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Lecture 3: Memory Models

Teaching assistant: Salvatore Di Girolamo                               Motivational video: https://www.youtube.com/watch?v=tW2hT0g4OUs
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2TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

Scientific Benchmarking: Benchmark Selection (Rule 2)

https://www.youtube.com/watch?v=HwEpXIWAWTU


spcl.inf.ethz.ch

@spcl_eth

2

Based on the presented data, one may 
conclude that using -O3 is always a good idea.
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Scientific Benchmarking: Benchmark Selection (Rule 2)

The presented data set contains only a subset 
of the Mantevo benchmark suite.
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Based on the presented data, one may 
conclude that using -O3 is always a good idea.

The incompleteness of data may lead to wrong conclusions. 
Sometimes -O3 may not be a good idea for a code: e.g., vectorization 

(enabled by -O3) may segfault on a loop which does unaligned memory 
access on some x86. But this is not demonstrated by the presented dataset.
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Based on the presented data, one may 
conclude that using -O3 is always a good idea.

The incompleteness of data may lead to wrong conclusions. 
Sometimes -O3 may not be a good idea for a code: e.g., vectorization 

(enabled by -O3) may segfault on a loop which does unaligned memory 
access on some x86. But this is not demonstrated by the presented dataset.

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

Scientific Benchmarking: Benchmark Selection (Rule 2)

The presented data set contains only a subset 
of the Mantevo benchmark suite.

Rule 2: Specify the reason for only reporting subsets of standard 
benchmarks or applications or not using all system resources.

 This implies: Show results even if your code/approach stops scaling!

https://www.youtube.com/watch?v=HwEpXIWAWTU
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 Architecture case studies 

 Memory performance is often the bottleneck

 Parallelism grows with compute performance

 Caching is important 

 Several issues to address for parallel systems

 Cache Coherence

 Hardware support to aid programmers

 Two guarantees:

Write propagation (updates are eventually visible to all readers)

Write serialization (writes to the same location are observed in global order)

 Two major mechanisms:

Snooping

Directory-based – continuing today

 Protocols: MESI (MOESI, MESIF)

4

Review of last lecture
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DPHPC Overview
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 Don’t forget the projects!

 Project ideas shared on Thursday (send email to Salvatore for group formations)

 Project progress presentations on 10/29 (three weeks from now)!

 Cache-coherence is not enough

 Many more subtle issues for parallel programs

 Memory Models

 Sequential consistency

 Why threads cannot be implemented as a library 

 Relaxed consistency models

 Linearizability

 More complex objects

7

Goals of this lecture
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▪ Snooping does not scale

▪ Bus transactions must be globally visible

▪ Implies broadcast

▪ Typical solution: tree-based (hierarchical) snooping

▪ Root becomes a bottleneck

▪ Directory-based schemes are more scalable

▪ Directory (entry for each CL) keeps track of all owning caches

▪ Point-to-point update to involved processors

No broadcast

Can use specialized (high-bandwidth) network, e.g., HT, QPI …

8

Directory-based cache coherence
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▪ System with N processors Pi

▪ For each memory block (size: cache line) 
maintain a directory entry

▪ N presence bits (light blue)

Set if block in cache of Pi

▪ 1 dirty bit (red)

▪ First proposed by Censier and Feautrier (1978)

9

Basic Scheme
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Main Memory

▪ P0 intends to read, misses 
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Directory-based CC: Read miss
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Main Memory

▪ P0 intends to read, misses 

▪ If dirty bit (in directory) is off
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Directory-based CC: Read miss
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Main Memory

▪ P0 intends to read, misses 

▪ If dirty bit (in directory) is off

▪ Read from main memory
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Directory-based CC: Read miss
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Main Memory

▪ P0 intends to read, misses 

▪ If dirty bit (in directory) is off

▪ Read from main memory

▪ Set presence[i]
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Directory-based CC: Read miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

X = 7X = 7



spcl.inf.ethz.ch

@spcl_eth

Main Memory
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▪ Read from main memory
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Main Memory

▪ P0 intends to read, misses 

▪ If dirty bit (in directory) is off

▪ Read from main memory

▪ Set presence[i]

▪ Supply data to reader

10

Directory-based CC: Read miss
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Main Memory

▪ P0 intends to read, misses 

11

Directory-based CC: Read miss
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Main Memory

▪ P0 intends to read, misses 

11

Directory-based CC: Read miss
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Main Memory

▪ P0 intends to read, misses 

▪ If dirty bit is on

11

Directory-based CC: Read miss
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Main Memory

▪ P0 intends to read, misses 

▪ If dirty bit is on

▪ Recall cache line from Pj 

(determine by presence[])

11

Directory-based CC: Read miss
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Main Memory

▪ P0 intends to read, misses 

▪ If dirty bit is on

▪ Recall cache line from Pj 

(determine by presence[])

11

Directory-based CC: Read miss
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Main Memory

▪ P0 intends to read, misses 

▪ If dirty bit is on

▪ Recall cache line from Pj 

(determine by presence[])

▪ Update memory

11

Directory-based CC: Read miss
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Main Memory

▪ P0 intends to read, misses 

▪ If dirty bit is on

▪ Recall cache line from Pj 

(determine by presence[])

▪ Update memory

11

Directory-based CC: Read miss
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Main Memory

▪ P0 intends to read, misses 

▪ If dirty bit is on

▪ Recall cache line from Pj 

(determine by presence[])

▪ Update memory

▪ Unset dirty bit, block shared

11

Directory-based CC: Read miss

27

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0X = 0

X = 0



spcl.inf.ethz.ch

@spcl_eth

Main Memory
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▪ Update memory

▪ Unset dirty bit, block shared
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Directory-based CC: Read miss
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Main Memory

▪ P0 intends to read, misses 

▪ If dirty bit is on

▪ Recall cache line from Pj 

(determine by presence[])

▪ Update memory

▪ Unset dirty bit, block shared

▪ Set presence[i]

11

Directory-based CC: Read miss
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▪ If dirty bit is on
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▪ Update memory

▪ Unset dirty bit, block shared

▪ Set presence[i]
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Directory-based CC: Read miss
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Main Memory

▪ P0 intends to read, misses 

▪ If dirty bit is on

▪ Recall cache line from Pj 

(determine by presence[])

▪ Update memory

▪ Unset dirty bit, block shared

▪ Set presence[i]

▪ Supply data to reader

11

Directory-based CC: Read miss
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Main Memory

▪ P0 intends to read, misses 

▪ If dirty bit is on

▪ Recall cache line from Pj 

(determine by presence[])

▪ Update memory

▪ Unset dirty bit, block shared

▪ Set presence[i]

▪ Supply data to reader
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Directory-based CC: Read miss
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Main Memory

▪ P0 intends to write, misses 

12

Directory-based CC: Write miss
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Directory-based CC: Write miss
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Main Memory

▪ P0 intends to write, misses 

▪ If dirty bit (in directory) is off
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Directory-based CC: Write miss
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Main Memory

▪ P0 intends to write, misses 

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

12

Directory-based CC: Write miss
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Main Memory

▪ P0 intends to write, misses 

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

▪ Unset presence bit for all processors
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with presence[j] turned on

▪ Unset presence bit for all processors
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Main Memory

▪ P0 intends to write, misses 

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

▪ Unset presence bit for all processors

▪ Set dirty bit
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Main Memory

▪ P0 intends to write, misses 

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

▪ Unset presence bit for all processors

▪ Set dirty bit
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Main Memory

▪ P0 intends to write, misses 

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

▪ Unset presence bit for all processors

▪ Set dirty bit

▪ Set presence[i], owner Pi

12

Directory-based CC: Write miss
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▪ If dirty bit (in directory) is off
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▪ Unset presence bit for all processors

▪ Set dirty bit
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Main Memory

▪ P0 intends to write, misses 

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

▪ Unset presence bit for all processors

▪ Set dirty bit
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Main Memory

▪ P0 intends to write, misses 

13

Directory-based CC: Write miss
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Main Memory

▪ P0 intends to write, misses 

13

Directory-based CC: Write miss
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Main Memory

▪ P0 intends to write, misses 

▪ If dirty bit is on

13

Directory-based CC: Write miss
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Main Memory

▪ P0 intends to write, misses 

▪ If dirty bit is on

▪ Recall cache line from owner Pj

13

Directory-based CC: Write miss
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Main Memory

▪ P0 intends to write, misses 

▪ If dirty bit is on

▪ Recall cache line from owner Pj

13

Directory-based CC: Write miss
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Main Memory

▪ P0 intends to write, misses 

▪ If dirty bit is on

▪ Recall cache line from owner Pj

▪ Update memory

13

Directory-based CC: Write miss
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Main Memory

▪ P0 intends to write, misses 

▪ If dirty bit is on

▪ Recall cache line from owner Pj

▪ Update memory

13

Directory-based CC: Write miss
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Main Memory

▪ P0 intends to write, misses 

▪ If dirty bit is on

▪ Recall cache line from owner Pj

▪ Update memory

▪ Unset presence[j]

13

Directory-based CC: Write miss
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Main Memory

▪ P0 intends to write, misses 

▪ If dirty bit is on

▪ Recall cache line from owner Pj

▪ Update memory

▪ Unset presence[j]

13

Directory-based CC: Write miss
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Main Memory

▪ P0 intends to write, misses 

▪ If dirty bit is on

▪ Recall cache line from owner Pj

▪ Update memory

▪ Unset presence[j]

▪ Set presence[i], dirty bit remains set

13

Directory-based CC: Write miss
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Main Memory

▪ P0 intends to write, misses 

▪ If dirty bit is on

▪ Recall cache line from owner Pj

▪ Update memory

▪ Unset presence[j]

▪ Set presence[i], dirty bit remains set

13

Directory-based CC: Write miss
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Main Memory

▪ P0 intends to write, misses 

▪ If dirty bit is on

▪ Recall cache line from owner Pj

▪ Update memory

▪ Unset presence[j]

▪ Set presence[i], dirty bit remains set

▪ Acknowledge to writer

13

Directory-based CC: Write miss
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▪ Scaling of memory bandwidth

▪ No centralized memory

▪ Directory-based approaches scale with restrictions

▪ Require presence bit for each cache and cache line address

▪ Number of bits determined at design time

▪ Directory requires memory (size scales linearly)

▪ Shared vs. distributed directory

▪ Software-emulation

▪ Distributed shared memory (DSM)

▪ Emulate cache coherence in software (e.g., TreadMarks)

▪ Often on a per-page basis, utilizes memory virtualization and paging

15

Discussion
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▪ Tune algorithms to cache-coherence schemes

▪ What is the optimal parallel algorithm for a given scheme?

▪ Parameterize for an architecture

▪ Measure and classify hardware 

▪ Read Maranget et al. “A Tutorial Introduction to the ARM and POWER Relaxed Memory Models” and have fun!

▪ RDMA consistency is barely understood!

▪ GPU memories are not well understood!

Huge potential for new insights!

▪ Can we program (easily) without cache coherence?

▪ How to fix the problems with inconsistent values?

▪ Compiler support (issues with arrays)?

▪ Invent new semi-coherent schemes?

16

Open Problems (for projects, theses, research)
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Case Study: Intel Xeon Phi

17



spcl.inf.ethz.ch

@spcl_eth

Case Study: Intel Xeon Phi

17

Core Core Core

Core Core Core



spcl.inf.ethz.ch

@spcl_eth

Case Study: Intel Xeon Phi

17

Core Core Core

Core Core Core



spcl.inf.ethz.ch

@spcl_eth

Case Study: Intel Xeon Phi

17

Core Core Core

Core Core Core

GDDR5

GDDR5

GDDR5

GDDR5



spcl.inf.ethz.ch

@spcl_eth

TD

TD

Case Study: Intel Xeon Phi
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18

Communication?

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

(Ss$, Sd$)
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Local read: RL= 8.6 ns

Remote read RR = 235 ns

Invalid read RI = 278 ns

Inspired by Molka et al.: “Memory performance and cache coherency effects on an Intel Nehalem multiprocessor system”
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▪ Prediction for both in E state: 479 ns

▪ Measurement: 497 ns (O=18)

20

Single-Line Ping Pong

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13
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▪ More complex due to prefetch

21

Multi-Line Ping Pong

Asymptotic Fetch 
Latency for each cache 
line (optimal prefetch!)

Number 
of CLs

Startup 
overhead

Amortization of 
startup

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13
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▪ E state:
▪ o=76 ns

▪ q=1,521ns

▪ p=1,096ns

▪ I state:
▪ o=95ns

▪ q=2,750ns

▪ p=2,017ns

22

Multi-Line Ping Pong

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13
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▪ E state:

▪ a=0ns

▪ b=320ns

▪ c=56.2ns

23

DTD Contention ☹

Core Core Core

Core Core Core
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TD TD

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13
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Optimizations against vendor libraries

Barrier (7x faster than OpenMP)
Ramos, Hoefler: “Capability Models for Manycore Memory Systems: A Case-Study with Xeon Phi KNL“, IPDPS’17 (video: https://www.youtube.com/watch?v=10Mo3MnWR74)

https://www.youtube.com/watch?v=10Mo3MnWR74
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Barrier (7x faster than OpenMP) Reduce (5x faster then OpenMP)
Ramos, Hoefler: “Capability Models for Manycore Memory Systems: A Case-Study with Xeon Phi KNL“, IPDPS’17 (video: https://www.youtube.com/watch?v=10Mo3MnWR74)

https://www.youtube.com/watch?v=10Mo3MnWR74


spcl.inf.ethz.ch

@spcl_eth

Is Coherence Everything?

 Coherence is concerned with behavior 
of individual locations

 Consider the program (initial X,Y,Z = 0)

 Class question: what value will Z on P2 have?

25

P1

Y=10
X=2

P2

while (X==0);
Z=Y
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Is Coherence Everything?

P2P1 Coherence is concerned with behavior 
of individual locations

 Consider the program (initial X,Y,Z = 0)

 Class question: what value will Z on P2 have?

 Y=10 does not need to have completed 
before X=2 is visible to P2!

 This allows P2 to exit the loop and read Y=0

 This may not be the intent of the programmer!

 This may be due to congestion (imagine X is pushed to a remote cache while Y misses to main memory) and or due 
to write buffering, or …
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Is Coherence Everything?

P2P1 Coherence is concerned with behavior 
of individual locations

 Consider the program (initial X,Y,Z = 0)

 Class question: what value will Z on P2 have?

 Y=10 does not need to have completed 
before X=2 is visible to P2!

 This allows P2 to exit the loop and read Y=0

 This may not be the intent of the programmer!

 This may be due to congestion (imagine X is pushed to a remote cache while Y misses to main memory) and or due 
to write buffering, or …

 Bonus class question: what happens when Y and X are on the same cache line (assume simple MESI and 
no write buffer)?
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 Need to define what it means to “read a location” and “to write a location” and the respective ordering!

 What values should be seen by a processor

 First thought: extend the abstractions seen by a sequential processor:

 Compiler and hardware maintain data and control dependencies at all levels:

26
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 Correctness condition:

 The result of the execution is the same as if the operations had been executed in the order specified by the program

“program order”

 A read returns the value last written to the same location

“last” is determined by program order!

 Consider only memory operations (e.g., a trace)

 N Processors

 P1, P2, …., PN

 Operations

 Read, Write on shared variables (initial state: most often all 0)

 Notation:

 P1: R(x):3 P1 reads x and observes the value 3

 P2: W(x,5) P2 writes 5 to variable x

27

Sequential Processor
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 Program order

 Deals with a single processor

 Per-processor order of memory accesses, determined by program’s

Control flow

 Often represented as trace 

 Visibility order

 Deals with operations on all processors

 Order of memory accesses observed by one or more processors

 E.g., “every read of a memory location returns the value that was written last”

Defined by memory model

28

Terminology
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 Contract at each level between programmer and processor

29

Memory Models

Programmer

High-level language (API/PL)

Compiler Frontend

Intermediate Language (IR)

Compiler Backend/JIT

Machine code (ISA)

Processor

Optimizing transformations

Reordering

Operation overlap
OOO Execution
VLIW, Vector ISA
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 Extension of sequential processor model

 The execution happens as if

1. The operations of all processes were executed in some sequential order (atomicity requirement), and

2. The operations of each individual processor appear in this sequence in the order specified by the program (program 
order requirement)

 Applies to all layers!

 Disallows many compiler optimizations (e.g., reordering of any memory instruction)

 Disallows many hardware optimizations (e.g., store buffers, nonblocking reads, invalidation buffers)

30

Sequential Consistency
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 Globally consistent view of memory operations (atomicity)

 Strict ordering in program order

31

Illustration of Sequential Consistency
Processors issue in 
program order

The “switch” selects 
arbitrary next operation
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Memory
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A = B;
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“The result of any execution is the same as if the operations of all the  processes were 
executed in some sequential order and the operations of each individual process appear in 
this sequence in the order specified by its program”

(Lamport, 1979) 

32

Original SC Definition

Good read: Gharachorloo et al.: “Memory consistency and event ordering in scalable shared-memory multiprocessors.”
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 Textbook: Hennessy/Patterson Computer Architecture

 A sequentially consistent system maintains three invariants:

1. A load L from memory location A issued by processor Pi obtains the value of the previous store to A by Pi, unless 
another processor has to stored a value to A in between

2. A load L from memory location A obtains the value of a store S to A by another processor Pk if S and L are 
“sufficiently separated in time” and if no other store occurred between S and L

3. Stores to the same location are serialized (defined as in (2))

 “Sufficiently separated in time” not precise

 Works but is not formal (a formalization must include all possibilities)

33

Alternative SC Definition
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 Recap: “normal” sequential assumption:

 Compiler and hardware can reorder instructions as long as control and data dependencies are met 

 Examples:

 Register allocation

 Code motion

 Common subexpression elimination

 Loop transformations

 Pipelining

 Multiple issue (OOO)

 Write buffer bypassing

 Nonblocking reads

34

Example Operation Reordering
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 Initially, all values are zero

 Assume P1 and P2 are compiled separately!

35

Simple compiler optimization

P1

input = 23

ready = 1

P2

while (ready == 0) {}

compute(input)
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compute(input)



spcl.inf.ethz.ch

@spcl_eth

 Relying on program order: Dekker’s algorithm

 Initially, all zero

 What can happen at compiler and hardware level?

36

Sequential Consistency Examples

P1

a = 1
if(b == 0)
critical section
a = 0

P2

b = 1
if(a == 0)
critical section
b = 0

P1 P2

Time



spcl.inf.ethz.ch

@spcl_eth

 Relying on program order: Dekker’s algorithm

 Initially, all zero

 What can happen at compiler and hardware level?

36

Sequential Consistency Examples

P1

a = 1
if(b == 0)
critical section
a = 0

P2

b = 1
if(a == 0)
critical section
b = 0

P1 P2

P1: W(a,1)

Time



spcl.inf.ethz.ch

@spcl_eth

 Relying on program order: Dekker’s algorithm

 Initially, all zero

 What can happen at compiler and hardware level?

36

Sequential Consistency Examples

P1

a = 1
if(b == 0)
critical section
a = 0

P2

b = 1
if(a == 0)
critical section
b = 0

P1 P2

P1: W(a,1)

P2: W(b,1)Time



spcl.inf.ethz.ch

@spcl_eth

 Relying on program order: Dekker’s algorithm

 Initially, all zero

 What can happen at compiler and hardware level?

36

Sequential Consistency Examples

P1

a = 1
if(b == 0)
critical section
a = 0

P2

b = 1
if(a == 0)
critical section
b = 0

P1 P2

P1: W(a,1)

P2: W(b,1)Time

P1: R(b): 1



spcl.inf.ethz.ch

@spcl_eth

 Relying on program order: Dekker’s algorithm

 Initially, all zero

 What can happen at compiler and hardware level?

36

Sequential Consistency Examples

P1

a = 1
if(b == 0)
critical section
a = 0

P2

b = 1
if(a == 0)
critical section
b = 0

P1 P2

P1: W(a,1)

P2: W(b,1)Time

P1: R(b): 1

P2: R(a): 1



spcl.inf.ethz.ch

@spcl_eth

 Relying on program order: Dekker’s algorithm

 Initially, all zero

 What can happen at compiler and hardware level?

36

Sequential Consistency Examples

P1

a = 1
if(b == 0)
critical section
a = 0

P2

b = 1
if(a == 0)
critical section
b = 0

P1 P2

P1: W(a,1)

P2: W(b,1)Time

P1: R(b): 1

P2: R(a): 1

Nobody enters the critical section.



spcl.inf.ethz.ch

@spcl_eth

 Relying on program order: Dekker’s algorithm

 Initially, all zero

 What can happen at compiler and hardware level?

36

Sequential Consistency Examples

P1

a = 1
if(b == 0)
critical section
a = 0

P2

b = 1
if(a == 0)
critical section
b = 0

P1 P2

P1: W(a,1)

P2: W(b,1)Time

P1: R(b): 1

P2: R(a): 1

Nobody enters the critical section.

Without SC, both writes may have went to a
write buffer, in which case both Ps would
read 0 and enter the critical section together.
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P1

a = 5
a = 1

P2

if (a == 1)
b = 1

P3

if (b == 1)
print(a)

P1 P2 P3

What each P thinks the order is:

P1: W(a,5)

P1: W(a,1) P1: W(a,5)

P1: W(a,1)

P1: W(a,5)P2: R(a): 1

P2: W(b,1) P2: W(b,1)

P3: R(b): 1

P3: R(a): 5

P1: W(a,1)

PRINT(5)
P3 has not seen                     yet!P1: W(a,1)
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 Analyzing P1 and P2 in isolation!

 Compiler can reorder

 Hardware can reorder, assume writes of a,b go to write buffer or speculation

38

Optimizations violating program order

P1

a = 1

if(b == 0)

critical section

a = 0

P2

b = 1

if(a == 0)

critical section

b = 0

P1

if(b == 0)

critical section

a = 0

else 

a = 1

P2

if(a == 0)

critical section

b = 0

else

b = 1 

P1

a = 1

if(b == 0)

critical section

a = 0

P2

b = 1

if(a == 0)

critical section

b = 0

P1

if(b == 0)

a = 1

critical section

a = 0

P2

if(a == 0)

b = 1

critical section

b = 0
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 Define partial order on memory requests A  B

 If Pi issues two requests A and B and A is issued before B in program order, then A  B

 A and B are issued to the same variable, and A is issued first, then A  B (on all processors)

 These partial orders can be interleaved, define a total order

 Many total orders are sequentially consistent!

 Example:

 P1: W(a), R(b), W(c)

 P2: R(a), W(a), R(b)

 Are the following schedules (total orders) sequentially consistent?

1. P1:W(a), P2:R(a), P2:W(a), P1:R(b), P2:R(b), P1:W(c)

2. P1:W(a), P2:R(a), P1:R(b), P2:R(b), P1:W(c), P2:W(a)

3. P2:R(a), P2:W(a), P1:R(b), P1:W(a), P1:W(c), P2:R(b)

39

Considerations
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 Write buffer

 Absorbs writes faster than the next cache  prevents stalls

 Aggregates writes to the same cache line  reduces cache traffic

40

Write buffer example

CPU

L1 I-cache L1 D-cache

L2 cache
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 Reads can bypass previous writes for faster completion
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 No order between write and following read (W  R)
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 W W: OK

 R W, R  R: No order between read and following read/write

42
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 Programmer’s view:

 Prefer sequential consistency

 Easiest to reason about

 Compiler/hardware designer’s view:

 Sequential consistency disallows many optimizations!

 Substantial speed difference

 Most architectures and compilers don’t adhere to sequential consistency!

 Solution: synchronized programming

 Access to shared data (aka. “racing accesses”) are ordered by synchronization operations

 Synchronization operations guarantee memory ordering (aka. fence)

 More later!

43

Discussion
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 Varying definitions!

 Cache coherence: a mechanism that propagates writes to other processors/caches if needed, recap:

 Writes are eventually visible to all processors

 Writes to the same location are observed in (one) order

 Memory models: define the bounds on when the value is propagated to other processors

 E.g., sequential consistency requires all reads and writes to be ordered in program order

44

Cache Coherence vs. Memory Model

Good read: McKenney: “Memory Barriers: a Hardware View for Software Hackers”



spcl.inf.ethz.ch

@spcl_eth

 Sequential consistency

 RR, RW, WR, WW (all orders guaranteed)

 Relaxed consistency (varying terminology):

 Processor consistency (aka. TSO)

Relaxes WR

 Partial write (store) order (aka. PSO)

Relaxes WR, WW

 Weak consistency and release consistency (aka. RMO)

Relaxes RR, RW, WR, WW

 Other combinations/variants possible

There are even more types of orders (above is a simplification)
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The fun begins: Relaxed Memory Models
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Architectures

Source: wikipedia
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 Intel® 64 and IA-32 Architectures Software Developer's Manual

 Volume 3A: System Programming Guide

 Chapter 8.2 Memory Ordering

 http://www.intel.com/products/processor/manuals/

 Google Tech Talk: IA Memory Ordering

 Richard L. Hudson

http://www.youtube.com/watch?v=WUfvvFD5tAA
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Case Study: Memory ordering on Intel (x86) 

http://www.intel.com/products/processor/manuals/
http://www.youtube.com/watch?v=WUfvvFD5tAA
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 Total lock order (TLO)

 Instructions with “lock” prefix enforce total order across all processors

 Implicit locking: xchg (locked compare and exchange)

 Causal consistency (CC)

 Write visibility is transitive

 Eight principles

 After some revisions 
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x86 Memory model: TLO + CC
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1. “Reads are not reordered with other reads.” (RR)

49

The Eight x86 Principles
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1. “Reads are not reordered with other reads.” (RR)

2. “Writes are not reordered with other writes.” (WW)

3. “Writes are not reordered with older reads.” (RW)

4. “Reads may be reordered with older writes to different locations but not with older writes to the same 
location.” (NO WR!)

5. “In a multiprocessor system, memory ordering obeys causality.“ (memory ordering respects transitive 
visibility)

6. “In a multiprocessor system, writes to the same location have a total order.” (implied by cache 
coherence)

7. “In a multiprocessor system, locked instructions have a total order.“ (enables synchronized 
programming!)

8. “Reads and writes are not reordered with locked instructions. “ (enables synchronized programming!)
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The Eight x86 Principles
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Reads are not reordered with other reads. (RR)

Writes are not reordered with other writes. (WW)

50

Principle 1 and 2
P1

a = 1
b = 2

P2

r1 = b
r2 = a

All values zero initially. r1 and r2 are registers.

P1

P2

Memory

W(a,1) W(b,2)

R(a)R(b)

Order: from left to right

Reads and writes observed in program order.
Cannot be reordered!
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All values zero initially. r1 and r2 are registers.
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Reads are not reordered with other reads. (RR)

Writes are not reordered with other writes. (WW)

50

Principle 1 and 2
P1

a = 1
b = 2

P2

r1 = b
r2 = a

All values zero initially. r1 and r2 are registers.

P1

P2

Memory W(a,1)

If r1 == 2, then r2 must be 1!
Not allowed: r1 == 2, r2 == 0

W(b,2) R(a)R(b)

Order: from left to right

Reads and writes observed in program order.
Cannot be reordered!
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Reads are not reordered with other reads. (RR)

Writes are not reordered with other writes. (WW)

50

Principle 1 and 2
P1

a = 1
b = 2

P2

r1 = b
r2 = a

All values zero initially. r1 and r2 are registers.

P1

P2

Memory W(a,1)

If r1 == 2, then r2 must be 1!
Not allowed: r1 == 2, r2 == 0

W(b,2) R(a)R(b)

Order: from left to right

Reads and writes observed in program order.
Cannot be reordered!

Question: is r1=0, r2=1 allowed?
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Writes are not reordered with older reads. (RW)

51

Principle 3 P1

r1 = a
b = 1

P2

r2 = b
a = 1

All values zero initially

P1

P2

Memory

R(a) W(b,1)

W(a,1)R(b)
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Writes are not reordered with older reads. (RW)

51

Principle 3 P1

r1 = a
b = 1

P2

r2 = b
a = 1

All values zero initially

P1

P2

Memory

R(a) W(b,1)

W(a,1)R(b)
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Writes are not reordered with older reads. (RW)

51

Principle 3 P1

r1 = a
b = 1

P2

r2 = b
a = 1

All values zero initially

P1

P2

Memory R(a) W(b,1)W(a,1)R(b)
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Writes are not reordered with older reads. (RW)

51

Principle 3 P1

r1 = a
b = 1

P2

r2 = b
a = 1

All values zero initially

If r1 == 1, then P2:W(a)  P1:R(a), thus r2 must be 0!

P1

P2

Memory R(a) W(b,1)W(a,1)R(b)
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Writes are not reordered with older reads. (RW)

51

Principle 3 P1

r1 = a
b = 1

P2

r2 = b
a = 1

All values zero initially

If r1 == 1, then P2:W(a)  P1:R(a), thus r2 must be 0!
If r2 == 1, then P1:W(b)  P1:R(b), thus r1 must be 0!

P1

P2

Memory R(a) W(b,1)W(a,1)R(b)
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Writes are not reordered with older reads. (RW)

51

Principle 3 P1

r1 = a
b = 1

P2

r2 = b
a = 1

All values zero initially

If r1 == 1, then P2:W(a)  P1:R(a), thus r2 must be 0!
If r2 == 1, then P1:W(b)  P1:R(b), thus r1 must be 0!

P1

P2

Memory R(a) W(b,1)W(a,1)R(b)

Question: is r1==1 and r2==1 allowed?
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Writes are not reordered with older reads. (RW)

51

Principle 3 P1

r1 = a
b = 1

P2

r2 = b
a = 1

All values zero initially

If r1 == 1, then P2:W(a)  P1:R(a), thus r2 must be 0!
If r2 == 1, then P1:W(b)  P1:R(b), thus r1 must be 0!

P1

P2

Memory R(a) W(b,1)W(a,1)R(b)

Question: is r1==1 and r2==1 allowed?

Question: is r1==0 and r2==0 allowed?
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Reads may be reordered with older writes to different locations 
but not with older writes to the same location. (NO WR!)

52

Principle 4
P1

a = 1
r1 = b

P2

b = 1
r2 = a

All values zero initially

P1

P2

Memory

W(a,1) R(b)

R(a)W(b,1)

OK

OK
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Reads may be reordered with older writes to different locations 
but not with older writes to the same location. (NO WR!)
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Principle 4
P1

a = 1
r1 = b

P2

b = 1
r2 = a

All values zero initially

P1

P2

Memory

W(a,1) R(b)

R(a)W(b,1)
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but not with older writes to the same location. (NO WR!)
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Principle 4
P1

a = 1
r1 = b

P2

b = 1
r2 = a

All values zero initially

P1

P2

Memory W(a,1)R(b) R(a) W(b,1)
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Reads may be reordered with older writes to different locations 
but not with older writes to the same location. (NO WR!)

52

Principle 4
P1

a = 1
r1 = b

P2

b = 1
r2 = a

All values zero initially

Allowed: r1=0, r2=0.

P1

P2

Memory W(a,1)R(b) R(a) W(b,1)
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Reads may be reordered with older writes to different locations 
but not with older writes to the same location. (NO WR!)

52

Principle 4
P1

a = 1
r1 = b

P2

b = 1
r2 = a

All values zero initially

Allowed: r1=0, r2=0.
Sequential consistency can be enforced with mfence.

P1

P2

Memory W(a,1)R(b) R(a) W(b,1)
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Reads may be reordered with older writes to different locations 
but not with older writes to the same location. (NO WR!)

52

Principle 4
P1

a = 1
r1 = b

P2

b = 1
r2 = a

All values zero initially

Allowed: r1=0, r2=0.
Sequential consistency can be enforced with mfence.
Attention: this rule may allow reads to move into 
critical sections!

P1

P2

Memory W(a,1)R(b) R(a) W(b,1)
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Reads may be reordered with older writes to different locations 
but not with older writes to the same location. (NO WR!)

52

Principle 4
P1

a = 1
r1 = b

P2

b = 1
r2 = a

All values zero initially

Allowed: r1=0, r2=0.
Sequential consistency can be enforced with mfence.
Attention: this rule may allow reads to move into 
critical sections!

P1

P2

Memory W(a,1)R(b) R(a) W(b,1)

Question: is r1=1, r2=0 allowed?
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In a multiprocessor system, memory ordering obeys causality 
(memory ordering respects transitive visibility). 

53

Principle 5
P1

a = 1

P2

r1 = a
b = 1

P3

r2 = b
r3 = a

P1

P3

Memory

W(a,1)

R(a)R(b)

P2R(a) W(b,1)

All values zero initially
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In a multiprocessor system, memory ordering obeys causality 
(memory ordering respects transitive visibility). 
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Principle 5
P1

a = 1

P2

r1 = a
b = 1

P3

r2 = b
r3 = a

P1

P3

Memory W(a,1) R(a)R(b)

P2

R(a) W(b,1)

All values zero initially
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In a multiprocessor system, memory ordering obeys causality 
(memory ordering respects transitive visibility). 

53

Principle 5
P1

a = 1

P2

r1 = a
b = 1

P3

r2 = b
r3 = a

If r1 == 1 and r2==1, then r3 must read 1.

P1

P3

Memory W(a,1) R(a)R(b)

P2

R(a) W(b,1)

All values zero initially
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In a multiprocessor system, memory ordering obeys causality 
(memory ordering respects transitive visibility). 
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Principle 5
P1

a = 1

P2

r1 = a
b = 1

P3

r2 = b
r3 = a

If r1 == 1 and r2==1, then r3 must read 1.
Not allowed: r1 == 1, r2 == 1, and r3 == 0.

P1

P3

Memory W(a,1) R(a)R(b)

P2

R(a) W(b,1)

All values zero initially
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In a multiprocessor system, memory ordering obeys causality 
(memory ordering respects transitive visibility). 

53

Principle 5
P1

a = 1

P2

r1 = a
b = 1

P3

r2 = b
r3 = a

If r1 == 1 and r2==1, then r3 must read 1.
Not allowed: r1 == 1, r2 == 1, and r3 == 0.
Provides some form of atomicity.

P1

P3

Memory W(a,1) R(a)R(b)

P2

R(a) W(b,1)

All values zero initially
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In a multiprocessor system, memory ordering obeys causality 
(memory ordering respects transitive visibility). 
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Principle 5
P1

a = 1

P2

r1 = a
b = 1

P3

r2 = b
r3 = a

If r1 == 1 and r2==1, then r3 must read 1.
Not allowed: r1 == 1, r2 == 1, and r3 == 0.
Provides some form of atomicity.

P1

P3

Memory W(a,1) R(a)R(b)

Question: is r1==1, r2==0, r3==1 allowed?

P2

R(a) W(b,1)

All values zero initially
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In a multiprocessor system, writes to the same location 
have a total order (implied by cache coherence).

54

Principle 6
P1

a=1

P2

a=2

P3

r1 = a
r2 = a

P4

r3 = a
r4 = a

All values zero initially

P1

P4

Memory

W(a,1)

R(a)

P3R(a)

P2W(a,2)

R(a)

R(a)
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In a multiprocessor system, writes to the same location 
have a total order (implied by cache coherence).
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Principle 6
P1

a=1

P2

a=2

P3

r1 = a
r2 = a

P4

r3 = a
r4 = a

All values zero initially

P1

P4

Memory

W(a,1)

R(a)

P3R(a)

P2W(a,2)

R(a)

R(a)

• Not allowed: r1 == 1, r2 == 2, r3 == 2, r4 == 1
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In a multiprocessor system, writes to the same location 
have a total order (implied by cache coherence).
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Principle 6
P1

a=1

P2

a=2

P3

r1 = a
r2 = a

P4

r3 = a
r4 = a

All values zero initially

P1

P4

Memory

W(a,1)

R(a)

P3R(a)

P2W(a,2)

R(a)

R(a)

• Not allowed: r1 == 1, r2 == 2, r3 == 2, r4 == 1
• If P3 observes P1’s write before P2’s write, then P4 will also 
see P1’s write before P2’s write 
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In a multiprocessor system, writes to the same location 
have a total order (implied by cache coherence).
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Principle 6
P1

a=1

P2

a=2

P3

r1 = a
r2 = a

P4

r3 = a
r4 = a

All values zero initially

P1

P4

Memory

W(a,1)

R(a)

P3R(a)

P2W(a,2)

R(a)

R(a)

• Not allowed: r1 == 1, r2 == 2, r3 == 2, r4 == 1
• If P3 observes P1’s write before P2’s write, then P4 will also 
see P1’s write before P2’s write 
• Provides some form of atomicity
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In a multiprocessor system, writes to the same location 
have a total order (implied by cache coherence).
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Principle 6
P1

a=1

P2

a=2

P3

r1 = a
r2 = a

P4

r3 = a
r4 = a

All values zero initially

P1

P4

Memory

W(a,1)

R(a)

Question: is r1=0, r2=2, r3=0, r4=1 allowed?

P3R(a)

P2W(a,2)

R(a)

R(a)

• Not allowed: r1 == 1, r2 == 2, r3 == 2, r4 == 1
• If P3 observes P1’s write before P2’s write, then P4 will also 
see P1’s write before P2’s write 
• Provides some form of atomicity
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In a multiprocessor system, writes to the same location 
have a total order (implied by cache coherence).
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Principle 6
P1

a=1

P2

a=2

P3

r1 = a
r2 = a

P4

r3 = a
r4 = a

All values zero initially

P1

P4

Memory W(a,1)R(a)

Question: is r1=0, r2=2, r3=0, r4=1 allowed?

P3

R(a)

P2

W(a,2) R(a)R(a)

• Not allowed: r1 == 1, r2 == 2, r3 == 2, r4 == 1
• If P3 observes P1’s write before P2’s write, then P4 will also 
see P1’s write before P2’s write 
• Provides some form of atomicity



spcl.inf.ethz.ch

@spcl_eth

In a multiprocessor system, locked instructions have a 
total order. (enables synchronized programming!)
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Principle 7
P1

xchg(a,r1)

P2

xchg(b,r2)

P3

r3 = a
r4 = b

P4

r5 = b
r6 = a

All values zero initially, registers r1==r2==1

P1

P4

X(a,r1)

R(b)

P3R(a)

P2X(b,r2)

R(b)

R(a)

Memory
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In a multiprocessor system, locked instructions have a 
total order. (enables synchronized programming!)
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Principle 7
P1

xchg(a,r1)

P2

xchg(b,r2)

P3

r3 = a
r4 = b

P4

r5 = b
r6 = a

All values zero initially, registers r1==r2==1

P1

P4

X(a,r1)

R(b)

Question: is r3=1, r4=0, r5=0, r6=1 allowed?

P3R(a)

P2X(b,r2)

R(b)

R(a)

Memory
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Principle 7
P1

xchg(a,r1)

P2

xchg(b,r2)

P3

r3 = a
r4 = b

P4

r5 = b
r6 = a

All values zero initially, registers r1==r2==1

P1

P4

X(a,r1) R(b)

Question: is r3=1, r4=0, r5=0, r6=1 allowed?

P3

R(a)

P2

X(b,r2)R(b) R(a)Memory
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Principle 7
P1

xchg(a,r1)

P2

xchg(b,r2)

P3

r3 = a
r4 = b

P4

r5 = b
r6 = a

All values zero initially, registers r1==r2==1

• Not allowed: r3 == 1, r4 == 0, r5 == 1, r6 ==0

P1

P4

X(a,r1) R(b)

Question: is r3=1, r4=0, r5=0, r6=1 allowed?

P3

R(a)

P2

X(b,r2)R(b) R(a)Memory
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In a multiprocessor system, locked instructions have a 
total order. (enables synchronized programming!)
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Principle 7
P1

xchg(a,r1)

P2

xchg(b,r2)

P3

r3 = a
r4 = b

P4

r5 = b
r6 = a

All values zero initially, registers r1==r2==1

• Not allowed: r3 == 1, r4 == 0, r5 == 1, r6 ==0
• If P3 observes ordering P1:xchg  P2:xchg, 

then P4 observes the same ordering

P1

P4

X(a,r1) R(b)

Question: is r3=1, r4=0, r5=0, r6=1 allowed?

P3

R(a)

P2

X(b,r2)R(b) R(a)Memory
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In a multiprocessor system, locked instructions have a 
total order. (enables synchronized programming!)
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Principle 7
P1

xchg(a,r1)

P2

xchg(b,r2)

P3

r3 = a
r4 = b

P4

r5 = b
r6 = a

All values zero initially, registers r1==r2==1

• Not allowed: r3 == 1, r4 == 0, r5 == 1, r6 ==0
• If P3 observes ordering P1:xchg  P2:xchg, 

then P4 observes the same ordering
• (xchg has implicit lock)

P1

P4

X(a,r1) R(b)

Question: is r3=1, r4=0, r5=0, r6=1 allowed?

P3

R(a)

P2

X(b,r2)R(b) R(a)Memory
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Reads and writes are not reordered with locked instructions.

(enables synchronized programming!)

56

Principle 8
P1

xchg(a,r1)
r2 = b

P2

xchg(b,r3)
r4 = a

All values zero initially but r1 = r3 = 1

P1

P2

X(a,r1)

X(b,r3) R(a)

Memory

R(b)
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(enables synchronized programming!)

56

Principle 8
P1

xchg(a,r1)
r2 = b

P2

xchg(b,r3)
r4 = a

All values zero initially but r1 = r3 = 1

• Not allowed: r2 == 0, r4 == 0
• Locked instructions have total order, so P1 and P2 agree on 

the same order
• If volatile variables use locked instructions  practical 

sequential consistency (more later)

P1

P2

X(a,r1) X(b,r3) R(a)Memory R(b)
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 Sewell el al.: “x86-TSO: A Rigorous and Usable Programmer’s Model for x86 Multiprocessors”, CACM May 
2010

“[…] real multiprocessors typically do not provide the sequentially consistent memory that is assumed by 
most work on semantics and verification. Instead, they have relaxed memory models, varying in subtle ways 
between processor families, in which different hardware threads may have only loosely consistent views of a 
shared memory. Second, the public vendor architectures, supposedly specifying what programmers can rely 
on, are often in ambiguous informal prose (a particularly poor medium for loose specifications), leading to 
widespread confusion. [...] We present a new x86-TSO programmer’s model that, to the best of our 
knowledge, suffers from none of these problems. It is mathematically precise (rigorously defined in HOL4) but 
can be presented as an intuitive abstract machine which should be widely accessible to working 
programmers.  […]”

57

An Alternative View: x86-TSO

Newer RMA systems: A. Dan, P. Lam, TH, A. Vechev: Modeling and Analysis of Remote Memory Access Programming, ACM OOPSLA’16



spcl.inf.ethz.ch

@spcl_eth

 We discussed so far:

 Read/write of the same location

Cache coherence (write serialization and atomicity)

 Read/write of multiple locations

Memory models (visibility order of updates by cores)

 Now: objects (variables/fields with invariants defined on them)

 Invariants “tie” variables together

 Sequential objects

 Concurrent objects

58

Notions of Correctness
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 Each object has a type

 A type is defined by a class

 Set of fields forms the state of an object

 Set of methods (or free functions) to manipulate the state

 Remark

 An Interface is an abstract type that defines behavior

A class implementing an interface defines several types

59

Sequential Objects
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Running Example: FIFO Queue

 Insert elements at tail

 Remove elements from head

 Initial: head = tail = 0

60

head tail
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 Insert elements at tail

 Remove elements from head

 Initial: head = tail = 0

 enq(x)

 enq(y)

 deq() [x]

 …
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61

Sequential Queue

class Queue {
private:
int head, tail;
std::vector<Item> items;

public:
Queue(int capacity) {
head = tail = 0;
items.resize(capacity);

}

// ...

};

head tail
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capacity = 8
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Sequential Queue

class Queue {
// ...

public:
void enq(Item x) {
if((tail+1)%items.size() == head) {
throw FullException;

}
items[tail] = x;
tail = (tail+1)%items.size();

}

Item deq() {
if(tail == head) {
throw EmtpyException;

}
Item item = items[head];
head = (head+1)%items.size();
return item;

}
};

head tail

0

2

1

5 4

3

yx

capacity = 8

7

6
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 (The) one process executes
operations one at a time

 Sequential 

 Semantics of operation
defined by specification
of the class

 Preconditions and postconditions

63

Sequential Execution head tail

0

2

1

5 4

3

y

7

6

P

Time

enq(x) enq(y) deq()



spcl.inf.ethz.ch

@spcl_eth

 Preconditions:

 Specify conditions that must 
hold before method executes

 Involve state and arguments 
passed

 Specify obligations a client 
must meet before calling a 
method

 Example: enq()

 Queue must not be full!

64

Design by Contract!

class Queue {
// ...
void enq(Item x) {
assert((tail+1)%items.size() != head);
// ...

}
};

head tail

0

2

1

5 4

3
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capacity = 8

7
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 Postconditions:

 Specify conditions that must 
hold after method executed

 Involve old state and 
arguments  passed

 Example: enq()

 Queue must contain element!

65

Design by Contract!

class Queue {
// ...
void enq(Item x) {
// ...
assert(
(tail == (old_tail + 1)%items.size()) &&
(items[old_tail] == x) );

}
};

head tail

0
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capacity = 8
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 if(precondition)

 Object is in a specified state

 then(postcondition)

 The method returns a particular value or

 Throws a particular exception and

 Leaves the object in a specified state

 Invariants

 Specified conditions (e.g., object state) must hold anytime a client could invoke an objects method!

66

Sequential specification
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 State between method calls is defined

 Enables reasoning about objects

 Interactions between methods captured by side effects on object state

 Enables reasoning about each method in isolation

 Contracts for each method

 Local state changes global state

 Adding new methods

 Only reason about state changes that the new method causes

 If invariants are kept: no need to check old methods 

 Modularity!

67

Advantages of sequential specification
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 Concurrent threads invoke methods on possibly shared objects

 At overlapping time intervals!

68

Concurrent execution - State

Property Sequential Concurrent

State Meaningful only between 
method executions 

Overlapping method executions 
object may never be “between 
method executions”

Each method execution 
takes some non-zero 
amount of time!

P1

Time

P2

P3
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 Concurrent threads invoke methods on possibly shared objects

 At overlapping time intervals!

68

Concurrent execution - State

Property Sequential Concurrent

State Meaningful only between 
method executions 

Overlapping method executions 
object may never be “between 
method executions”

Each method execution 
takes some non-zero 
amount of time!

P1

Time

P2

P3

q.enq(y)

q.enq(x)

q.deq()
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 Reasoning must now include all possible interleavings

 Of changes caused by methods themselves

69

Concurrent execution - Reasoning

Property Sequential Concurrent

Reasoning Consider each method in 
isolation; invariants on state 
before/after execution.

Need to consider all possible 
interactions; all intermediate states 
during execution

Each method execution 
takes some non-zero 
amount of time!

P1

Time

P2

P3

q.enq(y)

q.enq(x)

q.deq()

That is, now we have to consider 
what will happen if we execute: 
• enq() concurrently with enq() 
• deq() concurrently with deq() 
• deq() concurrently with enq() 



spcl.inf.ethz.ch

@spcl_eth

 Reasoning must now include all possible interleavings

 Of changes caused by and methods themselves

 Consider adding a method that returns the last item enqueued

 If peek() and enq() run concurrently: what if tail has not yet been incremented?

 If peek() and deq() run concurrently: what if last item is being dequeued?

70

Concurrent execution - Method addition

Property Sequential Concurrent

Add Method Without affecting other
methods; invariants on state 
before/after execution.

Everything can potentially interact 
with everything else 

Item peek() {
if(tail == head) throw EmptyException;
return items[(tail-1) % items.size()];

}

void enq(Item x) {
items[tail] = x;
tail = (tail+1) % items.size();

}

Item deq() {
Item item = items[head];
head = (head+1) % items.size();

}
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 How do we describe one?

 No pre-/postconditions 

 How do we implement one?

 Plan for quadratic or exponential number of interactions and states

 How do we tell if an object is correct?

 Analyze all quadratic or exponential interactions and states

71

Concurrent objects
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 How do we describe one?

 No pre-/postconditions 

 How do we implement one?

 Plan for quadratic or exponential number of interactions and states

 How do we tell if an object is correct?

 Analyze all quadratic or exponential interactions and states

71

Concurrent objects

Is it time to panic for (parallel) software engineers?
Who has a solution?
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72

Lock-based queue

class Queue {
private:
int head, tail;
std::vector<Item> items;
std::mutex lock;

public:
Queue(int capacity) {
head = tail = 0;
items.resize(capacity);

}
// ...

};

We can use the lock to 
protect Queue’s fields.

head tail
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yx

7
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class Queue {
// ...

public:
void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
throw FullException;

}
items[tail] = x;
tail = (tail+1)%items.size();

}

Item deq() {
std::lock_guard<std::mutex> l(lock);
if(tail == head) {
throw EmptyException;

}
Item item = items[head];
head = (head+1)%items.size();
return item;

}
};

73

Lock-based queue

One of C++’s ways of implementing a critical section

head tail
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if(tail == head) {
throw EmptyException;

}
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}
};

73

Lock-based queue

One of C++’s ways of implementing a critical section

head tail
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Class question: how is the 
lock ever unlocked?
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 RAII – suboptimal name

 Can be used for locks (or any other resource acquisition)

 Constructor grabs resource

 Destructor frees resource

 Behaves as if

 Implicit unlock at end of block!

 Main advantages

 Always unlock/free lock at exit

 No “lost” locks due to exceptions
or strange control flow (goto )

 Very easy to use

74

C++ Resource Acquisition is Initialization

template <typename mutex_impl>
class lock_guard {

mutex_impl& _mtx; // ref to the mutex

public:
lock_guard(mutex_impl& mtx ) : _mtx(mtx) {

_mtx.lock(); // lock mutex in constructor
}

~lock_guard() {
_mtx.unlock(); // unlock mutex in destructor

}
};
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Example execution
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Example execution

void enq(Item x) {

enq() is called
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Example execution

void enq(Item x) {
std::lock_guard<std::mutex> l(lock);

The lock is acquired
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Example execution

void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
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75

Example execution

void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
throw FullException; Item deq() {

deq() is called by another thread
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Example execution
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}
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deq() has to wait for the lock to be released
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deq() has to wait for the lock to be released
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Example execution

void enq(Item x) {
std::lock_guard<std::mutex> l(lock);
if((tail+1)%items.size()==head) {
throw FullException;

}
items[tail] = x;
tail = (tail+1)%items.size();

}

Item deq() {
std::lock_guard<std::mutex> l(lock);

if(tail == head) {
throw EmptyException;

}
Item item = items[head];
head = (head+1)%items.size();
return item;

}

enq(x)

deq()

Methods effectively execute one after another, sequentially.
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 Is the locked queue correct?

 Yes, only one thread has access if locked correctly

 Allows us again to reason about pre- and postconditions

 Smells a bit like sequential consistency, no?

 Class question: What is the problem with this approach?

77

Correctness



spcl.inf.ethz.ch

@spcl_eth

 Is the locked queue correct?

 Yes, only one thread has access if locked correctly

 Allows us again to reason about pre- and postconditions

 Smells a bit like sequential consistency, no?

 Class question: What is the problem with this approach?

 Same as for SC 

77

Correctness

It does not scale!
What is the solution here?


