
spcl.inf.ethz.ch

@spcl_eth

T. HOEFLER, M. PUESCHEL

Lecture 2: Caches and Cache Coherence

Teaching assistant: Salvatore Di Girolamo Motivational video: https://www.youtube.com/watch?v=zJybFF6PqEQ

https://www.youtube.com/watch?v=zJybFF6PqEQ

spcl.inf.ethz.ch

@spcl_eth

2

DPHPC Overview

spcl.inf.ethz.ch

@spcl_eth

3

Scientific integrity – or how to report benchmark results?

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch

@spcl_eth

3

Scientific integrity – or how to report benchmark results?

1991 – the classic!

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch

@spcl_eth

3

Scientific integrity – or how to report benchmark results?

1991 – the classic!

2012 – the shocking

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch

@spcl_eth

3

Scientific integrity – or how to report benchmark results?

1991 – the classic!

2012 – the shocking

2013 – the extension

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch

@spcl_eth

3

Scientific integrity – or how to report benchmark results?

1991 – the classic!

2012 – the shocking

2013 – the extension

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch

@spcl_eth

4

Scientific Benchmarking: Pitfalls of Relative Performance Reporting (Rule 1)

 Most common (and oldest) problem with reporting

 First seen 1988 – also included in Bailey’s 12 ways

 Speedups can look arbitrarily good if it’s relative to a bad

baseline

 Imagine an unoptimized vs. parallel matrix multiplication:

My parallel MM is 10x faster than the unoptimized!

What does this mean?

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch

@spcl_eth

4

Scientific Benchmarking: Pitfalls of Relative Performance Reporting (Rule 1)

 Most common (and oldest) problem with reporting

 First seen 1988 – also included in Bailey’s 12 ways

 Speedups can look arbitrarily good if it’s relative to a bad

baseline

 Imagine an unoptimized vs. parallel matrix multiplication:

My parallel MM is 10x faster than the unoptimized!

What does this mean?

Both plots show speedups calculated from the same data.

The only difference is the baseline.

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch

@spcl_eth

4

Scientific Benchmarking: Pitfalls of Relative Performance Reporting (Rule 1)

 Most common (and oldest) problem with reporting

 First seen 1988 – also included in Bailey’s 12 ways

 Speedups can look arbitrarily good if it’s relative to a bad

baseline

 Imagine an unoptimized vs. parallel matrix multiplication:

My parallel MM is 10x faster than the unoptimized!

What does this mean?

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch

@spcl_eth

4

Scientific Benchmarking: Pitfalls of Relative Performance Reporting (Rule 1)

 Most common (and oldest) problem with reporting

 First seen 1988 – also included in Bailey’s 12 ways

 Speedups can look arbitrarily good if it’s relative to a bad

baseline

 Imagine an unoptimized vs. parallel matrix multiplication:

My parallel MM is 10x faster than the unoptimized!

What does this mean?

 Class question: how could we improve the situation?

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch

@spcl_eth

4

Scientific Benchmarking: Pitfalls of Relative Performance Reporting (Rule 1)

 Most common (and oldest) problem with reporting

 First seen 1988 – also included in Bailey’s 12 ways

 Speedups can look arbitrarily good if it’s relative to a bad

baseline

 Imagine an unoptimized vs. parallel matrix multiplication:

My parallel MM is 10x faster than the unoptimized!

What does this mean?

 Class question: how could we improve the situation?

 Recently rediscovered in the “big data” universe

A. Rowstron et al.: Nobody ever got fired for using Hadoop on a cluster, HotCDP 2012

F. McSherry et al.: Scalability! but at what cost?, HotOS 2015

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HwEpXIWAWTU)

https://www.youtube.com/watch?v=HwEpXIWAWTU

spcl.inf.ethz.ch

@spcl_eth

 Most common (and oldest) problem with reporting

 First seen 1988 – also included in Bailey’s 12 ways

 Speedups can look arbitrarily good if it’s relative to a bad

baseline

 Imagine an unoptimized vs. optimized matrix multiplication:

The optimized MM is 10x faster than the unoptimized!

What does this mean?

 Class question: how could we improve the situation?

 Recently rediscovered in the “big data” universe

A. Rowstron et al.: Nobody ever got fired for using Hadoop on a cluster, HotCDP 2012

F. McSherry et al.: Scalability! but at what cost?, HotOS 2015

5

Scientific Benchmarking: Pitfalls of Relative Performance Reporting (Rule 1)

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC18

Rule 1: When publishing parallel speedup, report if the base

case is a single parallel process or best serial execution, as

well as the absolute execution performance of the base case.

 A simple generalization of this rule implies that one should never report ratios without

absolute values.

spcl.inf.ethz.ch

@spcl_eth

▪ Memory Trends – Short Refresher on Locality and Caches!

▪ Cache Coherence in Multiprocessors

▪ Advanced Memory Consistency

6

Goals of this lecture

spcl.inf.ethz.ch

@spcl_eth

▪ Measure processor speed as “throughput”

▪ FLOPS/s, IOPS/s, …

▪ Moore’s law - ~60% growth per year

▪ Today’s architectures

▪ POWER8: 425 dp GFLOP/s – 340 GB/s memory bw

▪ Intel E5-2630 v4: 496 dp GFLOPS/s ~140 GB/s memory bw

▪ Trend: memory performance grows 10% per year

7

Memory – CPU gap widens

Source: Jack Dongarra

Source: John Mc.Calpin

spcl.inf.ethz.ch

@spcl_eth

▪ How to measure bandwidth?

8

Issues (Intel Xeon E5-2630 v4 as Example)

spcl.inf.ethz.ch

@spcl_eth

▪ How to measure bandwidth?

▪ Data sheet (often peak performance, may include overheads)

63.6 GiB/s

8

Issues (Intel Xeon E5-2630 v4 as Example)

spcl.inf.ethz.ch

@spcl_eth

▪ How to measure bandwidth?

▪ Data sheet (often peak performance, may include overheads)

63.6 GiB/s

▪ Microbenchmark performance

Stride 1 access (32 MiB): 46 GiB/s

Random access (8 B out of 32 MiB): 4.7 GiB/s

Why?

8

Issues (Intel Xeon E5-2630 v4 as Example)

spcl.inf.ethz.ch

@spcl_eth

▪ How to measure bandwidth?

▪ Data sheet (often peak performance, may include overheads)

63.6 GiB/s

▪ Microbenchmark performance

Stride 1 access (32 MiB): 46 GiB/s

Random access (8 B out of 32 MiB): 4.7 GiB/s

Why?

▪ Application performance

As observed (performance counters)

Somewhere in between stride 1 and random access

8

Issues (Intel Xeon E5-2630 v4 as Example)

spcl.inf.ethz.ch

@spcl_eth

▪ How to measure bandwidth?

▪ Data sheet (often peak performance, may include overheads)

63.6 GiB/s

▪ Microbenchmark performance

Stride 1 access (32 MiB): 46 GiB/s

Random access (8 B out of 32 MiB): 4.7 GiB/s

Why?

▪ Application performance

As observed (performance counters)

Somewhere in between stride 1 and random access

▪ How to measure Latency?

8

Issues (Intel Xeon E5-2630 v4 as Example)

spcl.inf.ethz.ch

@spcl_eth

▪ How to measure bandwidth?

▪ Data sheet (often peak performance, may include overheads)

63.6 GiB/s

▪ Microbenchmark performance

Stride 1 access (32 MiB): 46 GiB/s

Random access (8 B out of 32 MiB): 4.7 GiB/s

Why?

▪ Application performance

As observed (performance counters)

Somewhere in between stride 1 and random access

▪ How to measure Latency?

▪ Data sheet (often optimistic, or not provided)

8

Issues (Intel Xeon E5-2630 v4 as Example)

spcl.inf.ethz.ch

@spcl_eth

▪ How to measure bandwidth?

▪ Data sheet (often peak performance, may include overheads)

63.6 GiB/s

▪ Microbenchmark performance

Stride 1 access (32 MiB): 46 GiB/s

Random access (8 B out of 32 MiB): 4.7 GiB/s

Why?

▪ Application performance

As observed (performance counters)

Somewhere in between stride 1 and random access

▪ How to measure Latency?

▪ Data sheet (often optimistic, or not provided)

▪ Random pointer chase

28 ns with one core, 75 ns with 10 cores!

8

Issues (Intel Xeon E5-2630 v4 as Example)

spcl.inf.ethz.ch

@spcl_eth

▪ Two most common examples:

▪ Write Buffers

▪ Delayed write back saves memory bandwidth

▪ Data is often overwritten or re-read

▪ Caching

▪ Directory of recently used locations

▪ Stored as blocks (cache lines)

▪ Many others deep in architectures:

▪ Translation Lookahead Buffer

▪ Branch Predictors

▪ Trace Caches

▪ …

9

Conjecture: Buffering/caching is a must!

spcl.inf.ethz.ch

@spcl_eth

10

Typical Memory Hierarchy

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

on-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved from
L2 cache

CPU registers hold words retrieved from
L1 cache

L2 cache holds cache lines retrieved
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

spcl.inf.ethz.ch

@spcl_eth

11

Why Caches Work: Locality

spcl.inf.ethz.ch

@spcl_eth

▪ Locality: Programs tend to use data and instructions with addresses near or equal to those they have
used recently, cf. “Denning: “The locality principle”, CACM’05

11

Why Caches Work: Locality

spcl.inf.ethz.ch

@spcl_eth

▪ Locality: Programs tend to use data and instructions with addresses near or equal to those they have
used recently, cf. “Denning: “The locality principle”, CACM’05

▪ Temporal locality:

11

Why Caches Work: Locality

spcl.inf.ethz.ch

@spcl_eth

▪ Locality: Programs tend to use data and instructions with addresses near or equal to those they have
used recently, cf. “Denning: “The locality principle”, CACM’05

▪ Temporal locality:

Recently referenced items are likely
to be referenced again in the near future

11

Why Caches Work: Locality

spcl.inf.ethz.ch

@spcl_eth

▪ Locality: Programs tend to use data and instructions with addresses near or equal to those they have
used recently, cf. “Denning: “The locality principle”, CACM’05

▪ Temporal locality:

Recently referenced items are likely
to be referenced again in the near future

▪ Spatial locality:

11

Why Caches Work: Locality

spcl.inf.ethz.ch

@spcl_eth

▪ Locality: Programs tend to use data and instructions with addresses near or equal to those they have
used recently, cf. “Denning: “The locality principle”, CACM’05

▪ Temporal locality:

Recently referenced items are likely
to be referenced again in the near future

▪ Spatial locality:

Items with nearby addresses tend
to be referenced close together in time

11

Why Caches Work: Locality

spcl.inf.ethz.ch

@spcl_eth

▪ Locality: Programs tend to use data and instructions with addresses near or equal to those they have
used recently, cf. “Denning: “The locality principle”, CACM’05

▪ Temporal locality:

Recently referenced items are likely
to be referenced again in the near future

▪ Spatial locality:

Items with nearby addresses tend
to be referenced close together in time

11

Why Caches Work: Locality

memory

spcl.inf.ethz.ch

@spcl_eth

▪ Locality: Programs tend to use data and instructions with addresses near or equal to those they have
used recently, cf. “Denning: “The locality principle”, CACM’05

▪ Temporal locality:

Recently referenced items are likely
to be referenced again in the near future

▪ Spatial locality:

Items with nearby addresses tend
to be referenced close together in time

11

Why Caches Work: Locality

memory

memory

spcl.inf.ethz.ch

@spcl_eth

12

Example: Locality?

sum = 0;
for (i = 0; i < n; i++)
sum += a[i];

return sum;

spcl.inf.ethz.ch

@spcl_eth

▪ Data:

12

Example: Locality?

sum = 0;
for (i = 0; i < n; i++)
sum += a[i];

return sum;

spcl.inf.ethz.ch

@spcl_eth

▪ Data:

▪ Temporal: sum referenced in each iteration

12

Example: Locality?

sum = 0;
for (i = 0; i < n; i++)
sum += a[i];

return sum;

spcl.inf.ethz.ch

@spcl_eth

▪ Data:

▪ Temporal: sum referenced in each iteration

▪ Spatial: array a[] accessed consecutively

12

Example: Locality?

sum = 0;
for (i = 0; i < n; i++)
sum += a[i];

return sum;

spcl.inf.ethz.ch

@spcl_eth

▪ Data:

▪ Temporal: sum referenced in each iteration

▪ Spatial: array a[] accessed consecutively

▪ Instructions:

12

Example: Locality?

sum = 0;
for (i = 0; i < n; i++)
sum += a[i];

return sum;

spcl.inf.ethz.ch

@spcl_eth

▪ Data:

▪ Temporal: sum referenced in each iteration

▪ Spatial: array a[] accessed consecutively

▪ Instructions:

▪ Temporal: loops cycle through the same instructions

12

Example: Locality?

sum = 0;
for (i = 0; i < n; i++)
sum += a[i];

return sum;

spcl.inf.ethz.ch

@spcl_eth

▪ Data:

▪ Temporal: sum referenced in each iteration

▪ Spatial: array a[] accessed consecutively

▪ Instructions:

▪ Temporal: loops cycle through the same instructions

▪ Spatial: instructions referenced in sequence

12

Example: Locality?

sum = 0;
for (i = 0; i < n; i++)
sum += a[i];

return sum;

spcl.inf.ethz.ch

@spcl_eth

▪ Data:

▪ Temporal: sum referenced in each iteration

▪ Spatial: array a[] accessed consecutively

▪ Instructions:

▪ Temporal: loops cycle through the same instructions

▪ Spatial: instructions referenced in sequence

▪ Being able to assess and tune the locality of code is a crucial skill for a performance programmer

12

Example: Locality?

sum = 0;
for (i = 0; i < n; i++)
sum += a[i];

return sum;

spcl.inf.ethz.ch

@spcl_eth

13

Locality Example int sum_array_3d(double a[I][J][K])
{
int i, j, k, sum = 0;

for (k = 0; k < K; k++)
for (j = 0; j < J; j++)
for (i = 0; i < I; i++)
sum += a[i][j][k];

return sum;
}

spcl.inf.ethz.ch

@spcl_eth

How to improve locality?

13

Locality Example int sum_array_3d(double a[I][J][K])
{
int i, j, k, sum = 0;

for (k = 0; k < K; k++)
for (j = 0; j < J; j++)
for (i = 0; i < I; i++)
sum += a[i][j][k];

return sum;
}

spcl.inf.ethz.ch

@spcl_eth

How to improve locality?

13

Locality Example int sum_array_3d(double a[I][J][K])
{
int i, j, k, sum = 0;

for (k = 0; k < K; k++)
for (j = 0; j < J; j++)
for (i = 0; i < I; i++)
sum += a[i][j][k];

return sum;
}

i-j-k

k-j-i

Performance [flops/cycle]

I = J = K

CPU: Intel(R) Core(TM) i7-4980HQ CPU @ 2.80GHz
gcc: Apple LLVM version 8.0.0 (clang-800.0.42.1)
flags: -O3 -fno-vectorize

spcl.inf.ethz.ch

@spcl_eth

▪ Definition: Computer memory with short access time used for the storage of frequently or recently used
instructions or data

▪ Naturally supports temporal locality

▪ Spatial locality is supported by transferring data in blocks

▪ E.g., Intel’s Core family: one block = 64 B = 8 doubles

14

Cache

Main
Memory

CPU Cache

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Simplest design: direct mapped!

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Simplest design: direct mapped!

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Simplest design: direct mapped!

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Simplest design: direct mapped!

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Simplest design: direct mapped!

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Simplest design: direct mapped!

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Simplest design: direct mapped!

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Simplest design: direct mapped!

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Simplest design: direct mapped!

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Each memory location has

one (direct mapped) cache

location!

Simplest design: direct mapped!

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Each memory location has

one (direct mapped) cache

location!

Simplest design: direct mapped! Adding 2-way associativity

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Each memory location has

one (direct mapped) cache

location!

Simplest design: direct mapped! Adding 2-way associativity

Index 0, Way 0

Index 0, Way 1

Index 1, Way 0

Index 1, Way 1

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Each memory location has

one (direct mapped) cache

location!

Simplest design: direct mapped! Adding 2-way associativity

Index 0, Way 0

Index 0, Way 1

Index 1, Way 0

Index 1, Way 1

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Each memory location has

one (direct mapped) cache

location!

Simplest design: direct mapped! Adding 2-way associativity

Index 0, Way 0

Index 0, Way 1

Index 1, Way 0

Index 1, Way 1

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Each memory location has

one (direct mapped) cache

location!

Simplest design: direct mapped! Adding 2-way associativity

Index 0, Way 0

Index 0, Way 1

Index 1, Way 0

Index 1, Way 1

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Each memory location has

one (direct mapped) cache

location!

Simplest design: direct mapped! Adding 2-way associativity

Index 0, Way 0

Index 0, Way 1

Index 1, Way 0

Index 1, Way 1

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Each memory location has

one (direct mapped) cache

location!

Simplest design: direct mapped! Adding 2-way associativity

Index 0, Way 0

Index 0, Way 1

Index 1, Way 0

Index 1, Way 1

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Each memory location has

one (direct mapped) cache

location!

Simplest design: direct mapped! Adding 2-way associativity

Index 0, Way 0

Index 0, Way 1

Index 1, Way 0

Index 1, Way 1

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Each memory location has

one (direct mapped) cache

location!

Simplest design: direct mapped! Adding 2-way associativity

Index 0, Way 0

Index 0, Way 1

Index 1, Way 0

Index 1, Way 1

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Each memory location has

one (direct mapped) cache

location!

Simplest design: direct mapped! Adding 2-way associativity

Index 0, Way 0

Index 0, Way 1

Index 1, Way 0

Index 1, Way 1

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Each memory location has

one (direct mapped) cache

location!

Simplest design: direct mapped! Adding 2-way associativity

Index 0, Way 0

Index 0, Way 1

Index 1, Way 0

Index 1, Way 1

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Each memory location has

one (direct mapped) cache

location!

Simplest design: direct mapped! Adding 2-way associativity

Index 0, Way 0

Index 0, Way 1

Index 1, Way 0

Index 1, Way 1

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Each memory location has

one (direct mapped) cache

location!

Simplest design: direct mapped! Adding 2-way associativity

Index 0, Way 0

Index 0, Way 1

Index 1, Way 0

Index 1, Way 1

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Each memory location has

one (direct mapped) cache

location!

Simplest design: direct mapped! Adding 2-way associativity

Index 0, Way 0

Index 0, Way 1

Index 1, Way 0

Index 1, Way 1

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Each memory location has

one (direct mapped) cache

location!

Simplest design: direct mapped! Adding 2-way associativity

Index 0, Way 0

Index 0, Way 1

Index 1, Way 0

Index 1, Way 1

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Each memory location has

one (direct mapped) cache

location!

Simplest design: direct mapped! Adding 2-way associativity

Index 0, Way 0

Index 0, Way 1

Index 1, Way 0

Index 1, Way 1

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Each memory location has

one (direct mapped) cache

location!

Simplest design: direct mapped! Adding 2-way associativity

Index 0, Way 0

Index 0, Way 1

Index 1, Way 0

Index 1, Way 1

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Each memory location has

one (direct mapped) cache

location!

Simplest design: direct mapped! Adding 2-way associativity

Index 0, Way 0

Index 0, Way 1

Index 1, Way 0

Index 1, Way 1

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

spcl.inf.ethz.ch

@spcl_eth

15

Cache Structure

Index 0

Index 1

Index 2

Index 3

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Each memory location has

one (direct mapped) cache

location!

Simplest design: direct mapped! Adding 2-way associativity

Index 0, Way 0

Index 0, Way 1

Index 1, Way 0

Index 1, Way 1

Address 0

Address 64

Address 128

Address 192

Address 256

Address 320

Address 384

Address 448…

Slow Memory Fast Memory

(Cache)

Each memory location has

two (associative) cache

locations!

spcl.inf.ethz.ch

@spcl_eth

16

Example (S=4, E=2)

B = 32 byte = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

blackboard

Ignore the variables sum, i, j

int sum_array_rows(double a[8][8])
{
int i, j;
double sum = 0;

for (i = 0; i < 8; i++)
for (j = 0; j < 8; j++)
sum += a[i][j];

return sum;
}

int sum_array_cols(double a[8][8])
{
int i, j;
double sum = 0;

for (j = 0; j < 8; i++)
for (i = 0; i < 8; j++)
sum += a[i][j];

return sum;
}

C/C++ uses row-major
(image source:Wikipedia)

way 0 way 1

idx 0

idx 3

spcl.inf.ethz.ch

@spcl_eth

17

General Cache Organization (S, E, B)
E = 2e lines per set
E = associativity, E=1: direct mapped

S = 2s sets

set

line

spcl.inf.ethz.ch

@spcl_eth

17

General Cache Organization (S, E, B)
E = 2e lines per set
E = associativity, E=1: direct mapped

S = 2s sets

set

line

0 1 2 B-1tagv

valid bit
(+ others later) B = 2b bytes per cache block (the data)

spcl.inf.ethz.ch

@spcl_eth

17

General Cache Organization (S, E, B)
E = 2e lines per set
E = associativity, E=1: direct mapped

S = 2s sets

set

line

0 1 2 B-1tagv

valid bit
(+ others later) B = 2b bytes per cache block (the data)

Cache size:
S x E x B data bytes

spcl.inf.ethz.ch

@spcl_eth

18

Cache Read

S = 2s sets

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

E = 2e lines per set
E = associativity, E=1: direct mapped

valid bit
(+ others later)

spcl.inf.ethz.ch

@spcl_eth

18

Cache Read

S = 2s sets

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

E = 2e lines per set
E = associativity, E=1: direct mapped

valid bit
(+ others later)

spcl.inf.ethz.ch

@spcl_eth

18

Cache Read

S = 2s sets

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

E = 2e lines per set
E = associativity, E=1: direct mapped

valid bit
(+ others later)

spcl.inf.ethz.ch

@spcl_eth

18

Cache Read

S = 2s sets

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

E = 2e lines per set
E = associativity, E=1: direct mapped

valid bit
(+ others later)

spcl.inf.ethz.ch

@spcl_eth

18

Cache Read

S = 2s sets

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

E = 2e lines per set
E = associativity, E=1: direct mapped

valid bit
(+ others later)

spcl.inf.ethz.ch

@spcl_eth

18

Cache Read

S = 2s sets

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set

• Check if any line in set
has matching tag

• Yes + line valid: hit

• Locate data starting
at offset

E = 2e lines per set
E = associativity, E=1: direct mapped

valid bit
(+ others later)

spcl.inf.ethz.ch

@spcl_eth

▪ Direct mapped cache:

▪ Cache with E = 1

▪ Means every block from memory has a unique location in cache

▪ Fully associative cache

▪ Cache with S = 1 (i.e., maximal E)

▪ Means every block from memory can be mapped to any location in cache

▪ In practice to expensive to build

▪ One can view the register file as a fully associative cache

▪ LRU (least recently used) replacement

▪ when selecting which block should be replaced (happens only for E > 1), the least recently used one is chosen

19

Terminology

spcl.inf.ethz.ch

@spcl_eth

▪ Compulsory (cold) miss

Occurs on first access to a block

▪ Capacity miss

Occurs when working set is larger than the cache

▪ Conflict miss

Conflict misses occur when the cache is large enough, but multiple data objects all map to the same slot

▪ Not a clean classification but still useful

20

Types of Cache Misses (The 3 C’s)

spcl.inf.ethz.ch

@spcl_eth

▪ What to do on a write-hit?

▪ Write-through: write immediately to memory

▪ Write-back: defer write to memory until replacement of line

▪ What to do on a write-miss?

▪ Write-allocate: load into cache, update line in cache

▪ No-write-allocate: writes immediately to memory

21

What about writes?

spcl.inf.ethz.ch

@spcl_eth

▪ What to do on a write-hit?

▪ Write-through: write immediately to memory

▪ Write-back: defer write to memory until replacement of line

▪ What to do on a write-miss?

▪ Write-allocate: load into cache, update line in cache

▪ No-write-allocate: writes immediately to memory

21

What about writes?

Write-back/write-allocate (Core)

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

Write-through/no-write-allocate

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

spcl.inf.ethz.ch

@spcl_eth

▪ What to do on a write-hit?

▪ Write-through: write immediately to memory

▪ Write-back: defer write to memory until replacement of line

▪ What to do on a write-miss?

▪ Write-allocate: load into cache, update line in cache

▪ No-write-allocate: writes immediately to memory

21

What about writes?

Write-back/write-allocate (Core)

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

update

Write-through/no-write-allocate

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

spcl.inf.ethz.ch

@spcl_eth

▪ What to do on a write-hit?

▪ Write-through: write immediately to memory

▪ Write-back: defer write to memory until replacement of line

▪ What to do on a write-miss?

▪ Write-allocate: load into cache, update line in cache

▪ No-write-allocate: writes immediately to memory

21

What about writes?

Write-back/write-allocate (Core)

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

1: load

update

Write-through/no-write-allocate

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

spcl.inf.ethz.ch

@spcl_eth

▪ What to do on a write-hit?

▪ Write-through: write immediately to memory

▪ Write-back: defer write to memory until replacement of line

▪ What to do on a write-miss?

▪ Write-allocate: load into cache, update line in cache

▪ No-write-allocate: writes immediately to memory

21

What about writes?

Write-back/write-allocate (Core)

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

1: load

2: updateupdate

Write-through/no-write-allocate

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

spcl.inf.ethz.ch

@spcl_eth

▪ What to do on a write-hit?

▪ Write-through: write immediately to memory

▪ Write-back: defer write to memory until replacement of line

▪ What to do on a write-miss?

▪ Write-allocate: load into cache, update line in cache

▪ No-write-allocate: writes immediately to memory

21

What about writes?

Write-back/write-allocate (Core)

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

1: load

2: updateupdate

Write-through/no-write-allocate

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

1: update

2: update

spcl.inf.ethz.ch

@spcl_eth

▪ What to do on a write-hit?

▪ Write-through: write immediately to memory

▪ Write-back: defer write to memory until replacement of line

▪ What to do on a write-miss?

▪ Write-allocate: load into cache, update line in cache

▪ No-write-allocate: writes immediately to memory

21

What about writes?

Write-back/write-allocate (Core)

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

1: load

2: updateupdate

Write-through/no-write-allocate

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

1: update

2: update update

spcl.inf.ethz.ch

@spcl_eth

▪ Different caches may have a copy of the same memory location!

▪ Cache coherence

▪ Manages existence of multiple copies

▪ Cache architectures

▪ Multi level caches

▪ Shared vs. private (partitioned)

▪ Inclusive vs. exclusive

▪ Write back vs. write through

▪ Victim cache to reduce conflict misses

▪ …

22

The actual topic: Cache Coherence in Multiprocessors

spcl.inf.ethz.ch

@spcl_eth

23

Exclusive Hierarchical Caches Example: Intel i7-3960X

spcl.inf.ethz.ch

@spcl_eth

23

Exclusive Hierarchical Caches

L2 L1 CPU3

L2 L1 CPU4

L2 L1 CPU5

L2L1CPU0

L2L1CPU1

L2L1CPU2

L3Main

Memory

(RAM)

Example: Intel i7-3960X

spcl.inf.ethz.ch

@spcl_eth

24

Shared Hierarchical Caches

Main

Memory

(RAM)

L1 CPU2

L2

L1 CPU3

L1CPU0

L2

L1CPU1

L3

spcl.inf.ethz.ch

@spcl_eth

25

Shared Hierarchical Caches with MT

Main

Memory

(RAM)

L1
CPU2

L2

L1

L1

L2

L1

L3

HT5

HT4

CPU3

HT7

HT6

CPU0

HT1

HT0

CPU1

HT3

HT2

spcl.inf.ethz.ch

@spcl_eth

▪ Remember:

▪ Write Back?

▪ Write Through?

▪ Cache coherence requirements

A memory system is coherent if it guarantees the following:

▪ Write propagation (updates are eventually visible to all readers)

▪ Write serialization (writes to the same location must be observed in order)

Everything else: memory model issues (later)

26

Caching Strategies (repeat)

spcl.inf.ethz.ch

@spcl_eth

27

Write Through Cache

Requires write propagation!

CPU0 CPU1

WT-Cache

Memory

WT-Cache

X = 0

spcl.inf.ethz.ch

@spcl_eth

27

Write Through Cache

1. CPU0 reads X from memory
• loads X=0 into its cache

Requires write propagation!

CPU0 CPU1

WT-Cache

Memory

WT-Cache

X = 0X = 0

spcl.inf.ethz.ch

@spcl_eth

27

Write Through Cache

1. CPU0 reads X from memory
• loads X=0 into its cache

Requires write propagation!

CPU0 CPU1

WT-Cache

Memory

WT-Cache

X = 0

X = 0

spcl.inf.ethz.ch

@spcl_eth

27

Write Through Cache

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

Requires write propagation!

CPU0 CPU1

WT-Cache

Memory

WT-Cache

X = 0

X = 0X = 0

spcl.inf.ethz.ch

@spcl_eth

27

Write Through Cache

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

Requires write propagation!

CPU0 CPU1

WT-Cache

Memory

WT-Cache

X = 0 X = 0

X = 0

spcl.inf.ethz.ch

@spcl_eth

27

Write Through Cache

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

3. CPU0 writes X=1
• stores X=1 in its cache
• stores X=1 in memory

Requires write propagation!

CPU0 CPU1

WT-Cache

Memory

WT-Cache

X = 0X = 1X = 1

X = 0

spcl.inf.ethz.ch

@spcl_eth

27

Write Through Cache

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

3. CPU0 writes X=1
• stores X=1 in its cache
• stores X=1 in memory

Requires write propagation!

CPU0 CPU1

WT-Cache

Memory

WT-Cache

X = 0

X = 1

X = 1

spcl.inf.ethz.ch

@spcl_eth

27

Write Through Cache

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

3. CPU0 writes X=1
• stores X=1 in its cache
• stores X=1 in memory

4. CPU1 reads X from its cache
• loads X=0 from its cache
Incoherent value for X on CPU1

Requires write propagation!

CPU0 CPU1

WT-Cache

Memory

WT-Cache

X = 0

X = 1

X = 1

spcl.inf.ethz.ch

@spcl_eth

27

Write Through Cache

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

3. CPU0 writes X=1
• stores X=1 in its cache
• stores X=1 in memory

4. CPU1 reads X from its cache
• loads X=0 from its cache
Incoherent value for X on CPU1

CPU1 may wait for update!

Requires write propagation!

CPU0 CPU1

WT-Cache

Memory

WT-Cache

X = 0

X = 1

X = 1

spcl.inf.ethz.ch

@spcl_eth

28

Write Back Cache

Requires write serialization!

CPU0 CPU1

WB-Cache

Memory

WB-Cache

X = 0

spcl.inf.ethz.ch

@spcl_eth

28

Write Back Cache

1. CPU0 reads X from memory
• loads X=0 into its cache

Requires write serialization!

CPU0 CPU1

WB-Cache

Memory

WB-Cache

X = 0X = 0

spcl.inf.ethz.ch

@spcl_eth

28

Write Back Cache

1. CPU0 reads X from memory
• loads X=0 into its cache

Requires write serialization!

CPU0 CPU1

WB-Cache

Memory

WB-Cache

X = 0

X = 0

spcl.inf.ethz.ch

@spcl_eth

28

Write Back Cache

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

Requires write serialization!

CPU0 CPU1

WB-Cache

Memory

WB-Cache

X = 0

X = 0

X = 0

spcl.inf.ethz.ch

@spcl_eth

28

Write Back Cache

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

Requires write serialization!

CPU0 CPU1

WB-Cache

Memory

WB-Cache

X = 0X = 0

X = 0

spcl.inf.ethz.ch

@spcl_eth

28

Write Back Cache

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

3. CPU0 writes X=1
• stores X=1 in its cache

Requires write serialization!

CPU0 CPU1

WB-Cache

Memory

WB-Cache

X = 0X = 0

X = 1

X = 0

spcl.inf.ethz.ch

@spcl_eth

28

Write Back Cache

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

3. CPU0 writes X=1
• stores X=1 in its cache

Requires write serialization!

CPU0 CPU1

WB-Cache

Memory

WB-Cache

X = 0X = 1

X = 0

spcl.inf.ethz.ch

@spcl_eth

28

Write Back Cache

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

3. CPU0 writes X=1
• stores X=1 in its cache

4. CPU1 writes X =2
• stores X=2 in its cache

Requires write serialization!

CPU0 CPU1

WB-Cache

Memory

WB-Cache

X = 0X = 1

X = 2

X = 0

spcl.inf.ethz.ch

@spcl_eth

28

Write Back Cache

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

3. CPU0 writes X=1
• stores X=1 in its cache

4. CPU1 writes X =2
• stores X=2 in its cache

Requires write serialization!

CPU0 CPU1

WB-Cache

Memory

WB-Cache

X = 1 X = 2

X = 0

spcl.inf.ethz.ch

@spcl_eth

28

Write Back Cache

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

3. CPU0 writes X=1
• stores X=1 in its cache

4. CPU1 writes X =2
• stores X=2 in its cache

5. CPU1 writes back cache line
• stores X=2 in in memory

Requires write serialization!

CPU0 CPU1

WB-Cache

Memory

WB-Cache

X = 1 X = 2

X = 2

spcl.inf.ethz.ch

@spcl_eth

28

Write Back Cache

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

3. CPU0 writes X=1
• stores X=1 in its cache

4. CPU1 writes X =2
• stores X=2 in its cache

5. CPU1 writes back cache line
• stores X=2 in in memory

6. CPU0 writes back cache line
• stores X=1 in memory

Requires write serialization!

CPU0 CPU1

WB-Cache

Memory

WB-Cache

X = 1 X = 2

X = 1

spcl.inf.ethz.ch

@spcl_eth

28

Write Back Cache

1. CPU0 reads X from memory
• loads X=0 into its cache

2. CPU1 reads X from memory
• loads X=0 into its cache

3. CPU0 writes X=1
• stores X=1 in its cache

4. CPU1 writes X =2
• stores X=2 in its cache

5. CPU1 writes back cache line
• stores X=2 in in memory

6. CPU0 writes back cache line
• stores X=1 in memory
Later (!) store X=2 from CPU1 lost

Requires write serialization!

CPU0 CPU1

WB-Cache

Memory

WB-Cache

X = 1 X = 2

X = 1

spcl.inf.ethz.ch

@spcl_eth

▪ Assume C99:

▪ Two threads:

▪ Initially: a=b=0

▪ Thread 0: write 1 to a

▪ Thread 1: write 1 to b

▪ Assume non-coherent write back cache

▪ What may end up in main memory?

29

A simple (?) example

struct twoint {
int a;
int b;

};

spcl.inf.ethz.ch

@spcl_eth

▪ Programmer can hardly deal with unpredictable behavior!

▪ Cache controller maintains data integrity

▪ All writes to different locations are visible

30

Cache Coherence Protocol

▪ Snooping

▪ Shared bus or (broadcast) network

▪ Directory-based

▪ Record information necessary to maintain coherence:

E.g., owner and state of a line etc.

Fundamental Mechanisms

spcl.inf.ethz.ch

@spcl_eth

▪ Snooping

▪ Shared bus or (broadcast) network

▪ Cache controller “snoops” all transactions

▪ Monitors and changes the state of the cache’s data

▪ Works at small scale, challenging at large-scale

E.g., Intel Core (Broadwell, …)

▪ Directory-based

▪ Record information necessary to maintain coherence

E.g., owner and state of a line etc.

▪ Central/Distributed directory for cache line ownership

▪ Scalable but more complex/expensive

E.g., Intel Xeon Phi KNC/KNL

31

Fundamental CC mechanisms

Source: Intel

Core Core Core

Core Core Core

GDDR5

GDDR5

GDDR5

GDDR5

TD TD

TD TD

spcl.inf.ethz.ch

@spcl_eth

▪ Concerns/Goals

▪ Performance

▪ Implementation cost (chip space, more important: dynamic energy)

▪ Correctness

▪ (Memory model side effects)

▪ Issues

▪ Detection (when does a controller need to act)

▪ Enforcement (how does a controller guarantee coherence)

▪ Precision of block sharing (per block, per sub-block?)

▪ Block size (cache line size?)

32

Cache Coherence Parameters

spcl.inf.ethz.ch

@spcl_eth

▪ Problem 1: stale reads

▪ Cache 1 holds value that was already modified in cache 2

▪ Solution:

Disallow this state

Invalidate all remote copies before allowing a write to complete

▪ Problem 2: lost update

▪ Incorrect write back of modified line writes main memory in different order from the order of the write operations
or overwrites neighboring data

▪ Solution:

Disallow more than one modified copy

33

An Engineering Approach: Empirical start

spcl.inf.ethz.ch

@spcl_eth

▪ Invalidation-based:

▪ On each write of a shared line, it has to invalidate copies in remote caches

▪ Simple implementation for bus-based systems:

Each cache snoops

Invalidate lines written by other CPUs

Signal sharing for cache lines in local cache to other caches

▪ Update-based:

▪ Local write updates copies in remote caches

Can update all CPUs at once

Multiple writes cause multiple updates (more traffic)

34

Invalidation vs. update – possible implementations

spcl.inf.ethz.ch

@spcl_eth

▪ Invalidation-based:

▪ Only write misses hit the bus (works with write-back caches)

▪ Subsequent writes to the same cache line are local

▪ → Good for multiple writes to the same line (in the same cache)

▪ Update-based:

▪ All sharers continue to hit cache line after one core writes

Implicit assumption: shared lines are accessed often

▪ Supports producer-consumer pattern well

▪ Many (local) writes may waste bandwidth!

▪ Hybrid forms are possible!

35

Invalidation vs. update – effects

spcl.inf.ethz.ch

@spcl_eth

▪ Most common hardware implementation of discussed requirements

aka. “Illinois protocol”

Each line has one of the following states (in a cache):

▪ Modified (M)

▪ Local copy has been modified, no copies in other caches

▪ Memory is stale

▪ Exclusive (E)

▪ No copies in other caches

▪ Memory is up to date

▪ Shared (S)

▪ Unmodified copies may exist in other caches

▪ Memory is up to date

▪ Invalid (I)

▪ Line is not in cache

36

MESI Cache Coherence

spcl.inf.ethz.ch

@spcl_eth

▪ Clean line:

▪ Content of cache line and main memory is identical (also: memory is up to date)

▪ Can be evicted without write-back

▪ Dirty line:

▪ Content of cache line and main memory differ (also: memory is stale)

▪ Needs to be written back eventually

Time depends on protocol details

▪ Bus transaction:

▪ A signal on the bus that can be observed by all caches

▪ Usually blocking

▪ Local read/write:

▪ A load/store operation originating at a core connected to the cache

37

Terminology

spcl.inf.ethz.ch

@spcl_eth

▪ State is M

▪ No bus transaction

▪ State is E

▪ No bus transaction

▪ State is S

▪ No bus transaction

▪ State is I

▪ Generate bus read request (BusRd)

May force other cache operations (see later)

▪ Other cache(s) signal “sharing” if they hold a copy

▪ If shared was signaled, go to state S

▪ Otherwise, go to state E

▪ After update: return read value

38

Transitions in response to local reads

spcl.inf.ethz.ch

@spcl_eth

▪ State is M

▪ No bus transaction

▪ State is E

▪ No bus transaction

▪ Go to state M

▪ State is S

▪ Line already local & clean

▪ There may be other copies

▪ Generate bus read request for upgrade to exclusive (BusRdX*)

▪ Go to state M

▪ State is I

▪ Generate bus read request for exclusive ownership (BusRdX)

▪ Go to state M

39

Transitions in response to local writes

spcl.inf.ethz.ch

@spcl_eth

▪ State is M

▪ Write cache line back to main memory

▪ Signal “shared”

▪ Go to state S (or E)

▪ State is E

▪ Signal “shared”

▪ Go to state S and signal “shared”

▪ State is S

▪ Signal “shared”

▪ State is I

▪ Ignore

40

Transitions in response to snooped BusRd

spcl.inf.ethz.ch

@spcl_eth

▪ State is M

▪ Write cache line back to memory

▪ Discard line and go to I

▪ State is E

▪ Discard line and go to I

▪ State is S

▪ Discard line and go to I

▪ State is I

▪ Ignore

▪ BusRdX* is handled like BusRdX!

41

Transitions in response to snooped BusRdX

spcl.inf.ethz.ch

@spcl_eth

42

MESI State Diagram (FSM)

M E

IS

BusRd/-

PrRd/-
PrWr/-

PrWr/
BusRdX

BusRd/
Flush

PrWr/
BusRdX

BusRdX/
Flush

PrWr/-

PrRd/-
PrRd/BusRd(S)

BusRdX/Flush

BusRdX/
Flush

PrRd/-
BusRd(S)

PrRd/-

spcl.inf.ethz.ch

@spcl_eth

▪ Initially: all in I state

43

Small Exercise

Action P1 state P2 state P3 state Bus action Data from

P1 reads x

P2 reads x

P1 writes x

P1 reads x

P3 writes x

spcl.inf.ethz.ch

@spcl_eth

▪ Initially: all in I state

44

Small Exercise

Action P1 state P2 state P3 state Bus action Data from

P1 reads x E I I BusRd Memory

P2 reads x S S I BusRd Cache

P1 writes x M I I BusRdX* Cache

P1 reads x M I I - Cache

P3 writes x I I M BusRdX Memory

spcl.inf.ethz.ch

@spcl_eth

▪ Class question: what could be optimized in the MESI protocol to make a system faster?

45

Optimizations?

spcl.inf.ethz.ch

@spcl_eth

▪ Extended MESI protocol

▪ Cache-to-cache transfer of modified cache lines

▪ Cache in M or O state always transfers cache line to requesting cache

▪ No need to contact (slow) main memory

▪ Avoids write back when another process accesses cache line

▪ Good when cache-to-cache performance is higher than cache-to-memory

E.g., shared last level cache!

46

Related Protocols: MOESI (AMD)

spcl.inf.ethz.ch

@spcl_eth

47

MOESI State Diagram

Source: AMD64 Architecture Programmer’s Manual

spcl.inf.ethz.ch

@spcl_eth

▪ Modified (M): Modified Exclusive

▪ No copies in other caches, local copy dirty

▪ Memory is stale, cache supplies copy (reply to BusRd*)

▪ Owner (O): Modified Shared

▪ Exclusive right to make changes

▪ Other S copies may exist (“dirty sharing”)

▪ Memory is stale, cache supplies copy (reply to BusRd*)

▪ Exclusive (E):

▪ Same as MESI (one local copy, up to date memory)

▪ Shared (S):

▪ Unmodified copy may exist in other caches

▪ Memory is up to date unless an O copy exists in another cache

▪ Invalid (I):

▪ Same as MESI

48

Related Protocols: MOESI (AMD)

spcl.inf.ethz.ch

@spcl_eth

▪ Modified (M): Modified Exclusive

▪ No copies in other caches, local copy dirty

▪ Memory is stale, cache supplies copy (reply to BusRd*)

▪ Exclusive (E):

▪ Same as MESI (one local copy, up to date memory)

▪ Shared (S):

▪ Unmodified copy may exist in other caches

▪ Memory is up to date

▪ Invalid (I):

▪ Same as MESI

▪ Forward (F):

▪ Special form of S state, other caches may have line in S

▪ Most recent requester of line is in F state

▪ Cache acts as responder for requests to this line

49

Related Protocols: MESIF (Intel)

spcl.inf.ethz.ch

@spcl_eth

▪ Most systems have multi-level caches

▪ Problem: only “last level cache” is connected to bus or network

▪ Yet, snoop requests are relevant for inner-levels of cache (L1)

▪ Modifications of L1 data may not be visible at L2 (and thus the bus)

▪ L1/L2 modifications

▪ On BusRd check if line is in M state in L1

It may be in E or S in L2!

▪ On BusRdX(*) send invalidations to L1

▪ Everything else can be handled in L2

▪ If L1 is write through, L2 could “remember” state of L1 cache line

▪ May increase traffic though

50

Multi-level caches

spcl.inf.ethz.ch

@spcl_eth

▪ Snooping does not scale

▪ Bus transactions must be globally visible

▪ Implies broadcast

▪ Typical solution: tree-based (hierarchical) snooping

▪ Root becomes a bottleneck

▪ Directory-based schemes are more scalable

▪ Directory (entry for each CL) keeps track of all owning caches

▪ Point-to-point update to involved processors

No broadcast

Can use specialized (high-bandwidth) network, e.g., HT, QPI …

51

Directory-based cache coherence

spcl.inf.ethz.ch

@spcl_eth

▪ System with N processors Pi

▪ For each memory block (size: cache line)
maintain a directory entry

▪ N presence bits (light blue)

Set if block in cache of Pi

▪ 1 dirty bit (red)

▪ First proposed by Censier and Feautrier (1978)

52

Basic Scheme

P0

Main Memory

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 1 0 1

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

53

Directory-based CC: Read miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

X = 7

X = 7

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

53

Directory-based CC: Read miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

X = 7

Read X

X = 7

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit (in directory) is off

53

Directory-based CC: Read miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

X = 7

Read X

X = 7

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit (in directory) is off

▪ Read from main memory

53

Directory-based CC: Read miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

X = 7X = 7

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit (in directory) is off

▪ Read from main memory

▪ Set presence[i]

53

Directory-based CC: Read miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

X = 7X = 7

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit (in directory) is off

▪ Read from main memory

▪ Set presence[i]

53

Directory-based CC: Read miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

X = 7X = 7

1

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit (in directory) is off

▪ Read from main memory

▪ Set presence[i]

▪ Supply data to reader

53

Directory-based CC: Read miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

X = 7

X = 7

1

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

54

Directory-based CC: Read miss

151

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

54

Directory-based CC: Read miss

152

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0

Read X

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit is on

54

Directory-based CC: Read miss

153

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0

Read X

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit is on

▪ Recall cache line from Pj

(determine by presence[])

54

Directory-based CC: Read miss

154

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0

Read X

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit is on

▪ Recall cache line from Pj

(determine by presence[])

54

Directory-based CC: Read miss

155

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit is on

▪ Recall cache line from Pj

(determine by presence[])

▪ Update memory

54

Directory-based CC: Read miss

156

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit is on

▪ Recall cache line from Pj

(determine by presence[])

▪ Update memory

54

Directory-based CC: Read miss

157

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0X = 0

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit is on

▪ Recall cache line from Pj

(determine by presence[])

▪ Update memory

▪ Unset dirty bit, block shared

54

Directory-based CC: Read miss

158

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0X = 0

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit is on

▪ Recall cache line from Pj

(determine by presence[])

▪ Update memory

▪ Unset dirty bit, block shared

54

Directory-based CC: Read miss

159

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0X = 0

X = 00

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit is on

▪ Recall cache line from Pj

(determine by presence[])

▪ Update memory

▪ Unset dirty bit, block shared

▪ Set presence[i]

54

Directory-based CC: Read miss

160

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0X = 0

X = 00

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit is on

▪ Recall cache line from Pj

(determine by presence[])

▪ Update memory

▪ Unset dirty bit, block shared

▪ Set presence[i]

54

Directory-based CC: Read miss

161

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0X = 0

1 X = 00

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit is on

▪ Recall cache line from Pj

(determine by presence[])

▪ Update memory

▪ Unset dirty bit, block shared

▪ Set presence[i]

▪ Supply data to reader

54

Directory-based CC: Read miss

162

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0X = 0

1 X = 00

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to read, misses

▪ If dirty bit is on

▪ Recall cache line from Pj

(determine by presence[])

▪ Update memory

▪ Unset dirty bit, block shared

▪ Set presence[i]

▪ Supply data to reader

54

Directory-based CC: Read miss

163

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 1

X = 0

X = 0

1 X = 00

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

55

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

X = 7

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

55

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

X = 7

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit (in directory) is off

55

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

X = 7

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

55

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

X = 7

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

55

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

X = 7

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

55

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

▪ Unset presence bit for all processors

55

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

▪ Unset presence bit for all processors

55

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

▪ Unset presence bit for all processors

▪ Set dirty bit

55

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

▪ Unset presence bit for all processors

▪ Set dirty bit

55

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

0 1

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

▪ Unset presence bit for all processors

▪ Set dirty bit

▪ Set presence[i], owner Pi

55

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

0 1

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

▪ Unset presence bit for all processors

▪ Set dirty bit

▪ Set presence[i], owner Pi

55

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 0

Write X = 0

1 0 1

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit (in directory) is off

▪ Send invalidations to all processors Pj

with presence[j] turned on

▪ Unset presence bit for all processors

▪ Set dirty bit

▪ Set presence[i], owner Pi

55

Directory-based CC: Write miss

P0

Cache

P1

Cache

P2

Cache

X = 7

Directory

X 0 0 1 01 0 1

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

56

Directory-based CC: Write miss

177

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

X = 1

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

56

Directory-based CC: Write miss

178

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

X = 1

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit is on

56

Directory-based CC: Write miss

179

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

X = 1

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit is on

▪ Recall cache line from owner Pj

56

Directory-based CC: Write miss

180

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

X = 1

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit is on

▪ Recall cache line from owner Pj

56

Directory-based CC: Write miss

181

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

X = 1

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit is on

▪ Recall cache line from owner Pj

▪ Update memory

56

Directory-based CC: Write miss

182

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

X = 1

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit is on

▪ Recall cache line from owner Pj

▪ Update memory

56

Directory-based CC: Write miss

183

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

X = 1

X = 0

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit is on

▪ Recall cache line from owner Pj

▪ Update memory

▪ Unset presence[j]

56

Directory-based CC: Write miss

184

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

X = 1

X = 0

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit is on

▪ Recall cache line from owner Pj

▪ Update memory

▪ Unset presence[j]

56

Directory-based CC: Write miss

185

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

X = 1

0 X = 0

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit is on

▪ Recall cache line from owner Pj

▪ Update memory

▪ Unset presence[j]

▪ Set presence[i], dirty bit remains set

56

Directory-based CC: Write miss

186

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

X = 1

0 X = 0

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit is on

▪ Recall cache line from owner Pj

▪ Update memory

▪ Unset presence[j]

▪ Set presence[i], dirty bit remains set

56

Directory-based CC: Write miss

187

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

1

X = 1

0 X = 0

X = 0

spcl.inf.ethz.ch

@spcl_eth

Main Memory

▪ P0 intends to write, misses

▪ If dirty bit is on

▪ Recall cache line from owner Pj

▪ Update memory

▪ Unset presence[j]

▪ Set presence[i], dirty bit remains set

▪ Acknowledge to writer

56

Directory-based CC: Write miss

188

CPU0

Cache

CPU1

Cache

CPU2

Cache

X = 7

Directory

X 0 0 1 1

Write X = 0

1

X = 1

0 X = 0

X = 0

spcl.inf.ethz.ch

@spcl_eth

▪ Scaling of memory bandwidth

▪ No centralized memory

▪ Directory-based approaches scale with restrictions

▪ Require presence bit for each cache

▪ Number of bits determined at design time

▪ Directory requires memory (size scales linearly)

▪ Shared vs. distributed directory

▪ Software-emulation

▪ Distributed shared memory (DSM)

▪ Emulate cache coherence in software (e.g., TreadMarks)

▪ Often on a per-page basis, utilizes memory virtualization and paging

58

Discussion

spcl.inf.ethz.ch

@spcl_eth

▪ Tune algorithms to cache-coherence schemes

▪ What is the optimal parallel algorithm for a given scheme?

▪ Parameterize for an architecture

▪ Measure and classify hardware

▪ Read Maranget et al. “A Tutorial Introduction to the ARM and POWER Relaxed Memory Models” and have fun!

▪ RDMA consistency is barely understood!

▪ GPU memories are not well understood!

Huge potential for new insights!

▪ Can we program (easily) without cache coherence?

▪ How to fix the problems with inconsistent values?

▪ Compiler support (issues with arrays)?

59

Open Problems (for projects, theses, research)

spcl.inf.ethz.ch

@spcl_eth

Case Study: Intel Xeon Phi

60

Core Core Core

Core Core Core

GDDR5

GDDR5

GDDR5

GDDR5

TD TD

TD TD

spcl.inf.ethz.ch

@spcl_eth

61

Communication?

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

61

Communication?

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

62

Local read: RL= 8.6 ns

Remote read RR = 235 ns

Invalid read RI=278 ns

Inspired by Molka et al.: “Memory performance and cache coherency effects on an Intel Nehalem multiprocessor system”

Core Core Core

Core Core Core

GDDR5

GDDR5

GDDR5

GDDR5

TD TD

TD TD

spcl.inf.ethz.ch

@spcl_eth

▪ Prediction for both in E state: 479 ns

▪ Measurement: 497 ns (O=18)

63

Single-Line Ping Pong

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

▪ More complex due to prefetch

64

Multi-Line Ping Pong

Asymptotic Fetch
Latency for each cache

line (optimal
prefetch!)

Number
of CLs

Startup
overhead

Amortization of
startup

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

▪ E state:
▪ o=76 ns

▪ q=1,521ns

▪ p=1,096ns

▪ I state:
▪ o=95ns

▪ q=2,750ns

▪ p=2,017ns

65

Multi-Line Ping Pong

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

▪ E state:

▪ a=0ns

▪ b=320ns

▪ c=56.2ns

66

DTD Contention ☹

Core Core Core

Core Core Core

GDDR5

GDDR5

GDDR5

GDDR5

TD TD

TD TD

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13

spcl.inf.ethz.ch

@spcl_eth

67

Optimizations against vendor libraries

Barrier (7x faster than OpenMP)
Ramos, Hoefler: “Capability Models for Manycore Memory Systems: A Case-Study with Xeon Phi KNL“, IPDPS’17 (video: https://www.youtube.com/watch?v=10Mo3MnWR74)

https://www.youtube.com/watch?v=10Mo3MnWR74

spcl.inf.ethz.ch

@spcl_eth

67

Optimizations against vendor libraries

Barrier (7x faster than OpenMP) Reduce (5x faster then OpenMP)
Ramos, Hoefler: “Capability Models for Manycore Memory Systems: A Case-Study with Xeon Phi KNL“, IPDPS’17 (video: https://www.youtube.com/watch?v=10Mo3MnWR74)

https://www.youtube.com/watch?v=10Mo3MnWR74

spcl.inf.ethz.ch

@spcl_eth

▪ Slide 23, die map: https://superuser.com/questions/386745/how-to-make-caches-with-equal-bitline-and-
wordline-lengths

▪ Slide 23, RAM: © Raimond Spekking / CC BY-SA 4.0 (via Wikimedia
Commons) https://commons.wikimedia.org/wiki/File:Apacer_SDRAM-3386.jpg

68

Image credits

http://lengths
https://creativecommons.org/licenses/by-sa/4.0/deed
https://commons.wikimedia.org/wiki/File:Apacer_SDRAM-3386.jpg

