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Scientific integrity — or how to report benchmark results?

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HWEpXIWAWTU)
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Scientific integrity — or how to report benchmark results?

1991 — the classic!

~ ' Twelve Ways to Fool the Masses When Giving
1 Performance Results on Parallel Computers
ﬁ David H. Bailey
June 11, 1991

Ref: Supercomputing Review, Aug. 1991, pg. 54--55
Abstract

Many of us in the field of highly parallel scientific computing recognize that it 1s often
quite difficult to match the run time performance of the best conventional
supercomputers. This humorous article outlines twelve ways commonly used in
scientific papers and presentations to artificially boost performance rates and to present
these results in the “best possible light” compared to other systems.

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HWEpXIWAWTU) ?
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Scientific integrity — or how to report benchmark results?

1991 — the classic!

d 2012 - the shocking

How did this get published?

Pitfalls in experimental evaluation of
computing systems

L
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José Nelson Amaral
University of Alberta
Edmonton, AB, Canada

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HWEpXIWAWTU)
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Scientific integrity — or how to report benchmark results?

1991 — the classic!

d 2012 - the shocking

2013 — the extension
e
L — |
N
q
b
f Fooling the Masses with Performance
|| Results: Old Classics & Some New Ideas
Gerhard Wellein*2), Georg Hager®
UDepartment for Computer Science R E R
S (@Erlangen Regional Computing Center g 5 ==F E;‘L‘A?.’Z%L‘?anngEf{?
Friedrich-Alexander-Universitét Erlangen-Niirnberg Ll N

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HWEpXIWAWTU)
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Scientific integrity — or how to report benchmark results?

Scientific Benchmarking of Parallel Computing Systems

Twelve ways to tell the masses when reporting performance results

1991 — the classic!

2012 - the shocking

2013 — the extension

| =

Fooling the Masses with Performance
Results: Old Classics & Some New Ideas

o S 7 S 7 S e N =

Gerhard Wellein?), Georg Hager®@

(UDepartment for Computer Science S =E

FRIEDRICH-ALEXANDER
UNIVERSITAT

i

| (Z)Erlangen Regional Computing Center E S === P ANGEN-NORNBERG
Friedrich-Alexander-Universitit Erlangen-Niirnberg

TECHNISCHE FAKULTAT
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ABSTRACT

Measuring and reporting performanee of qulh'l COMper con
stitutes the bagis for scientific advancement of high- performance
computing (HPC), Most scientthc reporis show performance im-
proveimenis of nesw technigues and are s obliged o ensone repoo
ducibiliny or at beast interpretability. Our investigation of o sirat
fied sample of 120 papers seross three wop conferences in the ficld
shaows thit the state of the practice is lacking. For example, it is of-
ten unelear if reported improvements are deterministic or observed
by chance. In addition 1o distilling best practices from existing
work, we propose n.llLlin.Ii('JlH.l,' wowinicl dlLlllIl,'!llﬂ anid mpnrling lech-
nigues and simple guidelines for experimental design in paraliel
compiting and codify them in a pontable henchmarking library. We
wim to improve the standards of reporting rescarch results amd initi-
ate o discussion in the HPC field. A wide adoption of our minimal
sel of rles will lewd io beiter interpretability of performance resulis
and improve the scientific culiure in HPC

Categories and Subject Deseriptors

13.2.8 |Soliware Engincering|: Metrics—complexity measures, per
Surrmance measures

Keywords

Benchmarking, parallel computing, statistics, daia analysis

1. INTRODUCTION

C 'mn's.'lly ||gl||ignin|: imi,:htlnl CRAPETINEnLS 10 meisrne wnd et
performance numbers is a challenging task, Yet, there is surpes
ingly litthe agreement on standand technbgues for measuning, repori-
ing, and inlerpreting computer performance.  For example, eom-
man questions such as “How many iterations do [ have (o mn per
measurement ™, “How many meassurements should T run'™, “Onee
I have all data, how do T sumemarize it into o single number™, or
“How do 1 micisure tiowe inoa parallel system™ are wsually an
swoered based on intition. While we believe that an expert’s intu
itho i miosl oflen correct, there are cases where it Tnls and invali-
daies expensive experiments or even misleads us, Bailey [3] illus
trates thig in several common bal misleading data reporting pattems
that he and his colleagues huve observed in practice.

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HWEpXIWAWTU)

Roberto Belli
Dept. of Computer Science
ETH Zurich
Zurich, Switzerland

bellir@inf.ethz.ch

Reproducing expeniments is one of the main principles of the sci-
entific method. 10is well known that the performance of a comguice
program depends on the application, the inpui, the compiler, the
runtime environment, the machine, and the measurement method-
alogy |20,43), I a single one of these aspects of experimenial de-
xign is nol appropriately motivated and described, presented resulis
can hardly be reproduced and may even be misleading or incormeet.

The complexity and uniguencss of many supercompuicrs makes
reproducibility a hird tisk, For cxample, it is practically imgpossi
ble 1o recreate most hero-rins that wiilize the world's largest ma
chines becaise these machines are often unigue and their software
configurations changes regularly. We introduce the nation of in
terpretability, which is weaker than reproducibility, We call an ex
peviment interpretable if it provides enough information to allow
sedensivey fo wnderstand the experiment, draw own conclisions, ax
sess their certainty, and possibly generalize resulis. In other words,
interpretable experiments support sound conclusions and convey
procise infonmation among scientists, Obviously, every scientific
paper should be inerpretable; unfortunately, many are not.

For example, reporting that an High-Pedormance Linpack
(HPL) run on 64 nodes (N=314k) of the Piz Daint gystem during
normal operation (cf, Section 4. 1.2) achieved 77.38 Topfs 18 hard
o interpret. 1 we add that the theoretical peak is 94.5 Tilops, it
hecomes clearer, the benchmark achieves B1.8% of peak perfor-
mance. Buot is this tree for every mn or a typical mn? Figure |

0.15: 3 1 g
‘:’nm : i
&

0,08

000+ |u!| i IL| | . [l il |

Comgletion Time (8}
Figure 13 Distribution of completion times for 50 HPL runs,

provides o much mare interpretable and informative representation

of the collected rntimes of 50 executions. It shows that the varia
. ,‘ §
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Scientific Benchmarking: Pitfalls of Relative Performance Reporting (Rule 1)

= Most common (and oldest) problem with reporting

_ _ _ . " blocking —#— | | ’
= First seen 1988 — also included in Bailey’s 12 ways 100 pon-Diocking — T f
B == et
= Speedups can look arbitrarily good if it's relative to a bad o ] AT
baseline § 60 ¢ | | Q
: _— : T -
* Imagine an unoptimized vs. parallel matrix multiplication: W< |
My parallel MM is 10x faster than the unoptimized! o =
What does this mean? ot 1+ 1 1 1] 1] ||
8 16 24 32 40 48 56 64 72 80 88 96

Number of CPUs

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HWEpXIWAWTU)
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Scientific Benchmarking: Pitfalls of Relative Performance Reporting (Rule 1)

Baseline = 7 seconds Baseline = 10 seconds
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- Linear speedup o - - - Linear speedup
14 - -
15.0 1
12
12.5 1
O 10 - o
> >
o - 10.0 A+
(O] (O]
U 8- ()
o o
) n 7.5
6_
5.0 -
4_
5 | 2.5 -
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of processors Number of processors

Both plots show speedups calculated from the same data.
The only difference is the baseline.

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HWEpXIWAWTU)
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Scientific Benchmarking: Pitfalls of Relative Performance Reporting (Rule 1)

= Most common (and oldest) problem with reporting

= First seen 1988 — also included in Bailey’s 12 ways 00~ o blockang e T f
B ety .
= Speedups can look arbitrarily good if it's relative to a bad o ] AT
baseline 8 s o %
' imi - ST g
* Imagine an unoptimized vs. parallel matrix multiplication: W< |
My parallel MM is 10x faster than the unoptimized! 0| W
What does this mean? ot 1+ 1 1 1] 1] ||
8 16 24 32 40 48 56 64 72 80 88 96

: : : : Number of CPUs
» Class question: how could we improve the situation?

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HWEpXIWAWTU)
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Scientific Benchmarking: Pitfalls of Relative Performance Reporting (Rule 1)

= Most common (and oldest) problem with reporting - |
= First seen 1988 — also included in Bailey’s 12 ways 00~ o blonkarg w7 f
80 I | g A
» Speedups can look arbitrarily good if it's relative to a bad o o A
baseline g8 O A
= Imagine an unoptimized vs. parallel matrix multiplication: --§;~’-"5"'§'a‘ .......
My parallel MM is 10x faster than the unoptimized! o = |
What does this mean? OT N S I B BN DEN B SN G
8 16 24 32 40 48 56 64 72 80 88 96
. . L Number of CPU
= Class question: how could we improve the situation? dmeet o S

» Recently rediscovered in the “big data” universe
A. Rowstron et al.: Nobody ever got fired for using Hadoop on a cluster, HotCDP 2012
F. McSherry et al.: Scalability! but at what cost?, HotOS 2015

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 (full talk at https://www.youtube.com/watch?v=HWEpXIWAWTU)
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Rule 1: When publishing parallel speedup, report if the base
case is a single parallel process or best serial execution, as
well as the absolute execution performance of the base case.

» A simple generalization of this rule implies that one should never report ratios without
absolute values.

TH, R. Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC18
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Goals of this lecture

=  Memory Trends — Short Refresher on Locality and Caches!
= Cache Coherence in Multiprocessors

=  Advanced Memory Consistency
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Memory — CPU gap widens 12 ion

17.6 PElop/s

10 Pflop/s
= Measure processor speed as “throughput” L ——
= FLOPS/s, IOPS/s, ... 100 Troprs o~
10 Tflop/s fe'?{:::.::

= Moore’s law - “60% growth per year 6-8 years

1 Tflop/s
1.17 TElop/s

100 Gflop/s My Laptop (70 Gflop/s)
59.7 GFlop/s v
10 Gflop/s
My iPad2 & iPhone 4s (1.02 Gflop/s)
1 Gflop/s +
log /s Source: Jack Dongarra
100 Mflop/s
1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2012
= Today’s architectures tiny bandwidth == HUGE BOTTLEMECK
laaa 3 | | | | I | ]
= POWERS: 425 dp GFLOP/s — 340 GB/s memory bw :
= Intel E5-2630 v4: 496 dp GFLOPS/s ~140 GB/s memory bw
188 F CPU Speed — E

= Trend: memory performance grows 10% per year IRAM Speed —

18 |

Fer formance

Source: John Mc.Calpin

a.1 1 1 1 1 1 1
19753 1988 1985 1998 1995 28E8 2HES 2018
Vear
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Issues (Intel Xeon E5-2630 v4 as Example)

=  How to measure bandwidth?
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Issues (Intel Xeon E5-2630 v4 as Example)

=  How to measure bandwidth?

= Data sheet (often peak performance, may include overheads)
63.6 GiB/s
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Issues (Intel Xeon E5-2630 v4 as Example)

=  How to measure bandwidth?
= Data sheet (often peak performance, may include overheads)
63.6 GiB/s
= Microbenchmark performance
Stride 1 access (32 MiB): 46 GiB/s
Random access (8 B out of 32 MiB): 4.7 GiB/s
Why?
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= Application performance
As observed (performance counters)
Somewhere in between stride 1 and random access
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= How to measure Latency?
= Data sheet (often optimistic, or not provided)
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Issues (Intel Xeon E5-2630 v4 as Example)

= How to measure bandwidth?

= Data sheet (often peak performance, may include overheads)
63.6 GiB/s

= Microbenchmark performance
Stride 1 access (32 MiB): 46 GiB/s
Random access (8 B out of 32 MiB): 4.7 GiB/s
Why?

= Application performance
As observed (performance counters)
Somewhere in between stride 1 and random access

= How to measure Latency?
= Data sheet (often optimistic, or not provided)

= Random pointer chase
28 ns with one core, 75 ns with 10 cores!
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Conjecture: Buffering/caching is a must!

= Two most common examples:

=  Write Buffers

= Delayed write back saves memory bandwidth
= Data is often overwritten or re-read

= Caching
= Directory of recently used locations
= Stored as blocks (cache lines)

= Many others deep in architectures:
= Translation Lookahead Buffer
= Branch Predictors
= Trace Caches
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Typical Memory Hierarchy

A
LO:
registers CPU registers hold words retrieved from
L1 cache
L1: on-chip L1
Small er, cache (SR A|V|) L1 cache holds cache lines retrieved from
L2 cache
faster,
costlier L2: .
byt on-chip L2
er e
P y cache (SRAM) L2 cache holds cache lines retrieved
from main memory
L3:
Larger, main memory
(DRAM) Main memory holds disk blocks
slower, : )
retrieved from local disks
cheaper
per byte L4: local secondary storage

Local disks hold files
retrieved from disks on
remote network servers

(local disks)

remote secondary storage

L5: (tapes, distributed file systems, Web servers)




spcl.inf.ethz.ch 0n o
v o ETH zZUrich

Why Caches Work: Locality

11
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Why Caches Work: Locality

= Locality: Programs tend to use data and instructions with addresses near or equal to those they have
used recently, cf. “Denning: “The locality principle”, CACM’05

11
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Why Caches Work: Locality

= Locality: Programs tend to use data and instructions with addresses near or equal to those they have
used recently, cf. “Denning: “The locality principle”, CACM’05

=  Temporal locality:

Recently referenced items are likely O

to be referenced again in the near future memory

= Spatial locality:
ltems with nearby addresses tend
to be referenced close together in time ﬁ

memory

11
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Example: Locality?

sum = 0;

for (1 =0; i < n; i++)
sum += a[i];

return sum;

12
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sum += a[i];
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Example: Locality?

= Data: sum = 0;

for (i = 0; 1 < n; i++)
sum += a[i];

return sum;

= Temporal: sum referenced in each iteration
= Spatial: array a[ ] accessed consecutively

= Instructions:
= Temporal: loops cycle through the same instructions
= Spatial: instructions referenced in sequence

= Being able to assess and tune the locality of code is a crucial skill for a performance programmer

12
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Locality Example

int sum_array _3d(double a[I][J][K])
{

int i, j, k, sum = 0©;

for (k = 0; k < K; k++)
for (j = 0; j < J; j++)
for (i = 0; 1 < I; i++)
sum += a[i][J][k];
return sum;

}

13
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Locality Example

How to improve locality?

int sum_array _3d(double a[I][J][K])
{

int i, j, k, sum = 0©;

for (k = 0; k < K; k++)
for (j = 0; j < J; j++)
for (i = 0; 1 < I; i++)
sum += a[i][J][k];
return sum;

}

13



Locality Example

How to improve locality?

Performance [flops/cycle]
0.4
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int sum_array _3d(double a[I][J][K])
{

int i, j, k, sum

9;

for (k = 0; k < K; k++)
for (j = 0; j < J; j++)
for (i = 0; 1 < I; i++)

sum += a[i][J][k];
return sum;

* i-j-k CPU: Intel(R) Core(TM) i7-4980HQ. CPU @ 2.80GHz

gcc: Apple LLVM version 8.0.0 (clang-800.0.42.1)
flags: -O3 -fno-vectorize

I=J=K

13
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Cache

= Definition: Computer memory with short access time used for the storage of frequently or recently used
instructions or data

CPU - Cache Main
Memory

= Naturally supports temporal locality

= Spatial locality is supported by transferring data in blocks
= E.g., Intel’s Core family: one block = 64 B = 8 doubles

14
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Cache Structure

Simplest design: direct mapped!

Slow Memory Fast Memory
(Cache)

Address 0
Address 64
Address 128
Address 192

Index O
Index 1

Index 2
Index 3

Address 256
Address 320
Address 384
Address 448

15
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Example (S=4, E=2)

int sum_array_rows(double a[8][8])

Row-major order

=

C/C++ uses row-major

{

int i, j;
double sum = 0;

for (i = 0; 1 < 8; i++)
for (j = 0; j < 8; j++)
sum += a[i][]j];
return sum;

int sum_array_cols(double a[8][8])

{

int i, j;
double sum = 0;

for (j = 0; j < 8; i++)
for (1 = 0; 1 < 8; j++)
sum += a[i][j];
return sum;

Ignore the variables sum, i, j
assume: cold (empty) cache,
a[0][0] goes here

| way 0 way 1
v

idx O

idx 3

\ J
Y

B = 32 byte = 4 doubles

blackboard
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General Cache Organization (S, E, B)

E = 2¢ lines per set

E = associativity, E=1: direct mapped

A
'd N\

set

line

S =2°%sets <

17
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General Cache Organization (S, E, B)

E = 2¢ lines per set
E = associativity, E=1: direct mapped

A
r N\
set
line
S=2° sets<
[ J [ ] [ ] [ J [ J [ ] [ ] [ J [ J [ ] [ ] [ J
Y tag 0112 B-1
valid bit —

(+ others later)

B = 2° bytes per cache block (the data)
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ETH:zurich
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General Cache Organization (S, E, B)

E = 2¢ lines per set
E = associativity, E=1: direct mapped

N\

A
r
(
S =2°%sets <
[ J [ ] [ ] [ ] [ ] [ J [ ] [ ]
\.
Y tag 1{2|e o B-1
valid bit ~——

(+ others later)

set

line

S x E x B data bytes

B = 2° bytes per cache block (the data)

L 4 @spcl_eth

ETH:zurich
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E = 2¢ lines per set
E = associativity, E=1: direct mapped

A

N\

tag

1(2|+ -+ |B1

Cache Read
'
p
S =2°%sets <
\
\/
valid bit

(+ others later)

7

—~—
B = 2° bytes per cache block (the data)
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Cache Read

E = 2¢ lines per set
E = associativity, E=1: direct mapped

AL
e ~N
f
Address of word:
S = 25 sets < R t bits s bits | b bits
[ ) o [ J [ ] [ ) [} o [ ] o [ } o [ )
\.
Y tag 0112+ | B-1
valid bit —

(+ others later) B = 2° bytes per cache block (the data)
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Cache Read

S =2°%sets <

valid bit
(+ others later)

E = 2¢ lines per set

E = associativity, E=1: direct mapped
A

r N\

Address of word:

t bits s bits | b bits
| ~ A ~ A —
tag set block

index offset

Y tag O|1|2|=-+ |B-1

N— 7
~—

B = 2° bytes per cache block (the data)
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Cache Read

E = 2¢ lines per set
E = associativity, E=1: direct mapped

AL
e ~N
f
Address of word:
S = 25 sets < R t bits s bits | b bits
N ' A ' H—/
tag set block
[ ] o [ J [ ] [ ) [} o [ ] o [ } o [ ) IndeX Offset
\.
Y tag 0112+ | B-1
valid bit —

(+ others later) B = 2° bytes per cache block (the data)
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Cache Read

E = 2¢ lines per set
E = associativity, E=1: direct mapped

AL
e ~N
f
Address of word:
S = 25 sets < R t bits s bits | b bits
| ~ A ~ A —
tag set block
[ ] o [ J [ ] [ ) [} o [ ] o [ } o [ ) IndeX Offset
\.

data begins at this offset

N— 7

valid bit ~"
(+ others later) B = 2° bytes per cache block (the data)
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o/ t t
Cache Read ocate se

* Check if any line in set

E = 2¢ lines per set )
has matching tag

E = associativity, E=1: direct mapped

r A ~N * Yes + line valid: hit

* Locate data starting
at offset

Address of word:
S = 25 sets < R t bits s bits | b bits

~ ' A ' H—/
tag set block

index offset

A

data begins at this offset

N— 7

valid bit ~
(+ others later) B = 2° bytes per cache block (the data)
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Terminology

= Direct mapped cache:
= CachewithE=1
= Means every block from memory has a unique location in cache
= Fully associative cache
= Cache with S=1 (i.e., maximal E)
= Means every block from memory can be mapped to any location in cache
= In practice to expensive to build
= One can view the register file as a fully associative cache
= LRU (least recently used) replacement

= when selecting which block should be replaced (happens only for E > 1), the least recently used one is chosen

19
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Types of Cache Misses (The 3 C’s)

=  Compulsory (cold) miss
Occurs on first access to a block
= Capacity miss
Occurs when working set is larger than the cache
= Conflict miss
Conflict misses occur when the cache is large enough, but multiple data objects all map to the same slot

Not a clean classification but still useful

20
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What about writes?

What to do on a write-hit?
Write-through: write immediately to memory
Write-back: defer write to memory until replacement of line

What to do on a write-miss?
Write-allocate: load into cache, update line in cache
No-write-allocate: writes immediately to memory

21
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What to do on a write-miss?
Write-allocate: load into cache, update line in cache
No-write-allocate: writes immediately to memory

Write-back/write-allocate (Core) Write-through/no-write-allocate
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The actual topic: Cache Coherence in Multiprocessors

= Different caches may have a copy of the same memory location!

= Cache coherence
= Manages existence of multiple copies

= Cache architectures
= Multi level caches
= Shared vs. private (partitioned)
= Inclusive vs. exclusive
=  Write back vs. write through
= Victim cache to reduce conflict misses
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Example: Intel i7-3960X
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Shared Hierarchical Caches
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Shared Hierarchical Caches with MT
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Caching Strategies (repeat)

=  Remember:
=  Write Back?
= Write Through?

= Cache coherence requirements
A memory system is coherent if it guarantees the following:
= Write propagation (updates are eventually visible to all readers)
=  Write serialization (writes to the same location must be observed in order)
Everything else: memory model issues (later)
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WT-Cache

Requires write propagation!
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Write Through Cache

1. CPU,reads X from memory
* |oads X=0 into its cache
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Write Through Cache

1. CPU,reads X from memory
* loads X=0 into its cache
2. CPU; reads X from memory
* loads X=0 into its cache
3. CPU, writes X=1
WT-Cache WT-Cache * stores X=1in its cache
X =1 * stores X=1in memory
4. CPU, reads X from its cache
* loads X=0 from its cache
Incoherent value for X on CPU,

Requires write propagation!
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Write Through Cache

1. CPU,reads X from memory
* loads X=0 into its cache
2. CPU; reads X from memory
* loads X=0 into its cache
3. CPU, writes X=1
WT-Cache WT-Cache * stores X=1in its cache
X =1 * stores X=1in memory
4. CPU, reads X from its cache
* loads X=0 from its cache
Incoherent value for X on CPU,

CPU, may wait for update!

Requires write propagation!
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Write Back Cache

CPU, CPU,

WB-Cache WB-Cache

Requires write serialization!
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1. CPU,reads X from memory
* loads X=0 into its cache

CPU,

WB-Cache WB-Cache
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Requires write serialization!
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Write Back Cache

1. CPU,reads X from memory
* loads X=0 into its cache

CPU, 2. CPU, reads X from memory
* loads X=0 into its cache

WB-Cache WB-Cache

X=0

Requires write serialization!
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WB-Cache WB-Cache
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* loads X=0 into its cache
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X=0 X=0
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Write Back Cache

1. CPU,reads X from memory
* loads X=0 into its cache
2. CPU,reads X from memory
* loads X=0 into its cache
3. CPU, writes X=1

WB-Cache WB-Cache * stores X=1in its cache

X=1 X=0

Requires write serialization!
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Write Back Cache

WB-Cache

X=1

WB-Cache

X=0

Requires write serialization!

L 4 @spcl_eth

CPU,reads X from memory
* |oads X=0 into its cache
CPU, reads X from memory
* |oads X=0 into its cache
CPU, writes X=1
* stores X=1in its cache
CPU, writes X =2
* stores X=2 in its cache
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Write Back Cache

WB-Cache

X=1

WB-Cache

X=2

Requires write serialization!

L 4 @spcl_eth

CPU,reads X from memory
* |oads X=0 into its cache
CPU, reads X from memory
* |oads X=0 into its cache
CPU, writes X=1
* stores X=1in its cache
CPU, writes X =2
* stores X=2 in its cache
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Write Back Cache

1. CPU,reads X from memory

e loads X=0 into its cache
2. CPU,reads X from memory

* Jloads X=0 into its cache
3. CPU, writes X=1

e stores X=1inits cache
4. CPU,; writes X =2
X=1 X=2 » stores X=2 in its cache
5. CPU, writes back cache line

* stores X=2 in in memory

WB-Cache WB-Cache

Requires write serialization!
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Write Back Cache

1. CPU,reads X from memory
* loads X=0 into its cache
2. CPU,reads X from memory
* loads X=0 into its cache
3. CPU, writes X=1

WB-Cache WB-Cache . stores X=1in its cache
4. CPU,; writes X =2
X=1 X=2  stores X=2 in its cache

5. CPU, writes back cache line

* stores X=2 in in memory
6. CPU, writes back cache line

* stores X=1in memory

Requires write serialization!
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Write Back Cache

1. CPU,reads X from memory
* loads X=0 into its cache
2. CPU,reads X from memory
* loads X=0 into its cache
3. CPU, writes X=1

WB-Cache WB-Cache . stores X=1in its cache
4. CPU,; writes X =2
X=1 X=2  stores X=2 in its cache

5. CPU, writes back cache line
* stores X=2 in in memory

6. CPU, writes back cache line
* stores X=1in memory
Later (!) store X=2 from CPU, lost

Requires write serialization!
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A simple (?) example

=  Assume C99:

=  Two threads: struct twoint {

= |nitially: a=b=0 int a;
= Thread 0: write 1 to a int b;
= Thread 1: write 1to b I

= Assume non-coherent write back cache
= What may end up in main memory?
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Cache Coherence Protocol

=  Programmer can hardly deal with unpredictable behavior!
= Cache controller maintains data integrity

= All writes to different locations are visible

Fundamental Mechanisms
= Snooping
= Shared bus or (broadcast) network

= Directory-based

= Record information necessary to maintain coherence:
E.g., owner and state of a line etc.
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Fundamental CC mechanisms

= Snooping ]
= Shared bus or (broadcast) network 8 2y
= Cache controller “snoops” all transactions _ %g
= Monitors and changes the state of the cache’s data g =
= Works at small scale, challenging at large-scale —
E.g., Intel Core (Broadwell, ...)
= Directory-based source: Intel

Record information necessary to maintain coherence

E.g., owner and state of a line etc.
Central/Distributed directory for cache line ownership
Scalable but more complex/expensive
E.g., Intel Xeon Phi KNC/KNL

31
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Cache Coherence Parameters

= Concerns/Goals
= Performance
= |Implementation cost (chip space, more important: dynamic energy)
= Correctness
= (Memory model side effects)

= Issues
= Detection (when does a controller need to act)
= Enforcement (how does a controller guarantee coherence)
= Precision of block sharing (per block, per sub-block?)
= Block size (cache line size?)
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An Engineering Approach: Empirical start

=  Problem 1: stale reads
= Cache 1 holds value that was already modified in cache 2
= Solution:
Disallow this state
Invalidate all remote copies before allowing a write to complete

= Problem 2: lost update

= Incorrect write back of modified line writes main memory in different order from the order of the write operations
or overwrites neighboring data

= Solution:
Disallow more than one modified copy
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Invalidation vs. update — possible implementations

= |nvalidation-based:
= On each write of a shared line, it has to invalidate copies in remote caches
= Simple implementation for bus-based systems:
Each cache snoops
Invalidate lines written by other CPUs
Signal sharing for cache lines in local cache to other caches

= Update-based:
= Local write updates copies in remote caches
Can update all CPUs at once
Multiple writes cause multiple updates (more traffic)
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Invalidation vs. update — effects

= |nvalidation-based:
= Only write misses hit the bus (works with write-back caches)
= Subsequent writes to the same cache line are local
= - Good for multiple writes to the same line (in the same cache)

= Update-based:
= All sharers continue to hit cache line after one core writes
Implicit assumption: shared lines are accessed often
= Supports producer-consumer pattern well
= Many (local) writes may waste bandwidth!

= Hybrid forms are possible!
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MESI Cache Coherence

=  Most common hardware implementation of discussed requirements
aka. “lllinois protocol”

Each line has one of the following states (in a cache):

= Modified (M)
= Local copy has been modified, no copies in other caches
= Memory is stale

= Exclusive (E)
= No copies in other caches
= Memory is up to date

= Shared (S)

= Unmodified copies may exist in other caches
= Memory is up to date

= |Invalid (I)
= Lineis notin cache
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Terminology

= Clean line:
= Content of cache line and main memory is identical (also: memory is up to date)
= Can be evicted without write-back
= Dirty line:
= Content of cache line and main memory differ (also: memory is stale)
= Needs to be written back eventually
Time depends on protocol details
= Bus transaction:
= Asignal on the bus that can be observed by all caches
= Usually blocking
= Local read/write:
= Aload/store operation originating at a core connected to the cache
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Transitions in response to local reads

= StateisM

= No bus transaction
= StateisE

= No bus transaction
= Stateis S

= No bus transaction
= Stateis|

= Generate bus read request (BusRd)
May force other cache operations (see later)
= Other cache(s) signal “sharing” if they hold a copy
= |f shared was signaled, go to state S
= Otherwise, go to state E

= After update: return read value
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Transitions in response to local writes

= StateisM
= No bus transaction
= StateisE

= No bus transaction
= Go tostate M

= Stateis S
= Line already local & clean
= There may be other copies
= Generate bus read request for upgrade to exclusive (BusRdX*)
= Gotostate M

= Stateis|
= Generate bus read request for exclusive ownership (BusRdX)
= Gotostate M
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Transitions in response to snooped BusRd

= Stateis M
= Write cache line back to main memory
= Signal “shared”
= GotostateS (or E)
= StateisE
= Signal “shared”
= @Go to state S and signal “shared”

= Stateis S
= Signal “shared”
= Stateis|

= Ignore
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Transitions in response to snooped BusRdX

= Stateis M
=  Write cache line back to memory
= Discard lineand go to |

= StateisE

= Discard lineand go to |
= Stateis S

= Discard lineand go to |
= Stateis|

= Ignore

=  BusRdX¥* is handled like BusRdX!
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MESI State Diagram (FSM)

PrRd/-
PrWr/-

-
—
- -

~ ==~ BusRdX/

_ BusRd/- |
.- I
BusRdX/
Flush
S o |
N o |
~ o |
N |
\\ |
\\ I 1
PrWr/ / \\ : PrRd/-
BusRdX R4 PrWr/ N | BusRd(S)
v ’ BusRdX

U — PrRd/BusRd(S)
PrRd/-
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Small Exercise

= [|nitially: all in | state

Action | PLstate | P2state | P3state | Bus action | Data from_

P1 reads x
P2 reads x
P1 writes x
P1 reads x

P3 writes x

43
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Small Exercise

= [|nitially: all in | state

m P1state mm

P1 reads x BusRd Memory
P2readsx S S I BusRd Cache
P1writesx M I I BusRdX*  Cache
Plreadsx M I I - Cache

P3 writesx | I M BusRdX Memory

44
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Optimizations?

= Class question: what could be optimized in the MESI protocol to make a system faster?

45
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Related Protocols: MOESI (AMD)

= Extended MESI protocol

= Cache-to-cache transfer of modified cache lines
= Cachein M or O state always transfers cache line to requesting cache
= No need to contact (slow) main memory
= Avoids write back when another process accesses cache line
= Good when cache-to-cache performance is higher than cache-to-memory
E.g., shared last level cache!
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MOESI State Diagram

Probe Write Hit

Read Miss, Exclusve

Read Hit
Probe Read Hit

Write Hit
Probe Read Hit

Source: AMD64 Architecture Programmer’s Manual
47
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Related Protocols: MOESI (AMD)

= Modified (M): Modified Exclusive D, WaiwD iy
= No copies in other caches, local copy dirty

Probe Write Hit

Invalid |

Read Miss, Exclusive

= Memory is stale, cache supplies copy (reply to BusRd*)

= Owner (0): Modified Shared
= Exclusive right to make changes

= Other S copies may exist (“dirty sharing”)

= Memory is stale, cache supplies copy (reply to BusRd*)
= Exclusive (E):

= Same as MESI (one local copy, up to date memory)
= Shared (S):

= Unmodified copy may exist in other caches

Read Hit
Write Hit

= Memory is up to date unless an O copy exists in another cache Probe Read it
= |nvalid (I):

= Same as MESI

Read Hit
Probe Read Hit
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Related Protocols: MESIF (Intel)

=  Modified (M): Modified Exclusive
= No copies in other caches, local copy dirty
= Memory is stale, cache supplies copy (reply to BusRd*)
= Exclusive (E):
= Same as MESI (one local copy, up to date memory)
= Shared (S):
= Unmodified copy may exist in other caches
= Memory is up to date
= Invalid (I):
= Same as MESI
=  Forward (F):
= Special form of S state, other caches may have linein S

= Most recent requester of line is in F state
= Cache acts as responder for requests to this line
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Multi-level caches

=  Most systems have multi-level caches

= Problem: only “last level cache” is connected to bus or network

= Yet, snoop requests are relevant for inner-levels of cache (L1)

= Modifications of L1 data may not be visible at L2 (and thus the bus)
= L1/L2 modifications

= On BusRd check if line is in M state in L1

It may be in EorSin L2!

= On BusRdX(*) send invalidations to L1

= Everything else can be handled in L2
= If L1 is write through, L2 could “remember” state of L1 cache line

= May increase traffic though
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Directory-based cache coherence

= Snooping does not scale
= Bus transactions must be globally visible
= Implies broadcast
= Typical solution: tree-based (hierarchical) snooping
= Root becomes a bottleneck
= Directory-based schemes are more scalable
= Directory (entry for each CL) keeps track of all owning caches
= Point-to-point update to involved processors
No broadcast
Can use specialized (high-bandwidth) network, e.g., HT, QPI ...
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Basic Scheme

= System with N processors P,

= For each memory block (size: cache line)
maintain a directory entry

= N presence bits (light blue)
Set if block in cache of P,
= 1 dirty bit (red)

Main Memory

Directory

X BON R RO 1

= First proposed by Censier and Feautrier (1978)

52



v owen ETHzlirich
Directory-based CC: Read miss

= P, intends to read, misses

Main Memory

Directory

X B ROy Es O
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= P, intends to read, misses

= |If dirty bit (in directory) is off

Main Memory

Directory

X B ROy Es O
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Directory-based CC: Read miss

= P, intends to read, misses

= |If dirty bit (in directory) is off
» Read from main memory

Main Memory

Directory

X B ROy Es O
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Directory-based CC: Read miss

= P, intends to read, misses

= |If dirty bit (in directory) is off
» Read from main memory
» Set presenceli]

Main Memory

Directory

X B ROy Es O
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Directory-based CC: Read miss

= P, intends to read, misses

= |If dirty bit (in directory) is off
» Read from main memory
» Set presenceli]

Main Memory

Directory

X Enee s 0
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Directory-based CC: Read miss

= P, intends to read, misses

= |If dirty bit (in directory) is off
» Read from main memory
» Set presenceli]

» Supply data to reader

Main Memory

Directory

X Enee s 0
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Directory-based CC: Read miss

= P, intends to read, misses

Main Memory

Directory

X JO RO S 1
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Directory-based CC: Read miss

= P, intends to read, misses

Main Memory

Directory

X JO RO S 1
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Directory-based CC: Read miss

= P, intends to read, misses

= |f dirty bit is on

Main Memory

Directory

X JO RO S 1
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Directory-based CC: Read miss

= P, intends to read, misses

= |f dirty bit is on
* Recall cache line from P,
(determine by presence[])

Main Memory

Directory

X JO RO S 1
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Directory-based CC: Read miss

= P, intends to read, misses

= |f dirty bit is on
* Recall cache line from P,
(determine by presence[])

Main Memory

Directory

X JO RO S 1
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Directory-based CC: Read miss

= P, intends to read, misses

= |f dirty bit is on
* Recall cache line from P,
(determine by presence[])

= Update memory

Main Memory

Directory

X JO RO S 1
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Directory-based CC: Read miss

= P, intends to read, misses

= |f dirty bit is on
* Recall cache line from P,
(determine by presence[])

= Update memory

Main Memory

Directory

X JO RO S 1
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Directory-based CC: Read miss

= P, intends to read, misses

= |f dirty bit is on
* Recall cache line from P,
(determine by presence[])

= Update memory
» Unset dirty bit, block shared

Main Memory

Directory

X JO RO S 1
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Directory-based CC: Read miss

= P, intends to read, misses

= |f dirty bit is on
* Recall cache line from P,
(determine by presence[])

= Update memory
» Unset dirty bit, block shared

Main Memory

Directory

X B RO O




v owen ETHzlirich
Directory-based CC: Read miss

= P, intends to read, misses

= |f dirty bit is on
* Recall cache line from P,
(determine by presence[])

= Update memory
» Unset dirty bit, block shared

= Set presenceli] Main Memory

Directory

X B RO O
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Directory-based CC: Read miss

= P, intends to read, misses

= |f dirty bit is on
* Recall cache line from P,
(determine by presence[])

= Update memory
» Unset dirty bit, block shared

= Set presenceli] Main Memory

Directory

Wi || N
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Directory-based CC: Read miss

= P, intends to read, misses

= |f dirty bit is on
* Recall cache line from P,
(determine by presence[])

= Update memory
» Unset dirty bit, block shared

= Set presenceli] Main Memory
» Supply data to reader

Directory

Wi || N
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Directory-based CC: Read miss

= P, intends to read, misses

= |f dirty bit is on
* Recall cache line from P,
(determine by presence[])

= Update memory
» Unset dirty bit, block shared

= Set presenceli] Main Memory
» Supply data to reader

Directory

Wi || N
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Directory-based CC: Write miss

= P, intends to write, misses

Main Memory

Directory

X B ROy Es O
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Directory-based CC: Write miss

= P, intends to write, misses Write X =0

Main Memory

Directory

X B ROy Es O
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Directory-based CC: Write miss

= P, intends to write, misses Write X =0

= |If dirty bit (in directory) is off

Main Memory

Directory

X B ROy Es O
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Directory-based CC: Write miss

= P, intends to write, misses Write X =0

= |If dirty bit (in directory) is off

= Send invalidations to all processors P,
with presence[j] turned on

Main Memory

Directory

X B ROy Es O
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Directory-based CC: Write miss

= P, intends to write, misses Write X =0

= |If dirty bit (in directory) is off

= Send invalidations to all processors P,
with presence[j] turned on

Main Memory

Directory

X B ROy Es O
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Directory-based CC: Write miss

= P, intends to write, misses Write X =0

= |If dirty bit (in directory) is off

= Send invalidations to all processors P,
with presence[j] turned on

Main Memory

Directory

X B ROy Es O
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Directory-based CC: Write miss

= P, intends to write, misses Write X =0

= |If dirty bit (in directory) is off

= Send invalidations to all processors P,
with presence[j] turned on

» Unset presence bit for all processors

Main Memory

Directory
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Directory-based CC: Write miss

= P, intends to write, misses Write X =0

= |If dirty bit (in directory) is off

= Send invalidations to all processors P,
with presence[j] turned on

» Unset presence bit for all processors

Main Memory

Directory
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Directory-based CC: Write miss

= P, intends to write, misses Write X =0

= |If dirty bit (in directory) is off

= Send invalidations to all processors P,
with presence[j] turned on

» Unset presence bit for all processors
» Set dirty bit

Main Memory

Directory
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Directory-based CC: Write miss

= P, intends to write, misses Write X =0

= |If dirty bit (in directory) is off

= Send invalidations to all processors P,
with presence[j] turned on

» Unset presence bit for all processors
» Set dirty bit

Main Memory

Directory
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Directory-based CC: Write miss

= P, intends to write, misses Write X =0

= |If dirty bit (in directory) is off

= Send invalidations to all processors P,
with presence[j] turned on

» Unset presence bit for all processors
» Set dirty bit
= Set presenceli], owner P, Main Memory

Directory
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Directory-based CC: Write miss

= P, intends to write, misses Write X =0

= |If dirty bit (in directory) is off

= Send invalidations to all processors P,
with presence[j] turned on

» Unset presence bit for all processors
» Set dirty bit
= Set presenceli], owner P, Main Memory

Directory
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Directory-based CC: Write miss

= P, intends to write, misses

= |If dirty bit (in directory) is off

= Send invalidations to all processors P,
with presence[j] turned on

» Unset presence bit for all processors
» Set dirty bit
= Set presenceli], owner P, Main Memory

Directory

X B0 ROE 1
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Directory-based CC: Write miss

= P, intends to write, misses

Main Memory

Directory

X JO RO S 1




v owen ETHzlirich
Directory-based CC: Write miss

= P, intends to write, misses Write X =0

Main Memory

Directory

X JO RO S 1
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Directory-based CC: Write miss

= P, intends to write, misses Write X =0

= |f dirty bit is on

Main Memory

Directory

X JO RO S 1
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Directory-based CC: Write miss

= P, intends to write, misses Write X =0

= |f dirty bit is on
= Recall cache line from owner P,

Main Memory

Directory

X JO RO S 1
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Directory-based CC: Write miss

= P, intends to write, misses Write X =0

= |f dirty bit is on
= Recall cache line from owner P,

Main Memory

Directory

X JO RO S 1
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Directory-based CC: Write miss

= P, intends to write, misses Write X =0

= |f dirty bit is on
= Recall cache line from owner P,
= Update memory

» Unset presence[j]
Main Memory
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Directory-based CC: Write miss

= P, intends to write, misses Write X =0

= |f dirty bit is on
= Recall cache line from owner P,
= Update memory

» Unset presence[j]
» Set presenceli], dirty bit remains set
= Acknowledge to writer Main Memory

Directory
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Discussion

= Scaling of memory bandwidth
= No centralized memory

= Directory-based approaches scale with restrictions
= Require presence bit for each cache
= Number of bits determined at design time
= Directory requires memory (size scales linearly)
= Shared vs. distributed directory

= Software-emulation
= Distributed shared memory (DSM)
= Emulate cache coherence in software (e.g., TreadMarks)
= Often on a per-page basis, utilizes memory virtualization and paging
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Open Problems (for projects, theses, research)

= Tune algorithms to cache-coherence schemes
= What is the optimal parallel algorithm for a given scheme?
= Parameterize for an architecture

= Measure and classify hardware
= Read Maranget et al. “A Tutorial Introduction to the ARM and POWER Relaxed Memory Models” and have fun!
= RDMA consistency is barely understood!
= GPU memories are not well understood!
Huge potential for new insights!

= Can we program (easily) without cache coherence?
= How to fix the problems with inconsistent values?
= Compiler support (issues with arrays)?
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Case Study: Intel Xeon Phi

Core Core Core

. .

TD

D

e o0 Core Core
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Communication?

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13 ol



Communication?

To. read
T.. RFO

Ry

Ty read
(T., read)]

)
T., raad .

I
]
e
T

oo Pead
T,. read
{T;, read

Ts, read
Ty, read RT— .
fgs h

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Ph

HPDC’13
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T., RFO
T, read Ty, read

(T,, read
RL}N

Ta RFO
{T, evict)
Ry«

T1, RFO
{T, evict)
RL‘.&

T,, read
{T,, read)
RLI-‘&

Invalid read R=278 ns
Local read: R,=8.6 ns

Remote read Rz =235 ns

Inspired by Molka et al.: “Memory performance and cache coherency effects on an Intel Nehalem multiprocessor system” o7
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Single-Line Ping Pong
ot Thread O Thread 1

/| SendBuffer0 [fiagh ool
. = cachgline —™ \ Q ,
! RecvButffer1 | /

) | | SendBuffer1 |flag|
) ~—  cacheline \
T RecvBliffer0 |flag ”'
endtimer =~ e line
T1 = RL,SS + RR,Sr + RR,M + O = R|_ + 2RR + C

= Prediction for both in E state: 479 ns
= Measurement: 497 ns (0=18)

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13
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Multi-Line Ping Pong

=  More complex due to prefetch

Amortization of
startup

Asymptotic Fetch
Latency for each cache

line (optimal
prefetch!)

Startup
overhead

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13
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Multi-Line Ping Pong
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Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13
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= E state:
_ a
= a=0ns TC(nth) :C'nth_l_b_ -
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—— model
*  rel. error

O average ______________ 5

_| .
100
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60

i 7 15 3
Number of Threads

Ramos, Hoefler: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC’13
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Optimizations against vendor libraries

Intel MPI T  intellmPi
S \ - Intel OpenMP
© | o_"
N ‘Intel OpenMP ¥ .
SmeEp -tune"d
o | Modeltuned |\ | | o | | | e
i v del | 1)
2 DT 2 IAREI NS
> Min-Max Model > ; S gs-
8 : : : 8 S 0L
3 & - 1 [
5 © 1101
- - ) . _
o | 1T \r
2 Ié
o - FTE L S
| | | | | | | | | | |
2 4 8 16 32 64

2 4 8 16 32 64

Number of threads
(a) Filling Tiles.

Barrier (7x faster than OpenMP)

Ramos, Hoefler: “Capability Models for Manycore Memory Systems: A Case-Study with Xeon Phi KNL“, IPDPS’17 (video: https://www.youtube.com/watch?v=10Mo3MnWR74)

Number of threads
(b) Scatter.
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Optimizations against vendor libraries
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(b) Scatter.
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Barrier (7x faster than OpenMP)

Ramos, Hoefler: “Capability Models for Manycore Memory Systems: A Case-Study with Xeon Phi KNL”,
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" IPDPS’17 (video: https://www.youtube.com/watch?v=10Mo3MnWR74)
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Image credits

= Slide 23, die map: https://superuser.com/questions/386745/how-to-make-caches-with-equal-bitline-and-
wordline-lengths

= Slide 23, RAM: © Raimond Spekking / CC BY-SA 4.0 (via Wikimedia
Commons) https://commons.wikimedia.org/wiki/File:Apacer SDRAM-3386.jpg
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