 is always a good idea.

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

Scientific Benchmarking: Benchmark Selection (Rule 2)

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch

@spcl_eth

2

Based on the presented data, one may
conclude that using -O3 is always a good idea.

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

Scientific Benchmarking: Benchmark Selection (Rule 2)

The presented data set contains only a subset
of the Mantevo benchmark suite.

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch

@spcl_eth

2

Based on the presented data, one may
conclude that using -O3 is always a good idea.

The incompleteness of data may lead to wrong conclusions.
Sometimes -O3 may not be a good idea for a code: e.g., vectorization

(enabled by -O3) may segfault on a loop which does unaligned memory
access on some x86. But this is not demonstrated by the presented dataset.

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

Scientific Benchmarking: Benchmark Selection (Rule 2)

The presented data set contains only a subset
of the Mantevo benchmark suite.

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch

@spcl_eth

3

Based on the presented data, one may
conclude that using -O3 is always a good idea.

The incompleteness of data may lead to wrong conclusions.
Sometimes -O3 may not be a good idea for a code: e.g., vectorization

(enabled by -O3) may segfault on a loop which does unaligned memory
access on some x86. But this is not demonstrated by the presented dataset.

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

Scientific Benchmarking: Benchmark Selection (Rule 2)

The presented data set contains only a subset
of the Mantevo benchmark suite.

Rule 2: Specify the reason for only reporting subsets of standard
benchmarks or applications or not using all system resources.

 This implies: Show results even if your code/approach stops scaling!

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch

@spcl_eth

 Architecture case studies

 Memory performance is often the bottleneck

 Parallelism grows with compute performance

 Caching is important

 Several issues to address for parallel systems

 Cache Coherence

 Hardware support to aid programmers

 Two guarantees:

Write propagation (updates are eventually visible to all readers)

Write serialization (writes to the same location are observed in global order)

 Two major mechanisms:

Snooping

Directory-based – continuing today

 Protocols: MESI (MOESI, MESIF)

4

Review of last lecture

spcl.inf.ethz.ch

@spcl_eth

6

DPHPC Overview

spcl.inf.ethz.ch

@spcl_eth

 Don’t forget the projects!

 Project ideas shared on Thursday (send email to Salvatore for group formations)

 Project progress presentations on 10/29 (three weeks from now)!

 Cache-coherence is not enough

 Many more subtle issues for parallel programs

 Memory Models

 Sequential consistency

 Why threads cannot be implemented as a library 

 Relaxed consistency models

 Linearizability

 More complex objects

7

Goals of this lecture

spcl.inf.ethz.ch

@spcl_eth

▪ Snooping does not scale

▪ Bus transactions must be globally visible

▪ Implies broadcast

▪ Typical solution: tree-based (hierarchical) snooping

▪ Root becomes a bottleneck

▪ Directory-based schemes are more scalable

▪ Directory (entry for each CL) keeps track of all owning caches

▪ Point-to-point update to involved processors

No broadcast

Can use specialized (high-bandwidth) network, e.g., HT, QPI …

8

Directory-based cache coherence

spcl.inf.ethz.ch

@spcl_eth

▪ System with N processors Pi

▪ For each memory block (size: cache line)
maintain a directory entry

▪ N presence bits (light blue)

Set if block in cache of Pi

▪ 1 dirty bit (red)

▪ First proposed by Censier and Feautrier (1978)

9

Basic Scheme

P0

Main Memory

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 1 0 1

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

10

Directory-based CC: Read miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

X = 7

X = 7

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

10

Directory-based CC: Read miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

X = 7

Read X

X = 7

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit (in directory) is off

10

Directory-based CC: Read miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

X = 7

Read X

X = 7

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit (in directory) is off

▪ Read from main memory

10

Directory-based CC: Read miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

X = 7X = 7

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit (in directory) is off

▪ Read from main memory

▪ Set presence[i]

10

Directory-based CC: Read miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

X = 7X = 7

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit (in directory) is off

▪ Read from main memory

▪ Set presence[i]

10

Directory-based CC: Read miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

X = 7X = 7

1

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit (in directory) is off

▪ Read from main memory

▪ Set presence[i]

▪ Supply data to reader

10

Directory-based CC: Read miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

X = 7

X = 7

1

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

11

Directory-based CC: Read miss

20

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

11

Directory-based CC: Read miss

21

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0

Read X

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit is on

11

Directory-based CC: Read miss

22

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0

Read X

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit is on

▪ Recall cache line from Pj

(determine by presence[])

11

Directory-based CC: Read miss

23

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0

Read X

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit is on

▪ Recall cache line from Pj

(determine by presence[])

11

Directory-based CC: Read miss

24

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit is on

▪ Recall cache line from Pj

(determine by presence[])

▪ Update memory

11

Directory-based CC: Read miss

25

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit is on

▪ Recall cache line from Pj

(determine by presence[])

▪ Update memory

11

Directory-based CC: Read miss

26

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0X = 0

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit is on

▪ Recall cache line from Pj

(determine by presence[])

▪ Update memory

▪ Unset dirty bit, block shared

11

Directory-based CC: Read miss

27

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0X = 0

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit is on

▪ Recall cache line from Pj

(determine by presence[])

▪ Update memory

▪ Unset dirty bit, block shared

11

Directory-based CC: Read miss

28

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0X = 0

X = 00

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit is on

▪ Recall cache line from Pj

(determine by presence[])

▪ Update memory

▪ Unset dirty bit, block shared

▪ Set presence[i]

11

Directory-based CC: Read miss

29

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0X = 0

X = 00

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit is on

▪ Recall cache line from Pj

(determine by presence[])

▪ Update memory

▪ Unset dirty bit, block shared

▪ Set presence[i]

11

Directory-based CC: Read miss

30

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0X = 0

1 X = 00

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit is on

▪ Recall cache line from Pj

(determine by presence[])

▪ Update memory

▪ Unset dirty bit, block shared

▪ Set presence[i]

▪ Supply data to reader

11

Directory-based CC: Read miss

31

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0X = 0

1 X = 00

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit is on

▪ Recall cache line from Pj

(determine by presence[])

▪ Update memory

▪ Unset dirty bit, block shared

▪ Set presence[i]

▪ Supply data to reader

11

Directory-based CC: Read miss

32

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0

X = 0

1 X = 00

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

12

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

X = 7

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

12

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

X = 7

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit (in directory) is off

12

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

X = 7

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

12

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

X = 7

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

12

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

X = 7

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

12

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

▪ Unset presence bit for all processors

12

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

▪ Unset presence bit for all processors

12

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

▪ Unset presence bit for all processors

▪ Set dirty bit

12

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

▪ Unset presence bit for all processors

▪ Set dirty bit

12

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

0 1

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

▪ Unset presence bit for all processors

▪ Set dirty bit

▪ Set presence[i], owner Pi

12

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

0 1

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

▪ Unset presence bit for all processors

▪ Set dirty bit

▪ Set presence[i], owner Pi

12

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

1 0 1

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

▪ Unset presence bit for all processors

▪ Set dirty bit

▪ Set presence[i], owner Pi

12

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 01 0 1

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

13

Directory-based CC: Write miss

46

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

X = 1

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

13

Directory-based CC: Write miss

47

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

X = 1

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit is on

13

Directory-based CC: Write miss

48

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

X = 1

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit is on

▪ Recall cache line from owner Pj

13

Directory-based CC: Write miss

49

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

X = 1

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit is on

▪ Recall cache line from owner Pj

13

Directory-based CC: Write miss

50

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

X = 1

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit is on

▪ Recall cache line from owner Pj

▪ Update memory

13

Directory-based CC: Write miss

51

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

X = 1

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit is on

▪ Recall cache line from owner Pj

▪ Update memory

13

Directory-based CC: Write miss

52

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

X = 1

X = 0

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit is on

▪ Recall cache line from owner Pj

▪ Update memory

▪ Unset presence[j]

13

Directory-based CC: Write miss

53

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

X = 1

X = 0

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit is on

▪ Recall cache line from owner Pj

▪ Update memory

▪ Unset presence[j]

13

Directory-based CC: Write miss

54

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

X = 1

0 X = 0

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit is on

▪ Recall cache line from owner Pj

▪ Update memory

▪ Unset presence[j]

▪ Set presence[i], dirty bit remains set

13

Directory-based CC: Write miss

55

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

X = 1

0 X = 0

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit is on

▪ Recall cache line from owner Pj

▪ Update memory

▪ Unset presence[j]

▪ Set presence[i], dirty bit remains set

13

Directory-based CC: Write miss

56

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

1

X = 1

0 X = 0

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit is on

▪ Recall cache line from owner Pj

▪ Update memory

▪ Unset presence[j]

▪ Set presence[i], dirty bit remains set

▪ Acknowledge to writer

13

Directory-based CC: Write miss

57

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

1

X = 1

0 X = 0

X = 0

spcl.inf.ethz.ch

@spcl_eth

▪ Scaling of memory bandwidth

▪ No centralized memory

▪ Directory-based approaches scale with restrictions

▪ Require presence bit for each cache and cache line address

▪ Number of bits determined at design time

▪ Directory requires memory (size scales linearly)

▪ Shared vs. distributed directory

▪ Software-emulation

▪ Distributed shared memory (DSM)

▪ Emulate cache coherence in software (e.g., TreadMarks)

▪ Often on a per-page basis, utilizes memory virtualization and paging

15

Discussion

spcl.inf.ethz.ch

@spcl_eth

▪ Tune algorithms to cache-coherence schemes

▪ What is the optimal parallel algorithm for a given scheme?

▪ Parameterize for an architecture

▪ Measure and classify hardware

▪ Read Maranget et al. “A Tutorial Introduction to the ARM and POWER Relaxed Memory Models” and have fun!

▪ RDMA consistency is barely understood!

▪ GPU memories are not well understood!

Huge potential for new insights!

▪ Can we program (easily) without cache coherence?

▪ How to fix the problems with inconsistent values?

▪ Compiler support (issues with arrays)?

▪ Invent new semi-coherent schemes?

16

Open Problems (for projects, theses, research)

spcl.inf.ethz.ch

@spcl_eth

Case Study: Intel Xeon Phi

17

spcl.inf.ethz.ch

@spcl_eth

Case Study: Intel Xeon Phi

17

Core Core Core

Core Core Core

spcl.inf.ethz.ch

@spcl_eth

Case Study: Intel Xeon Phi

17

Core Core Core

Core Core Core

spcl.inf.ethz.ch

@spcl_eth

Case Study: Intel Xeon Phi

17

Core Core Core

Core Core Core

GDDR5

GDDR5

GDDR5

GDDR5

spcl.inf.ethz.ch

@spcl_eth

TD

TD

Case Study: Intel Xeon Phi

17

Core Core Core

Core Core Core

GDDR5

GDDR5

GDDR5

GDDR5

TD TD

TD TD

spcl.inf.ethz.ch

@spcl_eth

18

Communication?

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

(Ss$, Sd$)

State in
source cache

State in
destination cache

spcl.inf.ethz.ch

@spcl_eth

18

Communication?

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

(Ss$, Sd$)

State in
source cache

State in
destination cache

spcl.inf.ethz.ch

@spcl_eth

19

Local read: RL= 8.6 ns

Remote read RR = 235 ns

Invalid read RI = 278 ns

Inspired by Molka et al.: “Memory performance and cache coherency effects on an Intel Nehalem multiprocessor system”

Core Core Core

Core Core Core

GDDR5

GDDR5

GDDR5

GDDR5

TD TD

TD TD

spcl.inf.ethz.ch

@spcl_eth

▪ Prediction for both in E state: 479 ns

▪ Measurement: 497 ns (O=18)

20

Single-Line Ping Pong

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

▪ More complex due to prefetch

21

Multi-Line Ping Pong

Asymptotic Fetch
Latency for each cache
line (optimal prefetch!)

Number
of CLs

Startup
overhead

Amortization of
startup

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

▪ E state:
▪ o=76 ns

▪ q=1,521ns

▪ p=1,096ns

▪ I state:
▪ o=95ns

▪ q=2,750ns

▪ p=2,017ns

22

Multi-Line Ping Pong

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

▪ E state:

▪ a=0ns

▪ b=320ns

▪ c=56.2ns

23

DTD Contention ☹

Core Core Core

Core Core Core

GDDR5

GDDR5

GDDR5

GDDR5

TD TD

TD TD

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

24

Optimizations against vendor libraries

Barrier (7x faster than OpenMP)
Ramos, Hoefler: “Capability Models for Manycore Memory Systems: A Case-Study with Xeon Phi KNL“, IPDPS’17 (video: https://www.youtube.com/watch?v=10Mo3MnWR74)

https://www.youtube.com/watch?v=10Mo3MnWR74

spcl.inf.ethz.ch

@spcl_eth

24

Optimizations against vendor libraries

Barrier (7x faster than OpenMP) Reduce (5x faster then OpenMP)
Ramos, Hoefler: “Capability Models for Manycore Memory Systems: A Case-Study with Xeon Phi KNL“, IPDPS’17 (video: https://www.youtube.com/watch?v=10Mo3MnWR74)

https://www.youtube.com/watch?v=10Mo3MnWR74

spcl.inf.ethz.ch

@spcl_eth

Is Coherence Everything?

 Coherence is concerned with behavior
of individual locations

 Consider the program (initial X,Y,Z = 0)

 Class question: what value will Z on P2 have?

25

P1

Y=10
X=2

P2

while (X==0);
Z=Y

spcl.inf.ethz.ch

@spcl_eth

Is Coherence Everything?

P2P1 Coherence is concerned with behavior
of individual locations

 Consider the program (initial X,Y,Z = 0)

 Class question: what value will Z on P2 have?

25

P1

Y=10
X=2

P2

while (X==0);
Z=Y

WT L1

L2

Y = 0X = 0

WB L1WB

X = 0

Y = 0

spcl.inf.ethz.ch

@spcl_eth

Is Coherence Everything?

P2P1 Coherence is concerned with behavior
of individual locations

 Consider the program (initial X,Y,Z = 0)

 Class question: what value will Z on P2 have?

25

P1

Y=10
X=2

P2

while (X==0);
Z=Y

WT L1

L2

Y = 0X = 0

WB L1WB

Y = 10

X = 0

Y = 0

spcl.inf.ethz.ch

@spcl_eth

Is Coherence Everything?

P2P1 Coherence is concerned with behavior
of individual locations

 Consider the program (initial X,Y,Z = 0)

 Class question: what value will Z on P2 have?

25

P1

Y=10
X=2

P2

while (X==0);
Z=Y

WT L1

L2

Y = 0X = 0

WB L1WB

Y = 10 X = 0

Y = 0

spcl.inf.ethz.ch

@spcl_eth

Is Coherence Everything?

P2P1 Coherence is concerned with behavior
of individual locations

 Consider the program (initial X,Y,Z = 0)

 Class question: what value will Z on P2 have?

25

P1

Y=10
X=2

P2

while (X==0);
Z=Y

WT L1

L2

Y = 0X = 0

WB L1WB

Y = 10

X = 2

X = 0

Y = 0

spcl.inf.ethz.ch

@spcl_eth

Is Coherence Everything?

P2P1 Coherence is concerned with behavior
of individual locations

 Consider the program (initial X,Y,Z = 0)

 Class question: what value will Z on P2 have?

25

P1

Y=10
X=2

P2

while (X==0);
Z=Y

WT L1

L2

Y = 0

WB L1WB

Y = 10 X = 2

X = 2 Y = 0

spcl.inf.ethz.ch

@spcl_eth

Is Coherence Everything?

P2P1 Coherence is concerned with behavior
of individual locations

 Consider the program (initial X,Y,Z = 0)

 Class question: what value will Z on P2 have?

25

P1

Y=10
X=2

P2

while (X==0);
Z=Y

WT L1

L2

Y = 0

WB L1WB

Y = 10 X = 2

Read X

X = 2 Y = 0

spcl.inf.ethz.ch

@spcl_eth

Is Coherence Everything?

P2P1 Coherence is concerned with behavior
of individual locations

 Consider the program (initial X,Y,Z = 0)

 Class question: what value will Z on P2 have?

25

P1

Y=10
X=2

P2

while (X==0);
Z=Y

WT L1

L2

Y = 0

WB L1WB

Y = 10 X = 2

X = 2

X = 2

Y = 0

spcl.inf.ethz.ch

@spcl_eth

Is Coherence Everything?

P2P1 Coherence is concerned with behavior
of individual locations

 Consider the program (initial X,Y,Z = 0)

 Class question: what value will Z on P2 have?

25

P1

Y=10
X=2

P2

while (X==0);
Z=Y

WT L1

L2

Y = 0

WB L1WB

Y = 10 X = 2

X = 2

X = 2

Read Y

Y = 0

spcl.inf.ethz.ch

@spcl_eth

Is Coherence Everything?

P2P1 Coherence is concerned with behavior
of individual locations

 Consider the program (initial X,Y,Z = 0)

 Class question: what value will Z on P2 have?

25

P1

Y=10
X=2

P2

while (X==0);
Z=Y

WT L1

L2

Y = 0

WB L1WB

Y = 10 X = 2

X = 2

X = 2 Y = 0

spcl.inf.ethz.ch

@spcl_eth

Is Coherence Everything?

P2P1 Coherence is concerned with behavior
of individual locations

 Consider the program (initial X,Y,Z = 0)

 Class question: what value will Z on P2 have?

25

P1

Y=10
X=2

P2

while (X==0);
Z=Y

WT L1

L2

Y = 0

WB L1WB

Y = 10 X = 2

X = 2

X = 2 Y = 0

Z = 0

spcl.inf.ethz.ch

@spcl_eth

Is Coherence Everything?

P2P1 Coherence is concerned with behavior
of individual locations

 Consider the program (initial X,Y,Z = 0)

 Class question: what value will Z on P2 have?

 Y=10 does not need to have completed
before X=2 is visible to P2!

 This allows P2 to exit the loop and read Y=0

 This may not be the intent of the programmer!

 This may be due to congestion (imagine X is pushed to a remote cache while Y misses to main memory) and or due
to write buffering, or …

25

P1

Y=10
X=2

P2

while (X==0);
Z=Y

WT L1

L2

Y = 0

WB L1WB

Y = 10 X = 2

X = 2

X = 2 Y = 0

Z = 0

spcl.inf.ethz.ch

@spcl_eth

Is Coherence Everything?

P2P1 Coherence is concerned with behavior
of individual locations

 Consider the program (initial X,Y,Z = 0)

 Class question: what value will Z on P2 have?

 Y=10 does not need to have completed
before X=2 is visible to P2!

 This allows P2 to exit the loop and read Y=0

 This may not be the intent of the programmer!

 This may be due to congestion (imagine X is pushed to a remote cache while Y misses to main memory) and or due
to write buffering, or …

 Bonus class question: what happens when Y and X are on the same cache line (assume simple MESI and
no write buffer)?

25

P1

Y=10
X=2

P2

while (X==0);
Z=Y

WT L1

L2

Y = 0

WB L1WB

Y = 10 X = 2

X = 2

X = 2 Y = 0

Z = 0

spcl.inf.ethz.ch

@spcl_eth

 Need to define what it means to “read a location” and “to write a location” and the respective ordering!

 What values should be seen by a processor

 First thought: extend the abstractions seen by a sequential processor:

 Compiler and hardware maintain data and control dependencies at all levels:

26

Memory Models

Y=10

….

T = 14

Y=15

Y = 5

X = 5

T = 3

Y = 3

if (X==Y)

Z = 5

….

Two operations to
the same location

One operation controls
execution of others

spcl.inf.ethz.ch

@spcl_eth

 Need to define what it means to “read a location” and “to write a location” and the respective ordering!

 What values should be seen by a processor

 First thought: extend the abstractions seen by a sequential processor:

 Compiler and hardware maintain data and control dependencies at all levels:

26

Memory Models

Y=10

….

T = 14

Y=15

Y = 5

X = 5

T = 3

Y = 3

if (X==Y)

Z = 5

….

Two operations to
the same location

One operation controls
execution of others

spcl.inf.ethz.ch

@spcl_eth

 Need to define what it means to “read a location” and “to write a location” and the respective ordering!

 What values should be seen by a processor

 First thought: extend the abstractions seen by a sequential processor:

 Compiler and hardware maintain data and control dependencies at all levels:

26

Memory Models

Y=10

….

T = 14

Y=15

Y = 5

X = 5

T = 3

Y = 3

if (X==Y)

Z = 5

….

Two operations to
the same location

One operation controls
execution of others

spcl.inf.ethz.ch

@spcl_eth

 Correctness condition:

 The result of the execution is the same as if the operations had been executed in the order specified by the program

“program order”

 A read returns the value last written to the same location

“last” is determined by program order!

 Consider only memory operations (e.g., a trace)

 N Processors

 P1, P2, …., PN

 Operations

 Read, Write on shared variables (initial state: most often all 0)

 Notation:

 P1: R(x):3 P1 reads x and observes the value 3

 P2: W(x,5) P2 writes 5 to variable x

27

Sequential Processor

spcl.inf.ethz.ch

@spcl_eth

 Program order

 Deals with a single processor

 Per-processor order of memory accesses, determined by program’s

Control flow

 Often represented as trace

 Visibility order

 Deals with operations on all processors

 Order of memory accesses observed by one or more processors

 E.g., “every read of a memory location returns the value that was written last”

Defined by memory model

28

Terminology

spcl.inf.ethz.ch

@spcl_eth

 Contract at each level between programmer and processor

29

Memory Models

Programmer

High-level language (API/PL)

Compiler Frontend

Intermediate Language (IR)

Compiler Backend/JIT

Machine code (ISA)

Processor

Optimizing transformations

Reordering

Operation overlap
OOO Execution
VLIW, Vector ISA

spcl.inf.ethz.ch

@spcl_eth

 Extension of sequential processor model

 The execution happens as if

1. The operations of all processes were executed in some sequential order (atomicity requirement), and

2. The operations of each individual processor appear in this sequence in the order specified by the program (program
order requirement)

 Applies to all layers!

 Disallows many compiler optimizations (e.g., reordering of any memory instruction)

 Disallows many hardware optimizations (e.g., store buffers, nonblocking reads, invalidation buffers)

30

Sequential Consistency

spcl.inf.ethz.ch

@spcl_eth

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in
program order

The “switch” selects
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

spcl.inf.ethz.ch

@spcl_eth

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in
program order

The “switch” selects
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

Read
B

spcl.inf.ethz.ch

@spcl_eth

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in
program order

The “switch” selects
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

Read
B

spcl.inf.ethz.ch

@spcl_eth

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in
program order

The “switch” selects
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

Read
B

spcl.inf.ethz.ch

@spcl_eth

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in
program order

The “switch” selects
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

Read
B

Read
B

spcl.inf.ethz.ch

@spcl_eth

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in
program order

The “switch” selects
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

Read
B

Read
B

spcl.inf.ethz.ch

@spcl_eth

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in
program order

The “switch” selects
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

Read
B

Read
B

spcl.inf.ethz.ch

@spcl_eth

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in
program order

The “switch” selects
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

Read
B

Read
B

Write
A

spcl.inf.ethz.ch

@spcl_eth

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in
program order

The “switch” selects
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

Read
B

Read
B

Write
A

spcl.inf.ethz.ch

@spcl_eth

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in
program order

The “switch” selects
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

Read
B

Read
B

Write
A

spcl.inf.ethz.ch

@spcl_eth

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in
program order

The “switch” selects
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

Read
B

Read
B

Read
B

Write
A

spcl.inf.ethz.ch

@spcl_eth

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in
program order

The “switch” selects
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

Read
B

Read
B

Read
B

Write
A

spcl.inf.ethz.ch

@spcl_eth

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in
program order

The “switch” selects
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

Read
B

Read
B

Read
B

Write
A

Write
A

spcl.inf.ethz.ch

@spcl_eth

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in
program order

The “switch” selects
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

Read
B

Read
B

Read
B

Write
A

Write
A

spcl.inf.ethz.ch

@spcl_eth

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in
program order

The “switch” selects
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

Read
B

Read
B

Read
B

Write
A

Write
A

spcl.inf.ethz.ch

@spcl_eth

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in
program order

The “switch” selects
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

Read
B

Read
B

Read
B

Read
B

Write
A

Write
A

spcl.inf.ethz.ch

@spcl_eth

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in
program order

The “switch” selects
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

Read
B

Read
B

Read
B

Read
B

Write
A

Write
A

spcl.inf.ethz.ch

@spcl_eth

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in
program order

The “switch” selects
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

Read
B

Read
B

Read
B

Read
B

Write
A

Write
A

spcl.inf.ethz.ch

@spcl_eth

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in
program order

The “switch” selects
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

Read
B

Read
B

Read
B

Read
B

Write
A

Write
A

Write
A

spcl.inf.ethz.ch

@spcl_eth

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in
program order

The “switch” selects
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

Read
B

Read
B

Read
B

Read
B

Write
A

Write
A

Write
A

spcl.inf.ethz.ch

@spcl_eth

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in
program order

The “switch” selects
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

Read
B

Read
B

Read
B

Read
B

Write
A

Write
A

Write
A

spcl.inf.ethz.ch

@spcl_eth

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in
program order

The “switch” selects
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

Read
B

Read
B

Read
B

Read
B

Write
A

Write
A

Write
A

Write
A

spcl.inf.ethz.ch

@spcl_eth

 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in
program order

The “switch” selects
arbitrary next operation

P1

P2

P3

P4

Memory

Program

A = B;

Read
B

Write
A==

Read
B

Read
B

Read
B

Read
B

Write
A

Write
A

Write
A

Write
A

spcl.inf.ethz.ch

@spcl_eth

“The result of any execution is the same as if the operations of all the processes were
executed in some sequential order and the operations of each individual process appear in
this sequence in the order specified by its program”

(Lamport, 1979)

32

Original SC Definition

Good read: Gharachorloo et al.: “Memory consistency and event ordering in scalable shared-memory multiprocessors.”

spcl.inf.ethz.ch

@spcl_eth

 Textbook: Hennessy/Patterson Computer Architecture

 A sequentially consistent system maintains three invariants:

1. A load L from memory location A issued by processor Pi obtains the value of the previous store to A by Pi, unless
another processor has to stored a value to A in between

2. A load L from memory location A obtains the value of a store S to A by another processor Pk if S and L are
“sufficiently separated in time” and if no other store occurred between S and L

3. Stores to the same location are serialized (defined as in (2))

 “Sufficiently separated in time” not precise

 Works but is not formal (a formalization must include all possibilities)

33

Alternative SC Definition

spcl.inf.ethz.ch

@spcl_eth
H

ar
d

w
ar

e
C

o
m

p
ile

r

 Recap: “normal” sequential assumption:

 Compiler and hardware can reorder instructions as long as control and data dependencies are met

 Examples:

 Register allocation

 Code motion

 Common subexpression elimination

 Loop transformations

 Pipelining

 Multiple issue (OOO)

 Write buffer bypassing

 Nonblocking reads

34

Example Operation Reordering

spcl.inf.ethz.ch

@spcl_eth

 Initially, all values are zero

 Assume P1 and P2 are compiled separately!

35

Simple compiler optimization

P1

input = 23

ready = 1

P2

while (ready == 0) {}

compute(input)

spcl.inf.ethz.ch

@spcl_eth

 Initially, all values are zero

 Assume P1 and P2 are compiled separately!

 What optimizations can a compiler perform for P1?

Register allocation or even replace with constant, or

Switch statements

35

Simple compiler optimization

P1

input = 23

ready = 1

P2

while (ready == 0) {}

compute(input)

spcl.inf.ethz.ch

@spcl_eth

 Initially, all values are zero

 Assume P1 and P2 are compiled separately!

 What optimizations can a compiler perform for P1?

Register allocation or even replace with constant, or

Switch statements

 What happens?

P2 may never terminate, or

Compute with wrong input

35

Simple compiler optimization

P1

input = 23

ready = 1

P2

while (ready == 0) {}

compute(input)

spcl.inf.ethz.ch

@spcl_eth

 Relying on program order: Dekker’s algorithm

 Initially, all zero

 What can happen at compiler and hardware level?

36

Sequential Consistency Examples

P1

a = 1
if(b == 0)
critical section
a = 0

P2

b = 1
if(a == 0)
critical section
b = 0

P1 P2

Time

spcl.inf.ethz.ch

@spcl_eth

 Relying on program order: Dekker’s algorithm

 Initially, all zero

 What can happen at compiler and hardware level?

36

Sequential Consistency Examples

P1

a = 1
if(b == 0)
critical section
a = 0

P2

b = 1
if(a == 0)
critical section
b = 0

P1 P2

P1: W(a,1)

Time

spcl.inf.ethz.ch

@spcl_eth

 Relying on program order: Dekker’s algorithm

 Initially, all zero

 What can happen at compiler and hardware level?

36

Sequential Consistency Examples

P1

a = 1
if(b == 0)
critical section
a = 0

P2

b = 1
if(a == 0)
critical section
b = 0

P1 P2

P1: W(a,1)

P2: W(b,1)Time

spcl.inf.ethz.ch

@spcl_eth

 Relying on program order: Dekker’s algorithm

 Initially, all zero

 What can happen at compiler and hardware level?

36

Sequential Consistency Examples

P1

a = 1
if(b == 0)
critical section
a = 0

P2

b = 1
if(a == 0)
critical section
b = 0

P1 P2

P1: W(a,1)

P2: W(b,1)Time

P1: R(b): 1

spcl.inf.ethz.ch

@spcl_eth

 Relying on program order: Dekker’s algorithm

 Initially, all zero

 What can happen at compiler and hardware level?

36

Sequential Consistency Examples

P1

a = 1
if(b == 0)
critical section
a = 0

P2

b = 1
if(a == 0)
critical section
b = 0

P1 P2

P1: W(a,1)

P2: W(b,1)Time

P1: R(b): 1

P2: R(a): 1

spcl.inf.ethz.ch

@spcl_eth

 Relying on program order: Dekker’s algorithm

 Initially, all zero

 What can happen at compiler and hardware level?

36

Sequential Consistency Examples

P1

a = 1
if(b == 0)
critical section
a = 0

P2

b = 1
if(a == 0)
critical section
b = 0

P1 P2

P1: W(a,1)

P2: W(b,1)Time

P1: R(b): 1

P2: R(a): 1

Nobody enters the critical section.

spcl.inf.ethz.ch

@spcl_eth

 Relying on program order: Dekker’s algorithm

 Initially, all zero

 What can happen at compiler and hardware level?

36

Sequential Consistency Examples

P1

a = 1
if(b == 0)
critical section
a = 0

P2

b = 1
if(a == 0)
critical section
b = 0

P1 P2

P1: W(a,1)

P2: W(b,1)Time

P1: R(b): 1

P2: R(a): 1

Nobody enters the critical section.

Without SC, both writes may have went to a
write buffer, in which case both Ps would
read 0 and enter the critical section together.

spcl.inf.ethz.ch

@spcl_eth

 Relying on single sequential order (atomicity):
three sharers

 What can be printed if visibility is not atomic?

37

Sequential Consistency Examples

P1

a = 5
a = 1

P2

if (a == 1)
b = 1

P3

if (b == 1)
print(a)

P1 P2 P3

What each P thinks the order is:

spcl.inf.ethz.ch

@spcl_eth

 Relying on single sequential order (atomicity):
three sharers

 What can be printed if visibility is not atomic?

37

Sequential Consistency Examples

P1

a = 5
a = 1

P2

if (a == 1)
b = 1

P3

if (b == 1)
print(a)

P1 P2 P3

What each P thinks the order is:

P1: W(a,5)

spcl.inf.ethz.ch

@spcl_eth

 Relying on single sequential order (atomicity):
three sharers

 What can be printed if visibility is not atomic?

37

Sequential Consistency Examples

P1

a = 5
a = 1

P2

if (a == 1)
b = 1

P3

if (b == 1)
print(a)

P1 P2 P3

What each P thinks the order is:

P1: W(a,5)

P1: W(a,1) P1: W(a,5)

spcl.inf.ethz.ch

@spcl_eth

 Relying on single sequential order (atomicity):
three sharers

 What can be printed if visibility is not atomic?

37

Sequential Consistency Examples

P1

a = 5
a = 1

P2

if (a == 1)
b = 1

P3

if (b == 1)
print(a)

P1 P2 P3

What each P thinks the order is:

P1: W(a,5)

P1: W(a,1) P1: W(a,5)

P1: W(a,1)

spcl.inf.ethz.ch

@spcl_eth

 Relying on single sequential order (atomicity):
three sharers

 What can be printed if visibility is not atomic?

37

Sequential Consistency Examples

P1

a = 5
a = 1

P2

if (a == 1)
b = 1

P3

if (b == 1)
print(a)

P1 P2 P3

What each P thinks the order is:

P1: W(a,5)

P1: W(a,1) P1: W(a,5)

P1: W(a,1)

P1: W(a,5)P2: R(a): 1

spcl.inf.ethz.ch

@spcl_eth

 Relying on single sequential order (atomicity):
three sharers

 What can be printed if visibility is not atomic?

37

Sequential Consistency Examples

P1

a = 5
a = 1

P2

if (a == 1)
b = 1

P3

if (b == 1)
print(a)

P1 P2 P3

What each P thinks the order is:

P1: W(a,5)

P1: W(a,1) P1: W(a,5)

P1: W(a,1)

P1: W(a,5)P2: R(a): 1

P2: W(b,1) P2: W(b,1)

spcl.inf.ethz.ch

@spcl_eth

 Relying on single sequential order (atomicity):
three sharers

 What can be printed if visibility is not atomic?

37

Sequential Consistency Examples

P1

a = 5
a = 1

P2

if (a == 1)
b = 1

P3

if (b == 1)
print(a)

P1 P2 P3

What each P thinks the order is:

P1: W(a,5)

P1: W(a,1) P1: W(a,5)

P1: W(a,1)

P1: W(a,5)P2: R(a): 1

P2: W(b,1) P2: W(b,1)

P3: R(b): 1

spcl.inf.ethz.ch

@spcl_eth

 Relying on single sequential order (atomicity):
three sharers

 What can be printed if visibility is not atomic?

37

Sequential Consistency Examples

P1

a = 5
a = 1

P2

if (a == 1)
b = 1

P3

if (b == 1)
print(a)

P1 P2 P3

What each P thinks the order is:

P1: W(a,5)

P1: W(a,1) P1: W(a,5)

P1: W(a,1)

P1: W(a,5)P2: R(a): 1

P2: W(b,1) P2: W(b,1)

P3: R(b): 1

P3: R(a): 5

P3 has not seen yet!P1: W(a,1)

spcl.inf.ethz.ch

@spcl_eth

 Relying on single sequential order (atomicity):
three sharers

 What can be printed if visibility is not atomic?

37

Sequential Consistency Examples

P1

a = 5
a = 1

P2

if (a == 1)
b = 1

P3

if (b == 1)
print(a)

P1 P2 P3

What each P thinks the order is:

P1: W(a,5)

P1: W(a,1) P1: W(a,5)

P1: W(a,1)

P1: W(a,5)P2: R(a): 1

P2: W(b,1) P2: W(b,1)

P3: R(b): 1

P3: R(a): 5

P1: W(a,1)

PRINT(5)
P3 has not seen yet!P1: W(a,1)

spcl.inf.ethz.ch

@spcl_eth

 Analyzing P1 and P2 in isolation!

 Compiler can reorder

 Hardware can reorder, assume writes of a,b go to write buffer or speculation

38

Optimizations violating program order

P1

a = 1

if(b == 0)

critical section

a = 0

P2

b = 1

if(a == 0)

critical section

b = 0

P1

if(b == 0)

critical section

a = 0

else

a = 1

P2

if(a == 0)

critical section

b = 0

else

b = 1

P1

a = 1

if(b == 0)

critical section

a = 0

P2

b = 1

if(a == 0)

critical section

b = 0

P1

if(b == 0)

a = 1

critical section

a = 0

P2

if(a == 0)

b = 1

critical section

b = 0

spcl.inf.ethz.ch

@spcl_eth

 Define partial order on memory requests A  B

 If Pi issues two requests A and B and A is issued before B in program order, then A  B

 A and B are issued to the same variable, and A is issued first, then A  B (on all processors)

 These partial orders can be interleaved, define a total order

 Many total orders are sequentially consistent!

 Example:

 P1: W(a), R(b), W(c)

 P2: R(a), W(a), R(b)

 Are the following schedules (total orders) sequentially consistent?

1. P1:W(a), P2:R(a), P2:W(a), P1:R(b), P2:R(b), P1:W(c)

2. P1:W(a), P2:R(a), P1:R(b), P2:R(b), P1:W(c), P2:W(a)

3. P2:R(a), P2:W(a), P1:R(b), P1:W(a), P1:W(c), P2:R(b)

39

Considerations

spcl.inf.ethz.ch

@spcl_eth

 Write buffer

 Absorbs writes faster than the next cache  prevents stalls

 Aggregates writes to the same cache line  reduces cache traffic

40

Write buffer example

CPU

L1 I-cache L1 D-cache

L2 cache

spcl.inf.ethz.ch

@spcl_eth

 Reads can bypass previous writes for faster completion

 If read and write access different locations

 No order between write and following read (W  R)

41

Write buffer example

P2P1

L1

L2

X = 0

WB L1WB

a = 0 b = 0

spcl.inf.ethz.ch

@spcl_eth

 Reads can bypass previous writes for faster completion

 If read and write access different locations

 No order between write and following read (W  R)

41

Write buffer example

P2P1

L1

L2

X = 0

WB L1WB

a = 0 b = 0

W(a,1)

spcl.inf.ethz.ch

@spcl_eth

 Reads can bypass previous writes for faster completion

 If read and write access different locations

 No order between write and following read (W  R)

41

Write buffer example

P2P1

L1

L2

X = 0

WB L1WB

a = 0 b = 0

W(a,1)

a = 1

spcl.inf.ethz.ch

@spcl_eth

 Reads can bypass previous writes for faster completion

 If read and write access different locations

 No order between write and following read (W  R)

41

Write buffer example

P2P1

L1

L2

X = 0

WB L1WB

a = 0 b = 0

W(a,1)

a = 1

spcl.inf.ethz.ch

@spcl_eth

 Reads can bypass previous writes for faster completion

 If read and write access different locations

 No order between write and following read (W  R)

41

Write buffer example

P2P1

L1

L2

X = 0

WB L1WB

a = 0 b = 0

W(a,1)

R(b)

a = 1

spcl.inf.ethz.ch

@spcl_eth

 Reads can bypass previous writes for faster completion

 If read and write access different locations

 No order between write and following read (W  R)

41

Write buffer example

P2P1

L1

L2

X = 0

WB L1WB

a = 0 b = 0

W(a,1)

R(b)

b = 0

b = 0

a = 1

spcl.inf.ethz.ch

@spcl_eth

 Reads can bypass previous writes for faster completion

 If read and write access different locations

 No order between write and following read (W  R)

41

Write buffer example

P2P1

L1

L2

X = 0

WB L1WB

a = 0 b = 0

W(a,1)

R(b)

b = 0a = 1

: 0

spcl.inf.ethz.ch

@spcl_eth

 Reads can bypass previous writes for faster completion

 If read and write access different locations

 No order between write and following read (W  R)

41

Write buffer example

P2P1

L1

L2

X = 0

WB L1WB

a = 0 b = 0

W(a,1)

R(b)

b = 0

W(b,1)

a = 1

: 0

spcl.inf.ethz.ch

@spcl_eth

 Reads can bypass previous writes for faster completion

 If read and write access different locations

 No order between write and following read (W  R)

41

Write buffer example

P2P1

L1

L2

X = 0

WB L1WB

a = 0 b = 0

W(a,1)

R(b)

b = 0

W(b,1)

a = 1 b = 1

: 0

spcl.inf.ethz.ch

@spcl_eth

 Reads can bypass previous writes for faster completion

 If read and write access different locations

 No order between write and following read (W  R)

41

Write buffer example

P2P1

L1

L2

X = 0

WB L1WB

a = 0 b = 0

W(a,1)

R(b)

b = 0

W(b,1)

a = 1 b = 1

: 0

spcl.inf.ethz.ch

@spcl_eth

 Reads can bypass previous writes for faster completion

 If read and write access different locations

 No order between write and following read (W  R)

41

Write buffer example

P2P1

L1

L2

X = 0

WB L1WB

a = 0 b = 0

W(a,1)

R(b)

b = 0

W(b,1)

R(a)

a = 1 b = 1

: 0

spcl.inf.ethz.ch

@spcl_eth

 Reads can bypass previous writes for faster completion

 If read and write access different locations

 No order between write and following read (W  R)

41

Write buffer example

P2P1

L1

L2

X = 0

WB L1WB

a = 0 b = 0

W(a,1)

R(b)

b = 0

W(b,1)

R(a)

a = 0

a = 0

a = 1 b = 1

: 0

spcl.inf.ethz.ch

@spcl_eth

 Reads can bypass previous writes for faster completion

 If read and write access different locations

 No order between write and following read (W  R)

41

Write buffer example

P2P1

L1

L2

X = 0

WB L1WB

a = 0 b = 0

W(a,1)

R(b)

b = 0

W(b,1)

R(a)

a = 0a = 1 b = 1

: 0 : 0

spcl.inf.ethz.ch

@spcl_eth

 Reads can bypass previous writes for faster completion

 If read and write access different locations

 No order between write and following read (W  R)

41

Write buffer example

P2P1

L1

L2

X = 0

WB L1WB

a = 0 b = 0

W(a,1)

R(b)

b = 0

W(b,1)

R(a)

a = 1

b = 1

: 0 : 0

spcl.inf.ethz.ch

@spcl_eth

 Reads can bypass previous writes for faster completion

 If read and write access different locations

 No order between write and following read (W  R)

41

Write buffer example

P2P1

L1

L2

X = 0

WB L1WB

a = 0 b = 0

W(a,1)

R(b)

W(b,1)

R(a)

a = 1 b = 1

: 0 : 0

spcl.inf.ethz.ch

@spcl_eth

 W W: OK

 R W, R  R: No order between read and following read/write

42

Nonblocking read example

P2P1

L1

L2

L1

y = 0x = 0

x = 0 y = 0x = 0

spcl.inf.ethz.ch

@spcl_eth

 W W: OK

 R W, R  R: No order between read and following read/write

42

Nonblocking read example

P2P1

L1

L2

L1

R(y)

y = 0x = 0

x = 0 y = 0x = 0

spcl.inf.ethz.ch

@spcl_eth

 W W: OK

 R W, R  R: No order between read and following read/write

42

Nonblocking read example

P2P1

L1

L2

L1

R(y)

y = 0x = 0

x = 0

Cache miss!

y = 0x = 0

spcl.inf.ethz.ch

@spcl_eth

 W W: OK

 R W, R  R: No order between read and following read/write

42

Nonblocking read example

P2P1

L1

L2

L1

R(y)

y = 0x = 0

x = 0 y = 0x = 0

spcl.inf.ethz.ch

@spcl_eth

 W W: OK

 R W, R  R: No order between read and following read/write

42

Nonblocking read example

P2P1

L1

L2

L1

R(y)

y = 0x = 0

x = 0

R(x)

y = 0x = 0

spcl.inf.ethz.ch

@spcl_eth

 W W: OK

 R W, R  R: No order between read and following read/write

42

Nonblocking read example

P2P1

L1

L2

L1

R(y)

y = 0x = 0

x = 0

R(x) x = 0

y = 0x = 0

spcl.inf.ethz.ch

@spcl_eth

 W W: OK

 R W, R  R: No order between read and following read/write

42

Nonblocking read example

P2P1

L1

L2

L1

R(y)

y = 0x = 0

x = 0

R(x):0

y = 0x = 0

spcl.inf.ethz.ch

@spcl_eth

 W W: OK

 R W, R  R: No order between read and following read/write

42

Nonblocking read example

P2P1

L1

L2

L1

R(y)

y = 0x = 0

x = 0

R(x):0

y = 0x = 0

W(x,1)

spcl.inf.ethz.ch

@spcl_eth

 W W: OK

 R W, R  R: No order between read and following read/write

42

Nonblocking read example

P2P1

L1

L2

L1

R(y)

y = 0

R(x):0

y = 0x = 0

W(x,1)

x = 1

x = 1

spcl.inf.ethz.ch

@spcl_eth

 W W: OK

 R W, R  R: No order between read and following read/write

42

Nonblocking read example

P2P1

L1

L2

L1

R(y)

y = 0

R(x):0

y = 0x = 0

W(x,1)

x = 1

x = 1

spcl.inf.ethz.ch

@spcl_eth

 W W: OK

 R W, R  R: No order between read and following read/write

42

Nonblocking read example

P2P1

L1

L2

L1

R(y)

y = 0

R(x):0

y = 0x = 0

W(x,1)

x = 1

x = 1

W(y,2)

spcl.inf.ethz.ch

@spcl_eth

 W W: OK

 R W, R  R: No order between read and following read/write

42

Nonblocking read example

P2P1

L1

L2

L1

R(y)

R(x):0

x = 0

W(x,1)

x = 1

x = 1

W(y,2)

y = 2

y = 2

spcl.inf.ethz.ch

@spcl_eth

 W W: OK

 R W, R  R: No order between read and following read/write

42

Nonblocking read example

P2P1

L1

L2

L1

R(y)

R(x):0

x = 0

W(x,1)

x = 1

x = 1

W(y,2)

y = 2

y = 2

y = 2

y = 2

spcl.inf.ethz.ch

@spcl_eth

 W W: OK

 R W, R  R: No order between read and following read/write

42

Nonblocking read example

P2P1

L1

L2

L1

R(y)

R(x):0

x = 0

W(x,1)

x = 1

x = 1

W(y,2)

y = 2

y = 2

y = 2

:2

spcl.inf.ethz.ch

@spcl_eth

 Programmer’s view:

 Prefer sequential consistency

 Easiest to reason about

 Compiler/hardware designer’s view:

 Sequential consistency disallows many optimizations!

 Substantial speed difference

 Most architectures and compilers don’t adhere to sequential consistency!

 Solution: synchronized programming

 Access to shared data (aka. “racing accesses”) are ordered by synchronization operations

 Synchronization operations guarantee memory ordering (aka. fence)

 More later!

43

Discussion

spcl.inf.ethz.ch

@spcl_eth

 Varying definitions!

 Cache coherence: a mechanism that propagates writes to other processors/caches if needed, recap:

 Writes are eventually visible to all processors

 Writes to the same location are observed in (one) order

 Memory models: define the bounds on when the value is propagated to other processors

 E.g., sequential consistency requires all reads and writes to be ordered in program order

44

Cache Coherence vs. Memory Model

Good read: McKenney: “Memory Barriers: a Hardware View for Software Hackers”

spcl.inf.ethz.ch

@spcl_eth

 Sequential consistency

 RR, RW, WR, WW (all orders guaranteed)

 Relaxed consistency (varying terminology):

 Processor consistency (aka. TSO)

Relaxes WR

 Partial write (store) order (aka. PSO)

Relaxes WR, WW

 Weak consistency and release consistency (aka. RMO)

Relaxes RR, RW, WR, WW

 Other combinations/variants possible

There are even more types of orders (above is a simplification)

45

The fun begins: Relaxed Memory Models

spcl.inf.ethz.ch

@spcl_eth

46

Architectures

Source: wikipedia

spcl.inf.ethz.ch

@spcl_eth

 Intel® 64 and IA-32 Architectures Software Developer's Manual

 Volume 3A: System Programming Guide

 Chapter 8.2 Memory Ordering

 http://www.intel.com/products/processor/manuals/

 Google Tech Talk: IA Memory Ordering

 Richard L. Hudson

http://www.youtube.com/watch?v=WUfvvFD5tAA

47

Case Study: Memory ordering on Intel (x86)

http://www.intel.com/products/processor/manuals/
http://www.youtube.com/watch?v=WUfvvFD5tAA

spcl.inf.ethz.ch

@spcl_eth

 Total lock order (TLO)

 Instructions with “lock” prefix enforce total order across all processors

 Implicit locking: xchg (locked compare and exchange)

 Causal consistency (CC)

 Write visibility is transitive

 Eight principles

 After some revisions 

48

x86 Memory model: TLO + CC

spcl.inf.ethz.ch

@spcl_eth

1. “Reads are not reordered with other reads.” (RR)

49

The Eight x86 Principles

spcl.inf.ethz.ch

@spcl_eth

1. “Reads are not reordered with other reads.” (RR)

2. “Writes are not reordered with other writes.” (WW)

49

The Eight x86 Principles

spcl.inf.ethz.ch

@spcl_eth

1. “Reads are not reordered with other reads.” (RR)

2. “Writes are not reordered with other writes.” (WW)

3. “Writes are not reordered with older reads.” (RW)

49

The Eight x86 Principles

spcl.inf.ethz.ch

@spcl_eth

1. “Reads are not reordered with other reads.” (RR)

2. “Writes are not reordered with other writes.” (WW)

3. “Writes are not reordered with older reads.” (RW)

4. “Reads may be reordered with older writes to different locations but not with older writes to the same
location.” (NO WR!)

49

The Eight x86 Principles

spcl.inf.ethz.ch

@spcl_eth

1. “Reads are not reordered with other reads.” (RR)

2. “Writes are not reordered with other writes.” (WW)

3. “Writes are not reordered with older reads.” (RW)

4. “Reads may be reordered with older writes to different locations but not with older writes to the same
location.” (NO WR!)

5. “In a multiprocessor system, memory ordering obeys causality.“ (memory ordering respects transitive
visibility)

49

The Eight x86 Principles

spcl.inf.ethz.ch

@spcl_eth

1. “Reads are not reordered with other reads.” (RR)

2. “Writes are not reordered with other writes.” (WW)

3. “Writes are not reordered with older reads.” (RW)

4. “Reads may be reordered with older writes to different locations but not with older writes to the same
location.” (NO WR!)

5. “In a multiprocessor system, memory ordering obeys causality.“ (memory ordering respects transitive
visibility)

6. “In a multiprocessor system, writes to the same location have a total order.” (implied by cache
coherence)

49

The Eight x86 Principles

spcl.inf.ethz.ch

@spcl_eth

1. “Reads are not reordered with other reads.” (RR)

2. “Writes are not reordered with other writes.” (WW)

3. “Writes are not reordered with older reads.” (RW)

4. “Reads may be reordered with older writes to different locations but not with older writes to the same
location.” (NO WR!)

5. “In a multiprocessor system, memory ordering obeys causality.“ (memory ordering respects transitive
visibility)

6. “In a multiprocessor system, writes to the same location have a total order.” (implied by cache
coherence)

7. “In a multiprocessor system, locked instructions have a total order.“ (enables synchronized
programming!)

49

The Eight x86 Principles

spcl.inf.ethz.ch

@spcl_eth

1. “Reads are not reordered with other reads.” (RR)

2. “Writes are not reordered with other writes.” (WW)

3. “Writes are not reordered with older reads.” (RW)

4. “Reads may be reordered with older writes to different locations but not with older writes to the same
location.” (NO WR!)

5. “In a multiprocessor system, memory ordering obeys causality.“ (memory ordering respects transitive
visibility)

6. “In a multiprocessor system, writes to the same location have a total order.” (implied by cache
coherence)

7. “In a multiprocessor system, locked instructions have a total order.“ (enables synchronized
programming!)

8. “Reads and writes are not reordered with locked instructions. “ (enables synchronized programming!)

49

The Eight x86 Principles

spcl.inf.ethz.ch

@spcl_eth

Reads are not reordered with other reads. (RR)

Writes are not reordered with other writes. (WW)

50

Principle 1 and 2
P1

a = 1
b = 2

P2

r1 = b
r2 = a

All values zero initially. r1 and r2 are registers.

P1

P2

Memory

W(a,1) W(b,2)

R(a)R(b)

Order: from left to right

Reads and writes observed in program order.
Cannot be reordered!

spcl.inf.ethz.ch

@spcl_eth

Reads are not reordered with other reads. (RR)

Writes are not reordered with other writes. (WW)

50

Principle 1 and 2
P1

a = 1
b = 2

P2

r1 = b
r2 = a

All values zero initially. r1 and r2 are registers.

P1

P2

Memory

W(a,1) W(b,2)

R(a)R(b)

Order: from left to right

Reads and writes observed in program order.
Cannot be reordered!

spcl.inf.ethz.ch

@spcl_eth

Reads are not reordered with other reads. (RR)

Writes are not reordered with other writes. (WW)

50

Principle 1 and 2
P1

a = 1
b = 2

P2

r1 = b
r2 = a

All values zero initially. r1 and r2 are registers.

P1

P2

Memory W(a,1)

If r1 == 2, then r2 must be 1!
Not allowed: r1 == 2, r2 == 0

W(b,2) R(a)R(b)

Order: from left to right

Reads and writes observed in program order.
Cannot be reordered!

spcl.inf.ethz.ch

@spcl_eth

Reads are not reordered with other reads. (RR)

Writes are not reordered with other writes. (WW)

50

Principle 1 and 2
P1

a = 1
b = 2

P2

r1 = b
r2 = a

All values zero initially. r1 and r2 are registers.

P1

P2

Memory W(a,1)

If r1 == 2, then r2 must be 1!
Not allowed: r1 == 2, r2 == 0

W(b,2) R(a)R(b)

Order: from left to right

Reads and writes observed in program order.
Cannot be reordered!

Question: is r1=0, r2=1 allowed?

spcl.inf.ethz.ch

@spcl_eth

Writes are not reordered with older reads. (RW)

51

Principle 3 P1

r1 = a
b = 1

P2

r2 = b
a = 1

All values zero initially

P1

P2

Memory

R(a) W(b,1)

W(a,1)R(b)

spcl.inf.ethz.ch

@spcl_eth

Writes are not reordered with older reads. (RW)

51

Principle 3 P1

r1 = a
b = 1

P2

r2 = b
a = 1

All values zero initially

P1

P2

Memory

R(a) W(b,1)

W(a,1)R(b)

spcl.inf.ethz.ch

@spcl_eth

Writes are not reordered with older reads. (RW)

51

Principle 3 P1

r1 = a
b = 1

P2

r2 = b
a = 1

All values zero initially

P1

P2

Memory R(a) W(b,1)W(a,1)R(b)

spcl.inf.ethz.ch

@spcl_eth

Writes are not reordered with older reads. (RW)

51

Principle 3 P1

r1 = a
b = 1

P2

r2 = b
a = 1

All values zero initially

If r1 == 1, then P2:W(a)  P1:R(a), thus r2 must be 0!

P1

P2

Memory R(a) W(b,1)W(a,1)R(b)

spcl.inf.ethz.ch

@spcl_eth

Writes are not reordered with older reads. (RW)

51

Principle 3 P1

r1 = a
b = 1

P2

r2 = b
a = 1

All values zero initially

If r1 == 1, then P2:W(a)  P1:R(a), thus r2 must be 0!
If r2 == 1, then P1:W(b)  P1:R(b), thus r1 must be 0!

P1

P2

Memory R(a) W(b,1)W(a,1)R(b)

spcl.inf.ethz.ch

@spcl_eth

Writes are not reordered with older reads. (RW)

51

Principle 3 P1

r1 = a
b = 1

P2

r2 = b
a = 1

All values zero initially

If r1 == 1, then P2:W(a)  P1:R(a), thus r2 must be 0!
If r2 == 1, then P1:W(b)  P1:R(b), thus r1 must be 0!

P1

P2

Memory R(a) W(b,1)W(a,1)R(b)

Question: is r1==1 and r2==1 allowed?

spcl.inf.ethz.ch

@spcl_eth

Writes are not reordered with older reads. (RW)

51

Principle 3 P1

r1 = a
b = 1

P2

r2 = b
a = 1

All values zero initially

If r1 == 1, then P2:W(a)  P1:R(a), thus r2 must be 0!
If r2 == 1, then P1:W(b)  P1:R(b), thus r1 must be 0!

P1

P2

Memory R(a) W(b,1)W(a,1)R(b)

Question: is r1==1 and r2==1 allowed?

Question: is r1==0 and r2==0 allowed?

spcl.inf.ethz.ch

@spcl_eth

Reads may be reordered with older writes to different locations
but not with older writes to the same location. (NO WR!)

52

Principle 4
P1

a = 1
r1 = b

P2

b = 1
r2 = a

All values zero initially

P1

P2

Memory

W(a,1) R(b)

R(a)W(b,1)

OK

OK

spcl.inf.ethz.ch

@spcl_eth

Reads may be reordered with older writes to different locations
but not with older writes to the same location. (NO WR!)

52

Principle 4
P1

a = 1
r1 = b

P2

b = 1
r2 = a

All values zero initially

P1

P2

Memory

W(a,1) R(b)

R(a)W(b,1)

spcl.inf.ethz.ch

@spcl_eth

Reads may be reordered with older writes to different locations
but not with older writes to the same location. (NO WR!)

52

Principle 4
P1

a = 1
r1 = b

P2

b = 1
r2 = a

All values zero initially

P1

P2

Memory W(a,1)R(b) R(a) W(b,1)

spcl.inf.ethz.ch

@spcl_eth

Reads may be reordered with older writes to different locations
but not with older writes to the same location. (NO WR!)

52

Principle 4
P1

a = 1
r1 = b

P2

b = 1
r2 = a

All values zero initially

Allowed: r1=0, r2=0.

P1

P2

Memory W(a,1)R(b) R(a) W(b,1)

spcl.inf.ethz.ch

@spcl_eth

Reads may be reordered with older writes to different locations
but not with older writes to the same location. (NO WR!)

52

Principle 4
P1

a = 1
r1 = b

P2

b = 1
r2 = a

All values zero initially

Allowed: r1=0, r2=0.
Sequential consistency can be enforced with mfence.

P1

P2

Memory W(a,1)R(b) R(a) W(b,1)

spcl.inf.ethz.ch

@spcl_eth

Reads may be reordered with older writes to different locations
but not with older writes to the same location. (NO WR!)

52

Principle 4
P1

a = 1
r1 = b

P2

b = 1
r2 = a

All values zero initially

Allowed: r1=0, r2=0.
Sequential consistency can be enforced with mfence.
Attention: this rule may allow reads to move into
critical sections!

P1

P2

Memory W(a,1)R(b) R(a) W(b,1)

spcl.inf.ethz.ch

@spcl_eth

Reads may be reordered with older writes to different locations
but not with older writes to the same location. (NO WR!)

52

Principle 4
P1

a = 1
r1 = b

P2

b = 1
r2 = a

All values zero initially

Allowed: r1=0, r2=0.
Sequential consistency can be enforced with mfence.
Attention: this rule may allow reads to move into
critical sections!

P1

P2

Memory W(a,1)R(b) R(a) W(b,1)

Question: is r1=1, r2=0 allowed?

spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, memory ordering obeys causality
(memory ordering respects transitive visibility).

53

Principle 5
P1

a = 1

P2

r1 = a
b = 1

P3

r2 = b
r3 = a

P1

P3

Memory

W(a,1)

R(a)R(b)

P2R(a) W(b,1)

All values zero initially

spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, memory ordering obeys causality
(memory ordering respects transitive visibility).

53

Principle 5
P1

a = 1

P2

r1 = a
b = 1

P3

r2 = b
r3 = a

P1

P3

Memory W(a,1) R(a)R(b)

P2

R(a) W(b,1)

All values zero initially

spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, memory ordering obeys causality
(memory ordering respects transitive visibility).

53

Principle 5
P1

a = 1

P2

r1 = a
b = 1

P3

r2 = b
r3 = a

If r1 == 1 and r2==1, then r3 must read 1.

P1

P3

Memory W(a,1) R(a)R(b)

P2

R(a) W(b,1)

All values zero initially

spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, memory ordering obeys causality
(memory ordering respects transitive visibility).

53

Principle 5
P1

a = 1

P2

r1 = a
b = 1

P3

r2 = b
r3 = a

If r1 == 1 and r2==1, then r3 must read 1.
Not allowed: r1 == 1, r2 == 1, and r3 == 0.

P1

P3

Memory W(a,1) R(a)R(b)

P2

R(a) W(b,1)

All values zero initially

spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, memory ordering obeys causality
(memory ordering respects transitive visibility).

53

Principle 5
P1

a = 1

P2

r1 = a
b = 1

P3

r2 = b
r3 = a

If r1 == 1 and r2==1, then r3 must read 1.
Not allowed: r1 == 1, r2 == 1, and r3 == 0.
Provides some form of atomicity.

P1

P3

Memory W(a,1) R(a)R(b)

P2

R(a) W(b,1)

All values zero initially

spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, memory ordering obeys causality
(memory ordering respects transitive visibility).

53

Principle 5
P1

a = 1

P2

r1 = a
b = 1

P3

r2 = b
r3 = a

If r1 == 1 and r2==1, then r3 must read 1.
Not allowed: r1 == 1, r2 == 1, and r3 == 0.
Provides some form of atomicity.

P1

P3

Memory W(a,1) R(a)R(b)

Question: is r1==1, r2==0, r3==1 allowed?

P2

R(a) W(b,1)

All values zero initially

spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, writes to the same location
have a total order (implied by cache coherence).

54

Principle 6
P1

a=1

P2

a=2

P3

r1 = a
r2 = a

P4

r3 = a
r4 = a

All values zero initially

P1

P4

Memory

W(a,1)

R(a)

P3R(a)

P2W(a,2)

R(a)

R(a)

spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, writes to the same location
have a total order (implied by cache coherence).

54

Principle 6
P1

a=1

P2

a=2

P3

r1 = a
r2 = a

P4

r3 = a
r4 = a

All values zero initially

P1

P4

Memory

W(a,1)

R(a)

P3R(a)

P2W(a,2)

R(a)

R(a)

• Not allowed: r1 == 1, r2 == 2, r3 == 2, r4 == 1

spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, writes to the same location
have a total order (implied by cache coherence).

54

Principle 6
P1

a=1

P2

a=2

P3

r1 = a
r2 = a

P4

r3 = a
r4 = a

All values zero initially

P1

P4

Memory

W(a,1)

R(a)

P3R(a)

P2W(a,2)

R(a)

R(a)

• Not allowed: r1 == 1, r2 == 2, r3 == 2, r4 == 1
• If P3 observes P1’s write before P2’s write, then P4 will also
see P1’s write before P2’s write

spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, writes to the same location
have a total order (implied by cache coherence).

54

Principle 6
P1

a=1

P2

a=2

P3

r1 = a
r2 = a

P4

r3 = a
r4 = a

All values zero initially

P1

P4

Memory

W(a,1)

R(a)

P3R(a)

P2W(a,2)

R(a)

R(a)

• Not allowed: r1 == 1, r2 == 2, r3 == 2, r4 == 1
• If P3 observes P1’s write before P2’s write, then P4 will also
see P1’s write before P2’s write
• Provides some form of atomicity

spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, writes to the same location
have a total order (implied by cache coherence).

54

Principle 6
P1

a=1

P2

a=2

P3

r1 = a
r2 = a

P4

r3 = a
r4 = a

All values zero initially

P1

P4

Memory

W(a,1)

R(a)

Question: is r1=0, r2=2, r3=0, r4=1 allowed?

P3R(a)

P2W(a,2)

R(a)

R(a)

• Not allowed: r1 == 1, r2 == 2, r3 == 2, r4 == 1
• If P3 observes P1’s write before P2’s write, then P4 will also
see P1’s write before P2’s write
• Provides some form of atomicity

spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, writes to the same location
have a total order (implied by cache coherence).

54

Principle 6
P1

a=1

P2

a=2

P3

r1 = a
r2 = a

P4

r3 = a
r4 = a

All values zero initially

P1

P4

Memory W(a,1)R(a)

Question: is r1=0, r2=2, r3=0, r4=1 allowed?

P3

R(a)

P2

W(a,2) R(a)R(a)

• Not allowed: r1 == 1, r2 == 2, r3 == 2, r4 == 1
• If P3 observes P1’s write before P2’s write, then P4 will also
see P1’s write before P2’s write
• Provides some form of atomicity

spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, locked instructions have a
total order. (enables synchronized programming!)

55

Principle 7
P1

xchg(a,r1)

P2

xchg(b,r2)

P3

r3 = a
r4 = b

P4

r5 = b
r6 = a

All values zero initially, registers r1==r2==1

P1

P4

X(a,r1)

R(b)

P3R(a)

P2X(b,r2)

R(b)

R(a)

Memory

spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, locked instructions have a
total order. (enables synchronized programming!)

55

Principle 7
P1

xchg(a,r1)

P2

xchg(b,r2)

P3

r3 = a
r4 = b

P4

r5 = b
r6 = a

All values zero initially, registers r1==r2==1

P1

P4

X(a,r1)

R(b)

Question: is r3=1, r4=0, r5=0, r6=1 allowed?

P3R(a)

P2X(b,r2)

R(b)

R(a)

Memory

spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, locked instructions have a
total order. (enables synchronized programming!)

55

Principle 7
P1

xchg(a,r1)

P2

xchg(b,r2)

P3

r3 = a
r4 = b

P4

r5 = b
r6 = a

All values zero initially, registers r1==r2==1

P1

P4

X(a,r1) R(b)

Question: is r3=1, r4=0, r5=0, r6=1 allowed?

P3

R(a)

P2

X(b,r2)R(b) R(a)Memory

spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, locked instructions have a
total order. (enables synchronized programming!)

55

Principle 7
P1

xchg(a,r1)

P2

xchg(b,r2)

P3

r3 = a
r4 = b

P4

r5 = b
r6 = a

All values zero initially, registers r1==r2==1

• Not allowed: r3 == 1, r4 == 0, r5 == 1, r6 ==0

P1

P4

X(a,r1) R(b)

Question: is r3=1, r4=0, r5=0, r6=1 allowed?

P3

R(a)

P2

X(b,r2)R(b) R(a)Memory

spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, locked instructions have a
total order. (enables synchronized programming!)

55

Principle 7
P1

xchg(a,r1)

P2

xchg(b,r2)

P3

r3 = a
r4 = b

P4

r5 = b
r6 = a

All values zero initially, registers r1==r2==1

• Not allowed: r3 == 1, r4 == 0, r5 == 1, r6 ==0
• If P3 observes ordering P1:xchg  P2:xchg,

then P4 observes the same ordering

P1

P4

X(a,r1) R(b)

Question: is r3=1, r4=0, r5=0, r6=1 allowed?

P3

R(a)

P2

X(b,r2)R(b) R(a)Memory

spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, locked instructions have a
total order. (enables synchronized programming!)

55

Principle 7
P1

xchg(a,r1)

P2

xchg(b,r2)

P3

r3 = a
r4 = b

P4

r5 = b
r6 = a

All values zero initially, registers r1==r2==1

• Not allowed: r3 == 1, r4 == 0, r5 == 1, r6 ==0
• If P3 observes ordering P1:xchg  P2:xchg,

then P4 observes the same ordering
• (xchg has implicit lock)

P1

P4

X(a,r1) R(b)

Question: is r3=1, r4=0, r5=0, r6=1 allowed?

P3

R(a)

P2

X(b,r2)R(b) R(a)Memory

spcl.inf.ethz.ch

@spcl_eth

Reads and writes are not reordered with locked instructions.

(enables synchronized programming!)

56

Principle 8
P1

xchg(a,r1)
r2 = b

P2

xchg(b,r3)
r4 = a

All values zero initially but r1 = r3 = 1

P1

P2

X(a,r1)

X(b,r3) R(a)

Memory

R(b)

spcl.inf.ethz.ch

@spcl_eth

Reads and writes are not reordered with locked instructions.

(enables synchronized programming!)

56

Principle 8
P1

xchg(a,r1)
r2 = b

P2

xchg(b,r3)
r4 = a

All values zero initially but r1 = r3 = 1

P1

P2

X(a,r1) X(b,r3) R(a)Memory R(b)

spcl.inf.ethz.ch

@spcl_eth

Reads and writes are not reordered with locked instructions.

(enables synchronized programming!)

56

Principle 8
P1

xchg(a,r1)
r2 = b

P2

xchg(b,r3)
r4 = a

All values zero initially but r1 = r3 = 1

• Not allowed: r2 == 0, r4 == 0

P1

P2

X(a,r1) X(b,r3) R(a)Memory R(b)

spcl.inf.ethz.ch

@spcl_eth

Reads and writes are not reordered with locked instructions.

(enables synchronized programming!)

56

Principle 8
P1

xchg(a,r1)
r2 = b

P2

xchg(b,r3)
r4 = a

All values zero initially but r1 = r3 = 1

• Not allowed: r2 == 0, r4 == 0
• Locked instructions have total order, so P1 and P2 agree on

the same order

P1

P2

X(a,r1) X(b,r3) R(a)Memory R(b)

spcl.inf.ethz.ch

@spcl_eth

Reads and writes are not reordered with locked instructions.

(enables synchronized programming!)

56

Principle 8
P1

xchg(a,r1)
r2 = b

P2

xchg(b,r3)
r4 = a

All values zero initially but r1 = r3 = 1

• Not allowed: r2 == 0, r4 == 0
• Locked instructions have total order, so P1 and P2 agree on

the same order
• If volatile variables use locked instructions  practical

sequential consistency (more later)

P1

P2

X(a,r1) X(b,r3) R(a)Memory R(b)

spcl.inf.ethz.ch

@spcl_eth

 Sewell el al.: “x86-TSO: A Rigorous and Usable Programmer’s Model for x86 Multiprocessors”, CACM May
2010

“[…] real multiprocessors typically do not provide the sequentially consistent memory that is assumed by
most work on semantics and verification. Instead, they have relaxed memory models, varying in subtle ways
between processor families, in which different hardware threads may have only loosely consistent views of a
shared memory. Second, the public vendor architectures, supposedly specifying what programmers can rely
on, are often in ambiguous informal prose (a particularly poor medium for loose specifications), leading to
widespread confusion. [...] We present a new x86-TSO programmer’s model that, to the best of our
knowledge, suffers from none of these problems. It is mathematically precise (rigorously defined in HOL4) but
can be presented as an intuitive abstract machine which should be widely accessible to working
programmers. […]”

57

An Alternative View: x86-TSO

Newer RMA systems: A. Dan, P. Lam, TH, A. Vechev: Modeling and Analysis of Remote Memory Access Programming, ACM OOPSLA’16

spcl.inf.ethz.ch

@spcl_eth

 We discussed so far:

 Read/write of the same location

Cache coherence (write serialization and atomicity)

 Read/write of multiple locations

Memory models (visibility order of updates by cores)

 Now: objects (variables/fields with invariants defined on them)

 Invariants “tie” variables together

 Sequential objects

 Concurrent objects

58

Notions of Correctness

spcl.inf.ethz.ch

@spcl_eth

 Each object has a type

 A type is defined by a class

 Set of fields forms the state of an object

 Set of methods (or free functions) to manipulate the state

 Remark

 An Interface is an abstract type that defines behavior

A class implementing an interface defines several types

59

Sequential Objects

spcl.inf.ethz.ch

@spcl_eth

Running Example: FIFO Queue

 Insert elements at tail

 Remove elements from head

 Initial: head = tail = 0

60

head tail

0

2

1

5 4

3

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

Running Example: FIFO Queue

 Insert elements at tail

 Remove elements from head

 Initial: head = tail = 0

 enq(x)

60

head tail

0

2

1

5 4

3

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

Running Example: FIFO Queue

 Insert elements at tail

 Remove elements from head

 Initial: head = tail = 0

 enq(x)

60

head tail

0

2

1

5 4

3

x

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

Running Example: FIFO Queue

 Insert elements at tail

 Remove elements from head

 Initial: head = tail = 0

 enq(x)

60

head tail

0

2

1

5 4

3

x

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

Running Example: FIFO Queue

 Insert elements at tail

 Remove elements from head

 Initial: head = tail = 0

 enq(x)

 enq(y)

60

head tail

0

2

1

5 4

3

x

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

Running Example: FIFO Queue

 Insert elements at tail

 Remove elements from head

 Initial: head = tail = 0

 enq(x)

 enq(y)

60

head tail

0

2

1

5 4

3

yx

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

Running Example: FIFO Queue

 Insert elements at tail

 Remove elements from head

 Initial: head = tail = 0

 enq(x)

 enq(y)

60

head tail

0

2

1

5 4

3

yx

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

Running Example: FIFO Queue

 Insert elements at tail

 Remove elements from head

 Initial: head = tail = 0

 enq(x)

 enq(y)

 deq() [x]

60

head tail

0

2

1

5 4

3

yx

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

Running Example: FIFO Queue

 Insert elements at tail

 Remove elements from head

 Initial: head = tail = 0

 enq(x)

 enq(y)

 deq() [x]

60

head tail

0

2

1

5 4

3

y

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

Running Example: FIFO Queue

 Insert elements at tail

 Remove elements from head

 Initial: head = tail = 0

 enq(x)

 enq(y)

 deq() [x]

60

head tail

0

2

1

5 4

3

y

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

Running Example: FIFO Queue

 Insert elements at tail

 Remove elements from head

 Initial: head = tail = 0

 enq(x)

 enq(y)

 deq() [x]

 …

60

head tail

0

2

1

5 4

3

y

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

61

Sequential Queue

class Queue {
private:
int head, tail;
std::vector<Item> items;

public:
Queue(int capacity) {
head = tail = 0;
items.resize(capacity);

}

// ...

};

head tail

0

2

1

5 4

3

yx

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

62

Sequential Queue

class Queue {
// ...

public:
void enq(Item x) {
if((tail+1)%items.size() == head) {
throw FullException;

}
items[tail] = x;
tail = (tail+1)%items.size();

}

Item deq() {
if(tail == head) {
throw EmtpyException;

}
Item item = items[head];
head = (head+1)%items.size();
return item;

}
};

head tail

0

2

1

5 4

3

yx

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

 (The) one process executes
operations one at a time

 Sequential 

 Semantics of operation
defined by specification
of the class

 Preconditions and postconditions

63

Sequential Execution head tail

0

2

1

5 4

3

y

7

6

P

Time

enq(x) enq(y) deq()

spcl.inf.ethz.ch

@spcl_eth

 Preconditions:

 Specify conditions that must
hold before method executes

 Involve state and arguments
passed

 Specify obligations a client
must meet before calling a
method

 Example: enq()

 Queue must not be full!

64

Design by Contract!

class Queue {
// ...
void enq(Item x) {
assert((tail+1)%items.size() != head);
// ...

}
};

head tail

0

2

1

5 4

3

yx

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

 Postconditions:

 Specify conditions that must
hold after method executed

 Involve old state and
arguments passed

 Example: enq()

 Queue must contain element!

65

Design by Contract!

class Queue {
// ...
void enq(Item x) {
// ...
assert(
(tail == (old_tail + 1)%items.size()) &&
(items[old_tail] == x));

}
};

head tail

0

2

1

5 4

3

yx

capacity = 8

7

6

spcl.inf.ethz.ch

@spcl_eth

 if(precondition)

 Object is in a specified state

 then(postcondition)

 The method returns a particular value or

 Throws a particular exception and

 Leaves the object in a specified state

 Invariants

 Specified conditions (e.g., object state) must hold anytime a client could invoke an objects method!

66

Sequential specification

spcl.inf.ethz.ch

@spcl_eth

 State between method calls is defined

 Enables reasoning about objects

 Interactions between methods captured by side effects on object state

 Enables reasoning about each method in isolation

 Contracts for each method

 Local state changes global state

 Adding new methods

 Only reason about state changes that the new method causes

 If invariants are kept: no need to check old methods

 Modularity!

67

Advantages of sequential specification

spcl.inf.ethz.ch

@spcl_eth

 Concurrent threads invoke methods on possibly shared objects

 At overlapping time intervals!

68

Concurrent execution - State

Property Sequential Concurrent

State Meaningful only between
method executions

Overlapping method executions 
object may never be “between
method executions”

Each method execution
takes some non-zero
amount of time!

P1

Time

P2

P3

spcl.inf.ethz.ch

@spcl_eth

 Concurrent threads invoke methods on possibly shared objects

 At overlapping time intervals!

68

Concurrent execution - State

Property Sequential Concurrent

State Meaningful only between
method executions

Overlapping method executions 
object may never be “between
method executions”

Each method execution
takes some non-zero
amount of time!

P1

Time

P2

P3

q.enq(y)

q.enq(x)

q.deq()

spcl.inf.ethz.ch

@spcl_eth

 Reasoning must now include all possible interleavings

 Of changes caused by methods themselves

69

Concurrent execution - Reasoning

Property Sequential Concurrent

Reasoning Consider each method in
isolation; invariants on state
before/after execution.

Need to consider all possible
interactions; all intermediate states
during execution

Each method execution
takes some non-zero
amount of time!

P1

Time

P2

P3

q.enq(y)

q.enq(x)

q.deq()

That is, now we have to consider
what will happen if we execute:
• enq() concurrently with enq()
• deq() concurrently with deq()
• deq() concurrently with enq()

spcl.inf.ethz.ch

@spcl_eth

 Reasoning must now include all possible interleavings

 Of changes caused by and methods themselves

 Consider adding a method that returns the last item enqueued

 If peek() and enq() run concurrently: what if tail has not yet been incremented?

 If peek() and deq() run concurrently: what if last item is being dequeued?

70

Concurrent execution - Method addition

Property Sequential Concurrent

Add Method Without affecting other
methods; invariants on state
before/after execution.

Everything can potentially interact
with everything else

Item peek() {
if(tail == head) throw EmptyException;
return items[(tail-1) % items.size()];

}

void enq(Item x) {
items[tail] = x;
tail = (tail+1) % items.size();

}

Item deq() {
Item item = items[head];
head = (head+1) % items.size();

}

spcl.inf.ethz.ch

@spcl_eth

 How do we describe one?

 No pre-/postconditions 

 How do we implement one?

 Plan for quadratic or exponential number of interactions and states

 How do we tell if an object is correct?

 Analyze all quadratic or exponential interactions and states

71

Concurrent objects

spcl.inf.ethz.ch

@spcl_eth

 How do we describe one?

 No pre-/postconditions 

 How do we implement one?

 Plan for quadratic or exponential number of interactions and states

 How do we tell if an object is correct?

 Analyze all quadratic or exponential interactions and states

71

Concurrent objects

Is it time to panic for (parallel) software engineers?
Who has a solution?

spcl.inf.ethz.ch

@spcl_eth

72

Lock-based queue

class Queue {
private:
int head, tail;
std::vector<Item> items;
std::mutex lock;

public:
Queue(int capacity) {
head = tail = 0;
items.resize(capacity);

}
// ...

};

We can use the lock to
protect Queue’s fields.

head tail

0

2

1

5 4

3

yx

7

6

spcl.inf.ethz.ch

@spcl_eth

class Queue {
// ...

public:
void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
throw FullException;

}
items[tail] = x;
tail = (tail+1)%items.size();

}

Item deq() {
std::lock_guard<std::mutex> l(lock);
if(tail == head) {
throw EmptyException;

}
Item item = items[head];
head = (head+1)%items.size();
return item;

}
};

73

Lock-based queue

One of C++’s ways of implementing a critical section

head tail

0

2

1

5 4

3

yx

7

6

spcl.inf.ethz.ch

@spcl_eth

class Queue {
// ...

public:
void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
throw FullException;

}
items[tail] = x;
tail = (tail+1)%items.size();

}

Item deq() {
std::lock_guard<std::mutex> l(lock);
if(tail == head) {
throw EmptyException;

}
Item item = items[head];
head = (head+1)%items.size();
return item;

}
};

73

Lock-based queue

One of C++’s ways of implementing a critical section

head tail

0

2

1

5 4

3

yx

7

6

Class question: how is the
lock ever unlocked?

spcl.inf.ethz.ch

@spcl_eth

 RAII – suboptimal name

 Can be used for locks (or any other resource acquisition)

 Constructor grabs resource

 Destructor frees resource

 Behaves as if

 Implicit unlock at end of block!

 Main advantages

 Always unlock/free lock at exit

 No “lost” locks due to exceptions
or strange control flow (goto )

 Very easy to use

74

C++ Resource Acquisition is Initialization

template <typename mutex_impl>
class lock_guard {

mutex_impl& _mtx; // ref to the mutex

public:
lock_guard(mutex_impl& mtx) : _mtx(mtx) {

_mtx.lock(); // lock mutex in constructor
}

~lock_guard() {
_mtx.unlock(); // unlock mutex in destructor

}
};

spcl.inf.ethz.ch

@spcl_eth

75

Example execution

spcl.inf.ethz.ch

@spcl_eth

75

Example execution

void enq(Item x) {

enq() is called

spcl.inf.ethz.ch

@spcl_eth

75

Example execution

void enq(Item x) {
std::lock_guard<std::mutex> l(lock);

The lock is acquired

spcl.inf.ethz.ch

@spcl_eth

75

Example execution

void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {

spcl.inf.ethz.ch

@spcl_eth

75

Example execution

void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
throw FullException; Item deq() {

deq() is called by another thread

spcl.inf.ethz.ch

@spcl_eth

75

Example execution

void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
throw FullException;

}
Item deq() {
std::lock_guard<std::mutex> l(lock);

deq() has to wait for the lock to be released

spcl.inf.ethz.ch

@spcl_eth

75

Example execution

void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
throw FullException;

}
items[tail] = x;

Item deq() {
std::lock_guard<std::mutex> l(lock);

deq() has to wait for the lock to be released

spcl.inf.ethz.ch

@spcl_eth

75

Example execution

void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
throw FullException;

}
items[tail] = x;
tail = (tail+1)%items.size();

Item deq() {
std::lock_guard<std::mutex> l(lock);

deq() has to wait for the lock to be released

spcl.inf.ethz.ch

@spcl_eth

75

Example execution

void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
throw FullException;

}
items[tail] = x;
tail = (tail+1)%items.size();

}

Item deq() {
std::lock_guard<std::mutex> l(lock);

enq() releases the lock; deq() acquires it and proceeds.

spcl.inf.ethz.ch

@spcl_eth

75

Example execution

void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
throw FullException;

}
items[tail] = x;
tail = (tail+1)%items.size();

}

Item deq() {
std::lock_guard<std::mutex> l(lock);

if(tail == head) {

enq() releases the lock; deq() acquires it and proceeds.

spcl.inf.ethz.ch

@spcl_eth

75

Example execution

void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
throw FullException;

}
items[tail] = x;
tail = (tail+1)%items.size();

}

Item deq() {
std::lock_guard<std::mutex> l(lock);

if(tail == head) {
throw EmptyException;

enq() releases the lock; deq() acquires it and proceeds.

spcl.inf.ethz.ch

@spcl_eth

75

Example execution

void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
throw FullException;

}
items[tail] = x;
tail = (tail+1)%items.size();

}

Item deq() {
std::lock_guard<std::mutex> l(lock);

if(tail == head) {
throw EmptyException;

}

enq() releases the lock; deq() acquires it and proceeds.

spcl.inf.ethz.ch

@spcl_eth

75

Example execution

void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
throw FullException;

}
items[tail] = x;
tail = (tail+1)%items.size();

}

Item deq() {
std::lock_guard<std::mutex> l(lock);

if(tail == head) {
throw EmptyException;

}
Item item = items[head];

enq() releases the lock; deq() acquires it and proceeds.

spcl.inf.ethz.ch

@spcl_eth

75

Example execution

void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
throw FullException;

}
items[tail] = x;
tail = (tail+1)%items.size();

}

Item deq() {
std::lock_guard<std::mutex> l(lock);

if(tail == head) {
throw EmptyException;

}
Item item = items[head];
head = (head+1)%items.size();

enq() releases the lock; deq() acquires it and proceeds.

spcl.inf.ethz.ch

@spcl_eth

75

Example execution

void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
throw FullException;

}
items[tail] = x;
tail = (tail+1)%items.size();

}

Item deq() {
std::lock_guard<std::mutex> l(lock);

if(tail == head) {
throw EmptyException;

}
Item item = items[head];
head = (head+1)%items.size();
return item;

enq() releases the lock; deq() acquires it and proceeds.

spcl.inf.ethz.ch

@spcl_eth

75

Example execution

void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
throw FullException;

}
items[tail] = x;
tail = (tail+1)%items.size();

}

Item deq() {
std::lock_guard<std::mutex> l(lock);

if(tail == head) {
throw EmptyException;

}
Item item = items[head];
head = (head+1)%items.size();
return item;

}

deq() releases the lock

spcl.inf.ethz.ch

@spcl_eth

75

Example execution

void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
throw FullException;

}
items[tail] = x;
tail = (tail+1)%items.size();

}

Item deq() {
std::lock_guard<std::mutex> l(lock);

if(tail == head) {
throw EmptyException;

}
Item item = items[head];
head = (head+1)%items.size();
return item;

}

spcl.inf.ethz.ch

@spcl_eth

75

Example execution

void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
throw FullException;

}
items[tail] = x;
tail = (tail+1)%items.size();

}

Item deq() {
std::lock_guard<std::mutex> l(lock);

if(tail == head) {
throw EmptyException;

}
Item item = items[head];
head = (head+1)%items.size();
return item;

}

enq(x)

deq()

Methods effectively execute one after another, sequentially.

spcl.inf.ethz.ch

@spcl_eth

 Is the locked queue correct?

 Yes, only one thread has access if locked correctly

 Allows us again to reason about pre- and postconditions

 Smells a bit like sequential consistency, no?

 Class question: What is the problem with this approach?

77

Correctness

spcl.inf.ethz.ch

@spcl_eth

 Is the locked queue correct?

 Yes, only one thread has access if locked correctly

 Allows us again to reason about pre- and postconditions

 Smells a bit like sequential consistency, no?

 Class question: What is the problem with this approach?

 Same as for SC 

77

Correctness

It does not scale!
What is the solution here?

