Pl

T. HOEFLER, M. PUESCHEL DPHPC Overview
Lecture 2: Caches and Cache Coherence DPHPC.
Teaching assistant: Salvatore Di Girolamo parallelism
P
g vector ISA shared memory distributed memory
s
2
&
2 distributed
g. S algorithms
5 locks group commu-
8 lock free nications
wait free
linearizability
I Amdahl's and 's law |
k 1
3 L memory PRAM 1 LogP |
o T LI 1T 1
g oF
1/0 complexity
balance principles | balance principles Il
Little's Law scheduling
MR v esion ETHZzirich
Scientific integrity — or how to report benchmark results? Scientific Benchmarking: Pitfalls of Relative Performance Reporting (Rule 1)
1991 - the classic! Sclentific Benchmarking of Parallel Computing Systems Baseline = 7 seconds Baseline = 10 seconds
2012 - e shocking s o g 7 e i Rrcteen
i bt ey 14 -
2013 - the extension ABSTRACT
— 12
== cu
3
3 s
&
Fooling the Masses with Performance 6
Results: Old Classics & Some New Ideas 4
2
Gerhard Wellein®2, Georg Hager®
2 6 8 10 12 14 16 2 4 6 8 10 12 14 16
L t:::;z:;"e'f"e:;::;mz‘:mf";mu, S B Number of processors Number of processors
Both plots show speedups calculated from the same data.
The only difference is the baseline.
TH, R. Belli tifi Parallel Cc i e IEEE/ACM SC15 (full talk at hitps TH, R. Belli: Scientific Parallel Cc IEEE/ACM SC15 (full talk at atch2v=HWEDXIWAWTU)
ML + ETHzirich | " *SIPCL ETHzirich

Goals of this lecture

= Memory Trends - Short Refresher on Locality and Caches!

= Cache Coherence in Multiprocessors

= Ad i Memory C

Rule 1: When publishing parallel speedup, report if the base
case is a single parallel process or best serial execution, as
well as the absolute execution performance of the base case.

= Asimple generalization of this rule implies that one should never report ratios without
absolute values.

TH.R. Belli i Parallel Computing Systems, IEEE/ACM SC18

o =
Memory — CPU gap widens

= Measure processor speed as “throughput”
* FLOPS/s, IOPS/s, ...
* Moore’s law - ~60% growth per year

= Today'’s architectures

POWERS: 425 dp GFLOP/s — 340 GB/s memory bw

Intel E5-2630 v4: 496 dp GFLOPS/s ~140 GB/s memory bw
Trend: memory performance grows 10% per year

speLinfeth
W @5l

w0Pncps

10preprs

+propss.

100 Thopss

10Theprs

1 Thopss

100Ghprs

10Gepis

My iPad2 & iPhone 45 (102 Gflopis)
+Gropis s

o Source: Jack Dongarra

100 MAeps
tiny banduidth == HUGE BOTTLENECK
1ean —
1o b CPU Spesd — 4

DRAH Speed —

Ferformance
5

Source: John Mc.Colpin
0.1 P AR S
1975 1980 1985 1998 1995 2800 £BES 2818

+ ETHzirich

Issues (Intel Xeon E5-2630 v4 as Example)

= How to measure bandwidth?
= Data sheet (often peak performance, may include overheads)
63.6 GiB/s
Microbenchmark performance
Stride 1 access (32 MiB): 46 GiB/s
Random access (8 B out of 32 MiB): 4.7 GiB/s
Why?
Application performance
As observed (performance counters)
Somewhere in between stride 1 and random access
= How to measure Latency?
= Data sheet (often optimistic, or not provided)
= Random pointer chase

28 ns with one core, 75 ns with 10 cores!

" SPCL

Conjecture: Buffering/caching is a must!

= Two most common examples:

= Write Buffers
= Delayed write back saves memory bandwidth
= Data is often overwritten or re-read

= Caching
= Directory of recently used locations
= Stored as blocks (cache lines)

= Many others deep in architectures:
= Translation Lookahead Buffer
= Branch Predictors
= Trace Caches

ETHzirich

MMSPCL

v esion ETHZzirich

Typical Memory Hierarchy

Lo:
CPU registers hold words retrieved from
A L1 coche
L1: on-chip Ll
smaller, cache (SRAM) L1 cache holds cache lines retrieved from
faster, 12 cache
e 12:
“:t:e'e on-chip L2
per byt cache (SRAM) L2 cache holds cache lines retrieved
from main memory
L3:
Larger, main memory
slower, (DRAM) Main memory holds disk blocks
cheaper retrieved from local disks
per byte L4: local secondary storage))
local disks Local disks hold files
(local disks) retrieved from disks on
remote network servers
1s: remote secondary storage
" (tapes, distributed file systems, Web servers)

ML

v encen ETHzrich

Venia ETHziirich

Why Caches Work: Locality

= Locality: Programs tend to use data and instructions with addresses near or equal to those they have
used recently, cf. “Denning: “The locality principle”, CACM’05

= Temporal locality:

Recently referenced items are likely
to be referenced again in the near future

= Spatial locality:
Items with nearby addresses tend
to be referenced close together in time

: ; memory

C) memoy
IITIr

= Data: sum =

Example: Locality?

for (1 =0; 1 < n; i++)
sum += a[i];
return sum;

= Temporal: sum referenced in each iteration
* Spatial: array a[] accessed consecutively

= Instructions:

= Temporal: loops cycle through the same instructions
= Spatial: instructions referenced in sequence

= Being able to assess and tune the locality of code is a crucial skill for a performance programmer

PASIPCL

v enie ETHZzrich

PSP

v emien ETHziirich

Locality Example

How to improve locality?

Performance [flops/cycle]
0s

-~gs

int sum_array_3d(double a[I]J[J][K])
{
int i, j, k, sum = 93

for (i = 0; i < I; i++)
for (3 = 0; j < 3; j++)
for (k = @; k < K; k++)
sum += a[k][3][1];
return sum;

+i-jok CPU: Intel(R) Core(TM) i7-4980HQ CPU @ 2.80GHz
gec: Apple LLVM version 8.0.0 (clang-800.0.42.1)
flags: -03 -fno-vectorize
K-j-i

1=1=K

© 1523240 48 S5 64 72 B0 BB 56 104112 120201436 141 152 160 168 476 154 162 200 308 216224 232 20248355

Cache

= Definition: Computer memory with short access time used for the storage of frequently or recently used

instructions or data

Main

CPU “ Cache

= Naturally supports temporal locality

= Spatial locality is supported by transferring data in blocks
= E.g., Intel's Core family: one block = 64 B = 8 doubles

Memory

« ETHzurich

Cache Structure

Simplest design: direct mapped!

Slow Memory Fast Memory

(Cache)

Address 0
Address 64
Address 128
Address 192
Address 256
Address 320
Address 384
Address 448

Index 0
Index 1
Index 2
Index 3

Each memory location has
one (direct mapped) cache
location!

Adding 2-way associativity

Slow Memory

Fast Memory
(Cache)

Address 0 Index 0, Way O

Address 64 Index 0, Way 1
| =<7

Address 128 ",:.l’ Index 1, Way 0
Address 192 '7’%" Index 1, Way 1

Address 256
Address 320
Address 384)

Each memory location has

Address 448 two (associative) cache
. locations!

Example (S=4, E=2)

int sum_array_rows(double a[8][8])

int i, j;
double sum = 0; 16X 0
for (1 = 0; i < 8; i++)
for (j = 0; j < 8; j++)
sum += a[i][j];
return sum; idx 3

}
Row-major order
[i} int sum_array_cols(double a[8][8])
. " int i, 3;
CIC++ uses row-major GEIERG &10 o G

for (j = 0; j < 8; i++)
for (i = 0; i < 8; j++)
sum += a[i][j];
return sum;

Ignore the variables sum, i, j

assume: cold (empty) cache,
a[0][0] goes here

B =32 byte = 4 doubles

blackboard

ML

Venien [ETHziirich

i ETHzirich

General Cache Organization (S, E, B)

E = 2¢ lines per set

E = associativity, E=1: direct mapped
A

~

set

\—Iine

S x E x B data bytes

S=2%sets [I bee] |
D .
\ | 2 |
| [es] [o[a]o]- - To1]
—
valid bit

(+ others later)

B = 2° bytes per cache block (the data)

ML
Cache Read
E = 2¢ lines per set
E = associativity, E=1: direct mapped
N

- N

| I f- - |

| I f- - |

S=2%sets [Il Fee |

* Locate set

* Check if any line in set
has matching tag

* Yes + line valid: hit

* Locate data starting
at offset

Address of word

s

tag set block
index offset

| — 1

valid bit I
(+ others later)

data begins at this offset

B = 2° bytes per cache block (the data)

PSP + ETHzirich

Terminology

= Direct mapped cache:
= CachewithE=1
* Means every block from memory has a unique location in cache
= Fully associative cache
= Cache with S =1 (i.e., maximal E)
= Means every block from memory can be mapped to any location in cache
= In practice to expensive to build
= One can view the register file as a fully associative cache
= LRU (least recently used) replacement
= when selecting which block should be replaced (happens only for E > 1), the least recently used one is chosen

Types of Cache Misses (The 3 C’s)

= Compulsory (cold) miss
Occurs on first access to a block
= Capacity miss
Occurs when working set is larger than the cache
= Conflict miss
Conflict misses occur when the cache is large enough, but multiple data objects all map to the same slot

= Not a clean classification but still useful

v ETHzirich

What about writes?

= What to do on a write-hit?

Write-through: write immediately to memory

Write-back: defer write to memory until replacement of line
* What to do on a write-miss?

Write-allocate: load into cache, update line in cache

Ne ite-all ly to memory

writes ir

Write-back/write-allocate (Core) Write-through/no-write-allocate

2: update update
update 1: update
cru (O cru () cru ()
Write-hit Write-miss Write-hit Write-miss 1

The actual topic: Cache Coherence in Multiprocessors

= Different caches may have a copy of the same memory location!
= Cache coherence
= Manages existence of multiple copies
= Cache architectures
Multi level caches
Shared vs. private (partitioned)
Inclusive vs. exclusive
Write back vs. write through
Victim cache to reduce conflict misses

ST ETHzirich

Exclusive Hierarchical Caches Example: ntel I7-3960X

Queue, Uncore

MSPCL ETHzirich

Shared Hierarchical Caches

PASIPCL

veniw ETHzirich

PSP

ETHziirich

Shared Hierarchical Caches with MT

Caching Strategies (repeat)

= Remember:
= Write Back?
= Write Through?

= Cache coherence requirements
A memory system is coherent if it guarantees the following:
lly visible to all readers)
= Write serialization (writes to the same location must be observed in order)
Everything else: memory model issues (later)

= Writep i are

Write Through Cache

WT-Cache

Requires write propagation!

« ETHzurich

. CPU,reads X from memory

* loads X=0 into its cache

. CPU, reads X from memory

* loads X=0 into its cache

. CPU, writes X=1

* stores X=1in its cache
* stores X=1in memory

. CPU, reads X from its cache

* loads X=0 from its cache
Incoherent value for X on CPU;

CPU, may wait for update!

1. CPUgreads X from memory
*+ loads X=0 into its cache
2. CPU; reads X from memory
+ loads X=0 into its cache
3. CPU, writes X:
+ stores X=1in its cache
4. CPU, writes X =2
* stores X=2 in its cache
5. CPU, writes back cache line
* stores X=2 in in memory

6. CPU, writes back cache line
* stores X=1in memory
Later (!) store X=2 from CPU, lost

Requires write serialization!

WB-Cache WB-Cache

1 X=2

ETHzirich

ML

ETHzirich

ML

ETHzirich

A simple (?) example

= Assume C99:

= Initially:
* Thread 0: write 1toa
= Thread 1:writel1tob

= Assume non-coherent write back cache
= What may end up in main memory?

struct twoint {
int a;
int b;
Y

Cache Coherence Protocol

= Programmer can hardly deal with unpredictable behavior!
= Cache controller maintains data integrity
= All writes to different locations are visible

Fundamental Mechanisms
= Snooping
= Shared bus or (broadcast) network
= Directory-based
= Record information necessary to maintain coherence:
E.g., owner and state of a line etc.

Fundamental CC mechanisms

= Snooping
Shared bus or (broadcast) network

Cache controller “snoops” all transactions
Monitors and changes the state of the cache’s data

Works at small scale, challenging at large-scale

E.g., Intel Core (Broadwell, ...)

= Directory-based

Record information necessary to maintain coherence

Source: ntel

E.g., owner and state of a line etc.
Central/Distributed directory for cache line ownership
Scalable but more complex/expensive
E.g., Intel Xeon Phi KNC/KNL

GDDRS

Cache Coherence Parameters

= Concerns/Goals
= Performance
* Implementation cost (chip space, more important: dynamic energy)
= Correctness
* (Memory model side effects)

= lIssues
Detection (when does a controller need to act)

Enforcement (how does a controller guarantee coherence)

Precision of block sharing (per block, per sub-block?)
Block size (cache line size?)

=« ETHzirich

An Engineering Approach: Empirical start

= Problem 1: stale reads
= Cache 1 holds value that was already modified in cache 2
* Solution:
Disallow this state
Invalidate all remote copies before allowing a write to complete

= Problem 2: lost update
Incorrect write back of modified line writes main memory in different order from the order of the write operations
or overwrites neighboring data

Solution:
Disallow more than one modified copy

S
Invalidation vs. update — possible implementations

= Invalidation-based:
= On each write of a shared line, it has to invalidate copies in remote caches
= Simple implementation for bus-based systems:
Each cache snoops
Invalidate lines written by other CPUs
Signal sharing for cache lines in local cache to other caches
= Update-based:
* Local write updates copies in remote caches
Can update all CPUs at once
Multiple writes cause multiple updates (more traffic)

erien ETHZziirich

ASPCL yenin ETHz(rich

Invalidation vs. update — effects

= Invalidation-based:
= Only write misses hit the bus (works with write-back caches)
* Subsequent writes to the same cache line are local
= - Good for multiple writes to the same line (in the same cache)

= Update-based:
All sharers continue to hit cache line after one core writes
Implicit assumption: shared lines are accessed often

Supports producer-consumer pattern well
Many (local) writes may waste bandwidth!

= Hybrid forms are possible!

MSPCL
MESI Cache Coherence

= Most hardware i
aka. “lllinois protocol”

of di d requirements

Each line has one of the following states (in a cache):
= Modified (M)

= Local copy has been modified, no copies in other caches
= Memory is stale

Exclusive (E)

= No copies in other caches

= Memory is up to date

= Shared (S)

* Unmodified copies may exist in other caches

= Memory is up to date

Invalid (1)

= Line is not in cache

s ETHzirich

veniw ETHzirich
Terminology

= Cleanline:
= Content of cache line and main memory is identical (also: memory is up to date)
= Can be evicted without write-back
= Dirty line:
= Content of cache line and main memory differ (also: memory is stale)
= Needs to be written back eventually
Time depends on protocol details
= Bus transaction:
= Asignal on the bus that can be observed by all caches
= Usually blocking
= Local read/write:
= Aload/store operation originating at a core connected to the cache

+a

= ETHzirich

(=
Transitions in response to local reads

= StateisM
* No bus transaction

= StateisE

= No bus transaction
= StateisS

= No bus transaction
= Stateis|

Generate bus read request (BusRd)

May force other cache operations (see later)
Other cache(s) signal “sharing” if they hold a copy
If shared was signaled, go to state S

Otherwise, go to state E

= After update: return read value

ETHzirich

Transitions in response to local writes

= StateisM
* No bus transaction
= StateisE
* No bus transaction
* Gotostate M
= StateisS
= Line already local & clean
= There may be other copies
= Generate bus read request for upgrade to exclusive (BusRdX*)

ETHzirich
Transitions in response to snooped BusRd

= StateisM
= Write cache line back to main memory
= Signal “shared”
* GotostateS (or E)
= StateisE
= Signal “shared”
* Go to state S and signal “shared”
= StateisS
= Signal “shared”

* Gotostate M = Stateis|
= Stateis| = lIgnore
= Generate bus read request for exclusive ownership (BusRdX)
* Gotostate M
SO yenen ETHzUrich [l “ASIPCL
Transitions in response to snooped BusRdX MESI State Diagram (FSM)
PrRd/- P’Rd//)
= StateisM Prwr/-
= Write cache line back to memory PrWr/-
= Discard line and go to | ~==-<BusRdX/ ==
= StateisE - - BusRd/- H
= Discard lineand goto | BusRdX/
= StateisS \ F'“‘Ih
= Discard lineand goto | 1 ~o 1
= Stateis| : \\ :
= Ignore : \\ :
Prwr/ : \\ : PrRd/-
« BusRdX* is handled like BusRdX! BusRdX 1, PrWr/ N1 BusRd(s)
v ’ BusRdX v

— PrRd/BusRd(S)

PrRd/-

speLinfethz.ch
W @spcLeth

e o/ = B
Small Exercise

= Initially: all in | state

P1 reads x
P2 reads x
P1 writes x
P1 reads x

P3 writes x

ETHzirich

-

ETHziirich

Small Exercise

= Initially: all in | state

[acion i state— P2 tte | 3state | bus acion | ata rom
]

Plreadsx E I BusRd Memory
P2readsx S 5] I BusRd Cache
Plwritesx M | | BusRdX* Cache
Plreadsx M | I - Cache
P3writesx | | M BusRdX Memory

Optimizations?

= Class question: what could be optimized in the MESI protocol to make a system faster?

ETHzirich

Related Protocols: MOESI (AMD)

= Extended MESI protocol

= Cache-to-cache transfer of modified cache lines
= Cache in M or O state always transfers cache line to requesting cache
* No need to contact (slow) main memory

Avoids write back when another process accesses cache line
* Good when cache-to-cache performance is higher than cache-to-memory
E.g., shared last level cache!

erien ETHZziirich

ML

clin.eth
"

MOESI State Diagram

Probe Wite Hi

Read Miss Exdusie

Read Hit
Wrte Ht

Probe Read Hit

Source: AMDS4 Architecture Progrommer's Manual

ETHzirich

PSP
Related Protocols: MOESI (AMD)

= Modified (M): Modified Exclusive

= No copies in other caches, local copy dirty

= Memory is stale, cache supplies copy (reply to BusRd*)
= Owner (0): Modified Shared
= Exclusive right to make changes
= Other S copies may exist (“dirty sharing”)
= Memory is stale, cache supplies copy (reply to BusRd*)
Exclusive (E):
= Same as MESI (one local copy, up to date memory)
Shared (S):
= Unmodified copy may exist in other caches
= Memory is up to date unless an O copy exists in another cache
Invalid (1):
* Same as MESI

e

e

PASIPCL

ETHzirich

ML

ETHziirich

Related Protocols: MESIF (Intel)

= Modified (M): Modified Exclusive
= No copies in other caches, local copy dirty
= Memory is stale, cache supplies copy (reply to BusRd*)
= Exclusive (E):
* Same as MESI (one local copy, up to date memory)
= Shared (S):
= Unmodified copy may exist in other caches
= Memory is up to date
= Invalid (1):
= Same as MESI
= Forward (F):
= Special form of S state, other caches may have line in S
* Most recent requester of line is in F state
= Cache acts as responder for requests to this line

Multi-level caches

= Most systems have multi-level caches

= Problem: only “last level cache” is connected to bus or network

= Yet, snoop requests are relevant for inner-levels of cache (L1)

= Modifications of L1 data may not be visible at L2 (and thus the bus)
= L1/L2 modifications

= On BusRd check if line is in M state in L1

It may bein EorSinL2!

= On BusRdX(*) send invalidations to L1

= Everything else can be handled in L2
= If L1 is write through, L2 could “remember” state of L1 cache line

= May increase traffic though

Directory-based cache coherence

= Snooping does not scale
* Bus transactions must be globally visible
= Implies broadcast
= Typical solution: tree-based (hierarchical) snooping
* Root becomes a bottleneck
= Directory-based schemes are more scalable
= Directory (entry for each CL) keeps track of all owning caches
= Point-to-point update to involved processors
No broadcast
Can use specialized (high-bandwidth) network, e.g., HT, QP! ...

eth

ETHzirich

Basic Scheme

= System with N processors P;

= For each memory block (size: cache line)
maintain a directory entry
= N presence bits (light blue)

« ETHzirich

Set if block in cache of P;
* 1dirty bit (red)
Main Memory

Directory

= First proposed by Censier and Feautrier (1978)

ML

Directory-based CC: Read miss

= P,intends to read, misses Read X

= If dirty bit (in directory) is off Cache
= Read from main memory
= Set presencel[i]

= Supply data to reader

Main Memory

ETHzirich

SO
Directory-based CC: Read miss

= P,intends to read, misses

= If dirty bitis on Cache

Recall cache line from P; X=0
(determine by presence[])
Update memory

ETHzirich

Cache
X=0

Unset dirty bit, block shared

Set presenceli] Main Memory
Supply data to reader

Directory

PASIPCL

fethe.ch
"

ETHzirich

TMASPCL ETHziirich

Directory-based CC: Write miss

= Pyintends to write, misses

= If dirty bit (in directory) is off Cache
Send invalidations to all processors P; X=0
with presence[j] turned on

Unset presence bit for all processors

Cache
X=7

Set dirty bit
Set presencel[i], owner P;

Main Memory

Directory-based CC: Write miss

= Pyintends to write, misses Write X =0

= If dirty bitis on Cache
Recall cache line from owner P; X=0
Update memory

Unset presencelj]

Set presenceli], dirty bit remains set
Acknowledge to writer

Main Memory

Directory

eth

ETHzirich

Discussion

= Scaling of memory bandwidth
= No centralized memory

= Directory-based approaches scale with restrictions
Require presence bit for each cache

Number of bits determined at design time

Directory requires memory (size scales linearly)
Shared vs. distributed directory

= Software-emulation
= Distributed shared memory (DSM)
= Emulate cache coherence in software (e.g., TreadMarks)
= Often on a per-page basis, utilizes memory virtualization and paging

Open Problems (for projects, theses, research)

= Tune algorithms to cache-coherence schemes
* What is the optimal parallel algorithm for a given scheme?
= Parameterize for an architecture

= Measure and classify hardware

Read Maranget et al. “A Tutorial Introduction to the ARM and POWER Relaxed Memory Models” and have fun!
RDMA consistency is barely understood!

GPU memories are not well understood!

Huge potential for new insights!

= Can we program (easily) without cache coherence?
= How to fix the problems with inconsistent values?
= Compiler support (issues with arrays)?

ML

Case Study: Intel Xeon Phi

splinfeth

ETHzirich

MSPCL ETHzirich

Communication?

in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi , HPDC'13

Ramos, Hoefler: “Modeling Cc

speLinfethz.ch
W @spcLeth

ISP

ETHzirich

T, RFO
T, read
(T, read
R,

GDDRS

Invalid read R=278 ns Ce

Local read: R,=8.6 ns
Remote read Ry =235 ns

Inspired by Molka et al.: “Memory performance and cache coherency effects on an Intel Nehalem multiprocessor system”

spelinfethzch
W @spcLetn

ETHziirich

Single-Line Ping Pong

i TTE2A0 Thread 1
SendBuffer0 [fiaght—__ poll
= e = — L
~a[ReoBufert |1 ¢
\ = cacheline =
|
|
[SendBufferi [feg
e cacheline —*
1 fer0 fiag 4 v
endtimer = line —%

Ti=Ris., + Rrs, + Rgm + O =R_+2Rg +C

= Prediction for both in E state: 479 ns
= Measurement: 497 ns (0=18)

Ramos, Hoefler: “Modeling C in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi , HPDC'13

spclinfethz.ch
W @spcLeth

ETHzirich

Multi-Line Ping Pong

= More complex due to prefetch

< T
(" Amortization of

startup

> S
Number

of CLs

OOV
Tn =0-N +q— %
. @O ao
Y £ St(artup h

Asymptotic Fetch
/7~ Latency for each cache
line (optimal
prefetch!)

Ramos, Hoefler: “Modeling Cc in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi *, HPDC'13

Multi-Line Ping Pong

=3

=

TN=0'N+q—£ 21 o average "

N —— model i

* rel. error L8 =
= E state: — s
" o —
= 0=76ns 27 8 e
* g=1,521ns § w
* p=1,096ns e g =
©
= |state: = o
o OC

= 0=95ns &

= g=2,750ns
* p=2,017ns o1 ¥ *lo
64 128 512 2048 ' 8192
Size (Bytes)

Ramos, Hoefler: “Modeling C in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi *, HPDC'13

—SPCL 42 ETMziirich
DTD Contention © o
average .
—— model ;
* rel. error 3
GDDR5 H 8

= Estate:
a
* a=Ons TC("H:) =c - +b— o * +
= b=320ns Nih £ J@
* c=56.2ns I
1 3 7 15 31 59

Number of Threads

Ramos, Hoefler: “Modeling Cc in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, HPDC'13

MSPCL s ETHzirich
Optimizations against vendor libraries
Intel MP| Intel Op'g:‘e' {T Intel MPI Intel MP]
2 2 Intel OpenMP
Intel OpenMP
Modeltuncd 8 Intel Openttp 8 1" Jiodel-tuned
o | Model-tuned - | 1 B Min Mo Model
- — 8 i in-Max Model
B B in-HMax Mpdel g Model-tuned 5 T
> in-Max Model| > T ; < ‘; QA
- 2 ol g Min-Max Model g
a8 a8 « o o
3 é é 3 g Q ko
N | | ekl " <A 0ERRL
E T é k2 % z H, @
N &g N |iaeivd| |ilwand
T T
2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64
lerqber °f threads Number of threads Number of threads Number of threads
(@ Filling Tiles. (b) Scatter. (a) Filling Tiles. (b) Scatter.
Barrier (7x faster than OpenMP) Reduce (5x faster then OpenMP)
"Ramos, Hoefler: “Cc it 1y ACc Iy Xeon Phi KNL, IPDPS’17 (video: https://www.youtube.com/watch?v=10Mo3MnWR74)

ISP

Image credits

= Slide 23, die map: https://superuser.com/questions/386745/how-to-make-caches-with-equal-bitline-and-
wordline-lengths

= Slide 23, RAM: © Rai i Spekking / CC BY-SA 4.0 (via Wikimedi
C) https://commons.wikimedia.org/wiki/File:Apacer SDRAM-3386.ipg

