ETH zürich

T. HOEFLER, M. PUESCHEL

Lecture 9: Oblivious and non-oblivious algorithms

Teaching assistant: Salvatore Di Girolamo

Motivational video: <u>https://www.youtube.com/watch?v=qx2dRIQXnbs</u>

How many measurements are needed?

- Measurements can be expensive!
 - Yet necessary to reach certain confidence
- How to determine the minimal number of measurements?
 - Measure until the confidence interval has a certain acceptable width
 - For example, measure until the 95% CI is within 5% of the mean/median
 - Can be computed analytically assuming normal data
 - Compute iteratively for nonparametric statistics
- Often heard: "we cannot afford more than a single measurement"
 - E.g., Gordon Bell runs
 - Well, then one cannot say anything about the variance Even 3-4 measurement can provide very tight CI (assuming normality) Can also exploit repetitive nature of many applications

Experimental design

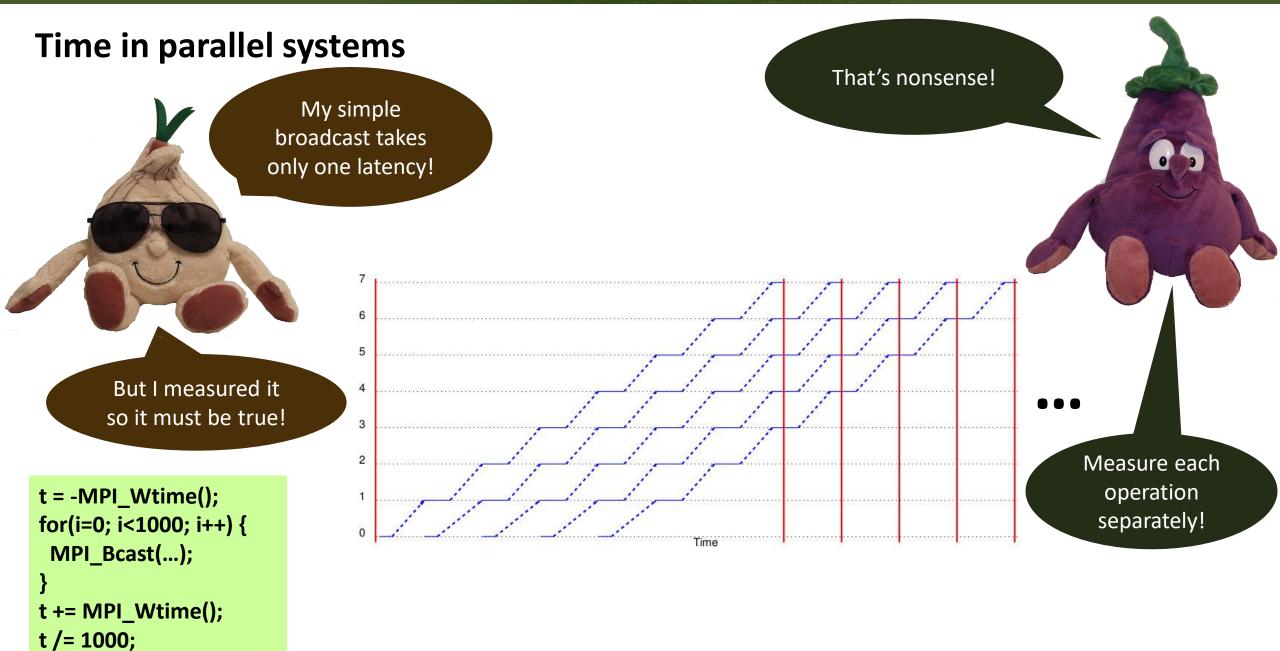
don't believe you, try other numbers of processes!

MPI_Reduce

Rule 9: Document all varying factors and their levels as well as the complete experimental setup (e.g., software, hardware, techniques) to facilitate reproducibility and provide interpretability.

- We recommend factorial design
- Consider parameters such as node allocation, process-to-node mapping, network or node contention
 - If they cannot be controlled easily, use randomization and model them as random variable
- This is hard in practice and not easy to capture in rules

spcl.inf.ethz.ch



Summarizing times in parallel systems!

Come on, show me the data!

whiskers depict the 1.5 IOF

Ay new reduce

Rule 10: For parallel time measurements, report all measurement, (optional) synchronization, and summarization techniques.

- Measure events separately
 - Use high-precision timers
 - Synchronize processes
- Summarize across processes:
 - Min/max (unstable), average, median depends on use-case

Give times a meaning!

I have no clue.

Rule 11: If possible, show upper performance bounds to facilitate interpretability of the measured results.

Model computer system as k-dimensional space

- Each dimension represents a capability *Floating point, Integer, memory bandwidth, cache bandwidth, etc.*
- k: T∎ ∈ Features are typical rates
- ⁷ Determine maximum rate for each dimension
 - E.g., from documentation or benchmarks
- Can be used to proof optimality of implementation
 - If the requirements of the bottleneck dimension are minimal

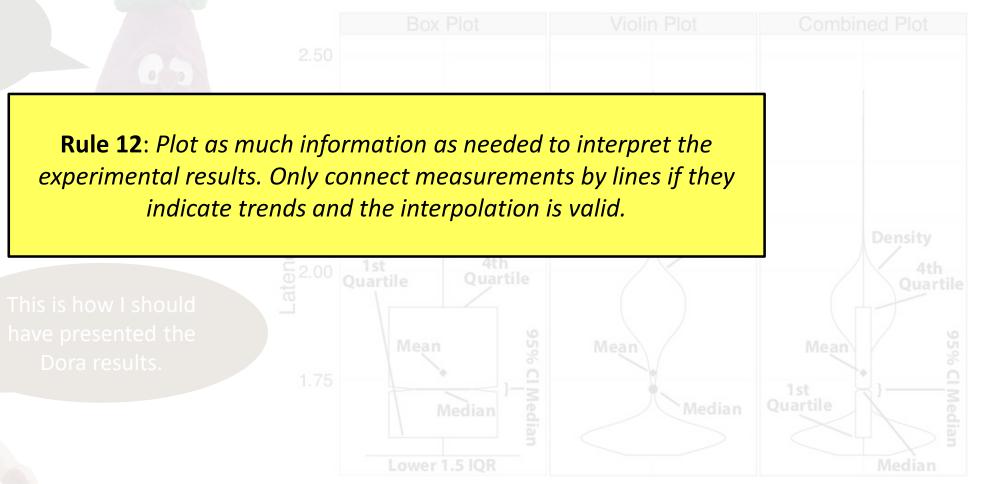
TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

Can you provide?

- Ideal speedup
- Amdahl's speedup
- Parallel overheads

Plot as much information as possible!

My most common request was "show me the data"



Plant and and the state of the

Administrivia

- Final project presentation: next Monday 12/17 during lecture
 - Report will be due in January!

Starting to write early is very helpful --- write – rewrite – rewrite (no joke!)

- Coordinate your talk! You have 10 minutes (8 talk + 2 Q&A) What happened since the intermediate report?
 Focus on the key aspects (time is tight)!
 Try to wrap up – only minor things left for final report.
 Engage the audience ^(C)
- Send slides by Sunday night (11:59pm Zurich time) to Salvatore! We will use a single (windows) laptop to avoid delays when switching Expect only Windows (powerpoint) or a PDF viewer The order of talks will again be randomized for fairness

Review of last lecture(s)

- Impossibility of wait-free consensus with atomic registers
 - "perhaps one of the most striking impossibility results in Computer Science" (Herlihy, Shavit)
- Large-scale locks
 - Scaling MCS to thousands of nodes with (MPI) RMA
- Oblivious algorithms
 - Execution oblivious vs. structural oblivious
 - Why do we care about obliviousness?
 - Strict optimality of work and depth reduction \odot scan \odot

Linear scan, tree scan, dissemination scan, surprising work-depth tradeoff $W+D \ge 2n-2$

I/O complexity

- The red-blue pebble game (four rules: input, output, compute, delete)
- S partitioning proof
- Geometric arguments for dense linear algebra example matrix multiplication

Loomis Whitney inequality: $|V| \le \sqrt{|V_x| + |V_y|} + |V_z|$ (a set is smaller than sqrt of the sum of orthogonal projections)

Contra and and the

Simple recomputation – trade off I/O for compute

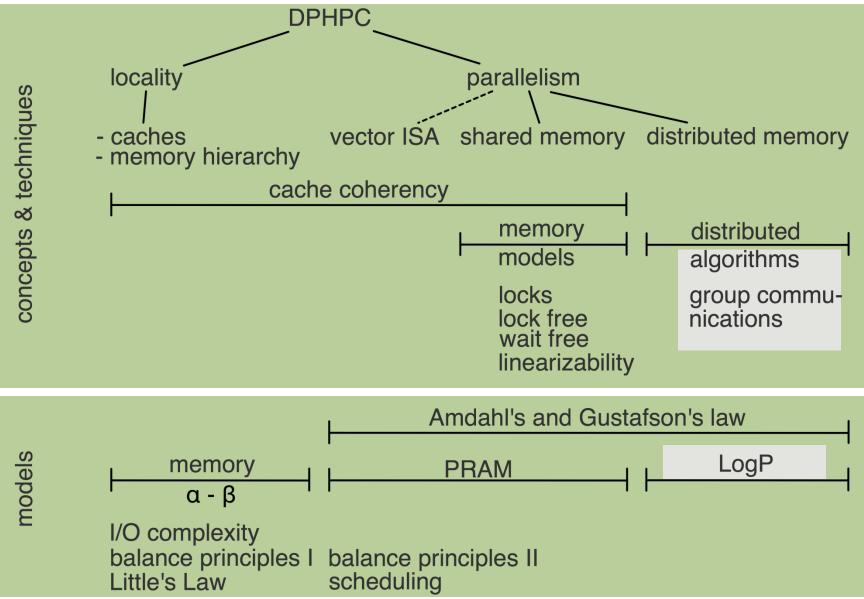
Learning goals for today

- Strict optimality
 - Work/depth tradeoffs and bounds
 - Applications of prefix sums
 Parallelize seemingly sequential algorithms

Oblivious graph algorithms

- Shortest paths
- Connected components
- Nonoblivious algorithms
 - Sums and prefix sums on linked lists
 - Connected components
- Distributed algorithms
 - Broadcast in alpha-beta and LogP

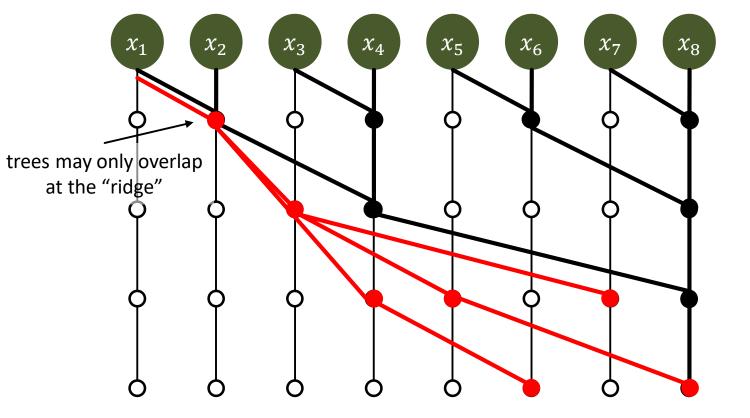
DPHPC Overview



Service Production of the service of

Recap: Work-depth tradeoff in parallel prefix sums

- Obvious question: is there a depth- and work-optimal algorithm?
 - This took years to settle! The answer is surprisingly: no
 - We know, for parallel prefix: $W + D \ge 2n 2$



Output tree:

12 and the P

- leaves are all inputs, rooted at x_n
- binary due to binary operation

$$W = n - 1, D = D_o$$

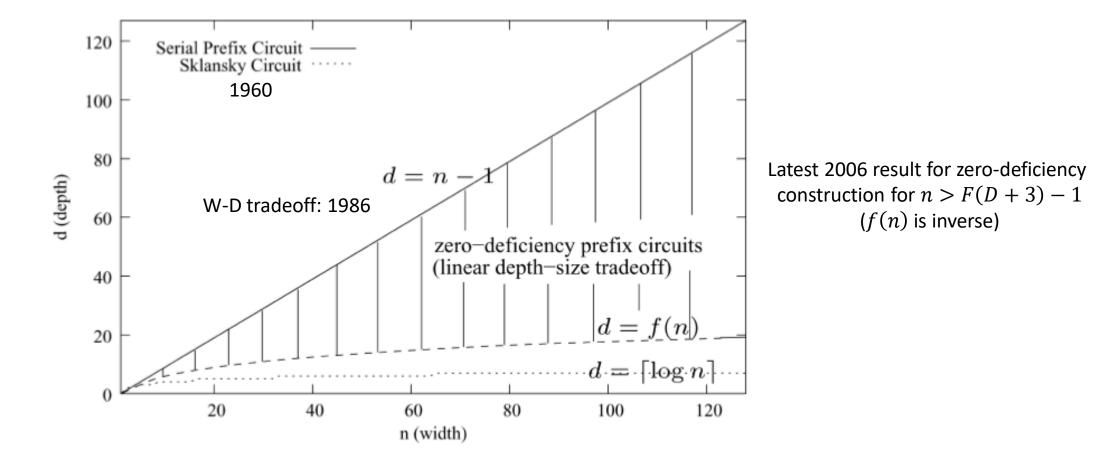
Input tree:

- rooted at *x*₁, leaves are all outputs
- not binary (simultaneous read)
- W = n 1

Ridge can be at most D_o long! Now add trees and subtract shared vertices: $(n-1) + (n-1) - D_o = 2n - 2 - D_o \le W$ q.e.d.

Work-Depth Tradeoffs and deficiency

"The deficiency of a prefix circuit c is defined as $def(c) = W_c + D_c - (2n - 2)$ "



From Zhu et al.: "Construction of Zero-Deficiency Parallel Prefix Circuits", 2006

Work- and depth-optimal constructions

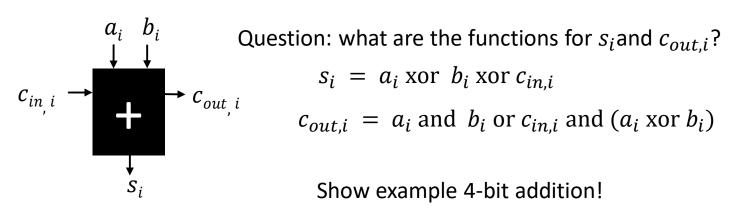
- Work-optimal?
 - Only sequential! Why?
 - W = n 1, thus D = 2n 2 W = n 1 q.e.d. \otimes
- Depth-optimal?
 - Ladner and Fischer propose a construction for work-efficient circuits with minimal depth $D = [\log_2 n], W \le 4n$

Simple set of recursive construction rules (too boring for class, check 1980's paper if needed) Has an unbounded fan-out! May thus not be practical O

- Depth-optimal with bounded fan-out?
 - Some constructions exist, interesting open problem
 - Nice research topic to define optimal circuits

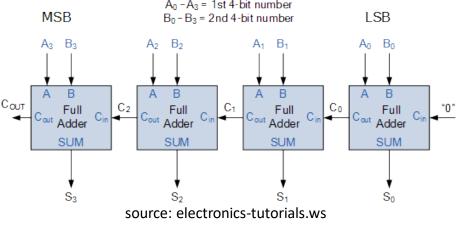
But why do we care about this prefix sum so much?

- It's the simplest problem to demonstrate and prove W-D tradeoffs
 - And it's one of the most important parallel primitives
- Prefix summation as function composition is extremely powerful!
 - Many seemingly sequential problems can be parallelized!
- Simple first example: binary adder -s = a + b (n-bit numbers)
 - Starting with single-bit (full) adder for bit i



Question: what is work and depth?

Example 4-bit ripple carry adder



Seems very sequential, can this be parallelized?

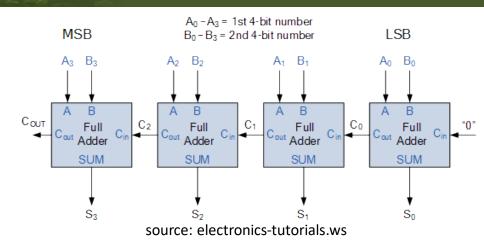
- We only want s! $c_{out,i} = a_i$ and b_i or $c_{in,i}$ and $(a_i \text{ xor } b_i)$
 - Requires $c_{in,1}, c_{in,2}, \dots, c_{in,n}$ though \bigotimes $s_i = a_i \operatorname{xor} b_i \operatorname{xor} c_{in,i}$
- Carry bits can be computed with a scan!
 - Model carry bit as state starting with 0 Encode state as 1-hot vector: $q_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, q_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
 - Each full adder updates the carry bit state according to a_i and b_i
 State update is now represented by matrix operator, depending on a_i and b_i (M_{a_ib_i}):

$$M_{00} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, M_{10} = M_{01} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, M_{11} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$$

 Operator composition is defined on algebraic ring ({0, 1, or, and}) – i.e., replace "+" with "and" and "*" with "or" Prefix sum on the states computes now all carry bits in parallel!

Proventier

- Example: a=011, b=101 $\rightarrow M_{11}, M_{10}, M_{01}$
 - Scan computes: $M_{11} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$; $M_{11}M_{10} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$; $M_{11}M_{10}M_{01} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ in parallel
 - All carry states and s_i can now be computed in parallel by multiplying scan result with q_0



Prefix sums as magic bullet for other seemingly sequential algorithms

- Any time a sequential chain can be modeled as function composition!
 - Let $f_1, ..., f_n$ be an ordered set of functions and $f_0(x) = x$
 - Define ordered function compositions: $f_1(x)$; $f_2(f_1(x))$; ...; $f_n(..., f_1(x))$
 - If we can write function composition g(x) = f_i(f_{i-1}(x)) as g = f_i o f_{i-1} then we can compute o with a prefix sum!
 We saw an example with the adder (M_{ab} were our functions)

a lar an and a second state

- Example: linear recurrence $f_i(x) = a_i f_{i-1}(x) + b_i$ with $f_0(x)$ =x
 - Write as matrix form $f_i \begin{pmatrix} x \\ 1 \end{pmatrix} = \begin{pmatrix} a_i & b_i \\ 0 & 1 \end{pmatrix} f_{i-1} \begin{pmatrix} x \\ 1 \end{pmatrix}$
 - Function composition is now simple matrix multiplication!

For example: $f_2 \begin{pmatrix} x \\ 1 \end{pmatrix} = \begin{pmatrix} a_2 & b_2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a_1 & b_1 \\ 0 & 1 \end{pmatrix} f_0 \begin{pmatrix} x \\ 1 \end{pmatrix} = \begin{pmatrix} a_1 a_2 & a_2 b_1 + b_2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix}$

Most powerful! Homework:

- Parallelize tridiagonal solve (e.g., Thomas' algorithm)
- Parallelize string parsing

Another use for prefix sums: Parallel radix sort

Radix sort works bit-by-bit

- Sorts k-bit numbers in k iterations
- In each iteration *i* stably sort all values by the *i*-th bit
- Example, k=1:

Iteration 0: 101 111 010 011 110 001 Iteration 1: 010 110 101 111 011 001 Iteration 2: 101 001 010 110 111 011 Iteration 3: 001 010 011 101 110 111

Now on n processors

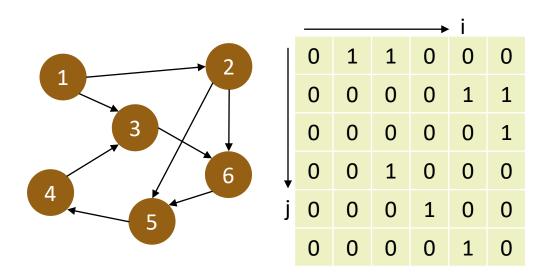
```
    Each processor owns single k-bit number, each iteration
    low = prefix_sum(!bit, sum)
    high = n+1-backwards_prefix_sum(bit, sum)
    new_idx = (bit == 0) : low ? high
    b[new_idx] = a[i]
    swap(a,b)
```

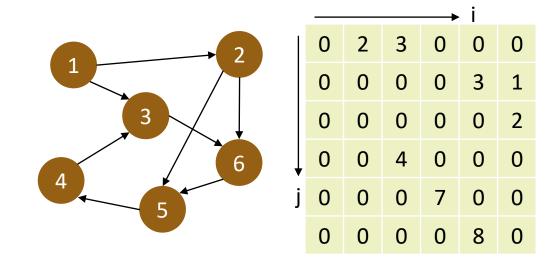
Show one example iteration!

Question: work and depth?

Oblivious graph algorithms

- Seems paradoxical but isn't (may just not be most efficient)
 - Use adjacency matrix representation of graph "compute with all zeros"





Unweighted graph – binary matrix

Weighted graph – general matrix

Algebraic semirings

- A semiring is an algebraic structure that
 - Has two binary operations called "addition" and "multiplication"
 - Addition must be associative ((a+b)+c = a+(b+c)) and commutative ((a+b=b+a)) and have an identity element

The second second

- Multiplication must be associative and have an identity element
- Multiplication distributes over addition (a*(b+c) = a*b+a*c) and multiplication by additive identity annihilates
- Semirings are denoted by tuples (S, +, *, 0, 1)

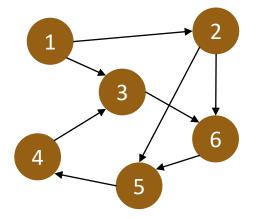
"Standard" ring of rational numbers: $(\mathbb{R}, +, *, 0, 1)$

Boolean semiring: $({0,1}, \lor, \land, 0, 1)$

Tropical semiring: ($\mathbb{R} \cup \{\infty\}$ *, min, +, \infty, 0*) (also called min-plus semiring)

Oblivious shortest path search

- Construct distance matrix from adjacency matrix by replacing all off-diagonal zeros with ∞
- Initialize distance vector d_0 of size n to ∞ everywhere but zero at start vertex
 - E.g., $\mathbf{d_0} = (\infty, \mathbf{0}, \infty, \infty, \infty, \infty)^T$ Show evolution when multiplied!
- SSSP can be performed with n+1 matrix-vector multiplications!
 - Question: total work and depth?
 W = O(n³), D = O(n log n)
 - Question: Is this good? Optimal? $Dijkstra = O(|E| + |V|\log|V|) \otimes$
- Homework:
 - Define a similar APSP algorithm with $W = O(n^3 \log n), D = O(\log^2 n)$



0	∞	∞	∞	∞	∞
2	0	∞	∞	∞	∞
3	∞	0	4	∞	∞
∞	∞	∞	0	7	∞
∞	3	∞	∞	0	8
∞	1	2	∞	∞	0

Oblivious connected components

- Question: How could we compute the transitive closure of a graph?
 - Multiply the matrix (A + I) n times with itself in the Boolean semiring!
 - Why?

Demonstrate that $(A + I)^2$ has 1s for each path of at most length 1 By induction show that $(A + I)^k$ has 1s for each path of at most length k

- What is work and depth of transitive closure?
 - Repeated squaring! $W = O(n^3 \log n) D = O(\log^2 n)$
- How to get to connected components from a transitive closure matrix?
 - Each component needs unique label
 - Create label matrix $L_{ij} = j$ iff $(A_I)^n_{ij} = 1$ and $L_{ij} = \infty$ otherwise
 - For each column (vertex) perform min-reduction to determine its component label!
 - Overall work and depth?

$$W = O(n^3 \log n), D = O(\log^2 n)$$

					i	
	0	1	1	0	0	0
	0	0	0	0	1	1
	0	0	0	0	0	1
ļ	0	0	1	0	0	0
j	0	0	0	1	0	0
	0	0	0	0	1	0
	1	1	1	0	0	0
	1 0	1 1	1		0 1	0
				0		
	0	1	0	0	1	1
	0 0	1 0	0 1	0 0 0	1 0	1 1

Many if not all graph problems have oblivious or tensor variants!

- Not clear whether they are most efficient
 - Efforts such as GraphBLAS exploit existing BLAS implementations and techniques
- Generalizations to other algorithms possible
 - Can everything be modeled as tensor computations on the right ring?
 - E. Solomonik, TH: "Sparse Tensor Algebra as a Parallel Programming Model"
 - Much of machine learning/deep learning is oblivious
- Many algorithms get non-oblivious though
 - All sparse algorithms are data-dependent!
 - E.g., use sparse graphs for graph algorithms on semirings (if |E| < |V|²/log|V|)
 May recover some of the lost efficiency by computing zeros!
- Now moving to non-oblivious ③

Nonoblivious parallel algorithms

- Outline:
 - Reduction on a linked list
 - Prefix sum on a linked list
 - Nonoblivious graph algorithms connected components
 - Conflict graphs of bounded degree

Modeling assumptions:

When talking about work and depth, we assume each loop iteration on a single PE is unit-cost (may contain multiple instructions!)

typedef struct elem {

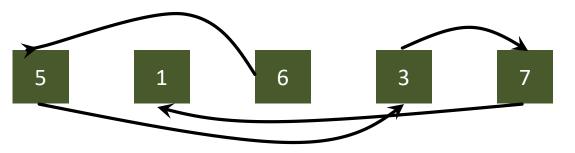
int val

} elem;

struct elem *next;

Reduction on a linked list

Given: n values in linked list, looking for sum of all values



Sequential algorithm:

```
set S={all elems}
while (S != empty) {
  pick some i \in S;
  S = S - i.next;
  i.val += i.next.val;
  i.next = i.next.next;
```

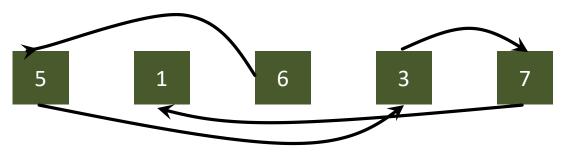
A set $I \subset S$ is called an **independent set** if no two elements in *I* are connected!

Are the following sets independent or not?

- {1}
- {1,5}
- Class question: What is the maximum
- {1,5,3} size of an independent set of a linked • {7,6,5}
- list with *n* elements? • {7,6,1}

Parallel reduction on a linked list

Given: n values in linked list, looking for sum of all values



Parallel algorithm:

```
set S={all elems}
while (S != empty) {
    pick independent subset I ∈ S;
    for(each i ∈ I do in parallel) {
        S = S - i.next;
        i.val += i.next.val;
        i.next = i.next.next;
    }
}
```

typedef struct elem {
 struct elem *next;
 int val
} elem;

A subset $I \subset S$ is called an **independent set** if no two elements in I are connected!

Basically the same algorithm, just working on independent subsets!

Class question: Assuming picking a maximum *I* is free, what are work and depth?

 $W = n - 1, D = \lceil \log_2 n \rceil$

Provide States

Is this optimal?

How to pick the independent set *I*?

That's now the whole trick!

It's simple if all linked values are consecutive in an array – same as "standard" reduction!
 Can compute independent set up-front!

The second of

- Irregular linked list though?
 - Idea 1: find the order of elements \rightarrow requires parallel prefix sum, D'oh!
 - Observation: if we pick $|I| > \lambda |V|$ in each iteration, we finish in logarithmic time!

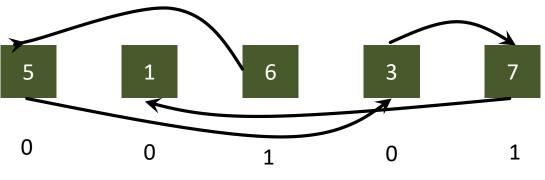
Symmetry breaking:

- Assume p processes work on p consecutive nodes
- How to find the independent set?

They all look the same (well, only the first and last differ, they have no left/right neighbor) Local decisions cannot be made Θ

Introduce randomness to create local differences!

- Each node tosses a coin \rightarrow 0 or 1
- Let *I* be the set of nodes such that *v* drew 1 and *v*. *next* drew 0! Show that *I* is indeed independent! What is the probability that $v \in I$? $P(v \in I) = \frac{1}{4}$

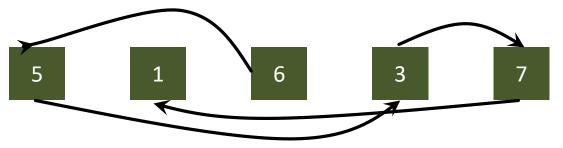


Optimizations

- As the set shrinks, the random selection will get less efficient
 - When p is close to n(|S|) then most processors will fail to make useful progress
 - Switch to a different algorithm
- Recursive doubling!

```
for (i=0; i ≤ [log<sub>2</sub>n]; ++i) {
  for(each elem do in parallel) {
    elem.val += elem.next.val;
    elem.next = elem.next.next;
  }
}
```

- Show execution on our example!
- Algorithm computes prefix sum on the list!
 Result at original list head is overall sum



Proventier

Class question: What are work and depth?

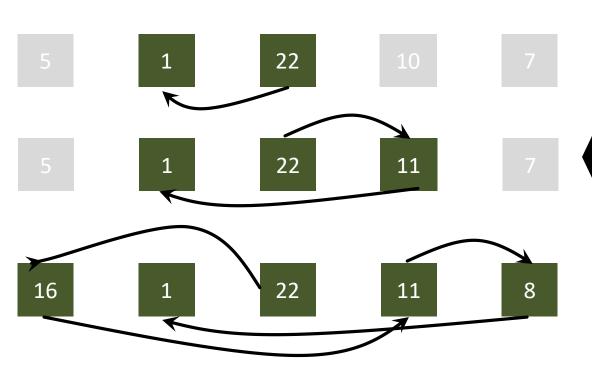
 $W = n \lceil \log_2 n \rceil, D = \lceil \log_2 n \rceil$

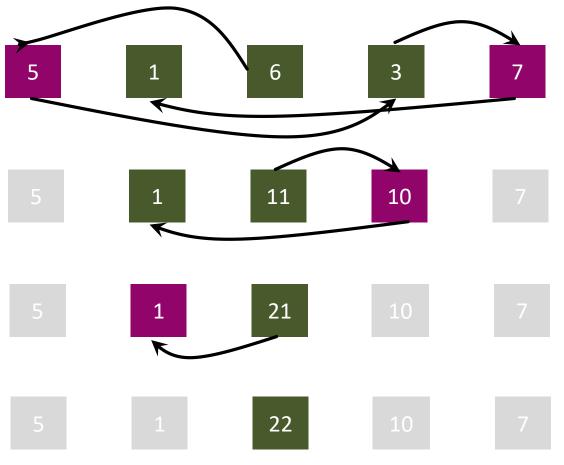
Prefix summation on a linked list

• Didn't we just see it? Yes, but work-inefficient (if $p \ll n$)!

We extend the randomized symmetry-breaking reduction algorithms

- First step: run the reduction algorithm as before
- Second step: reinsert in reverse order of deletion
 When reinserting, add the value of their successor





Prefix summation on a linked list

• Didn't we just see it? Yes, but work-inefficient (if $p \ll n$)!

We extend the randomized symmetry-breaking reduction algorithms

- First step: run the reduction algorithm as before
- Second step: reinsert in reverse order of deletion
 When reinserting, add the value of their successor
- Class question: how to implement this in practice?
 - Either recursion or a stack!
 - Design the algorithm as homework (using a parallel for loop)

Finding connected components as example

A connected component of an undirected graph is a subgraph in which any two vertices are connected by a path and no vertex in the subgraph is connected to any vertices outside the subgraph. Each undirected graph G = (V,E) contains one or multiple (at most |V|) connected components.

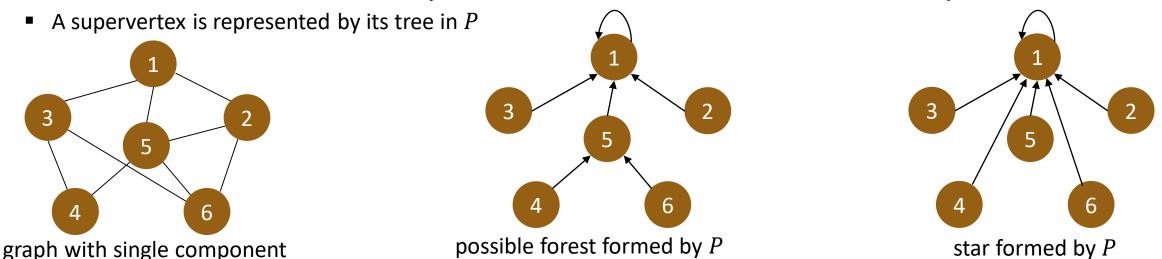
- Straight forward and cheap to compute sequentially question: how?
 - Any traversal algorithm in work O(|V| + |E|)
 Seemingly trivial becomes very interesting in parallel
 - Our oblivious semiring-based algorithm was $W = O(n^3 \log n)$, $D = O(\log^2 n)$ FAR from work optimality! Question: can we do better by dropping obliviousness?
- Let's start simple assuming concurrent read/write is free
 - Arbitrary write wins
- Concept of <u>supervertices</u>
 - A supervertex represents a set of vertices in a graph
 - 1. Initially, each vertex is a (singleton) supervertex
 - 2. Successively merge neighboring supervertices
 - 3. When no further merging is possible \rightarrow each supervertex is a component
 - Question is now only about the merging strategy

A **fixpoint algorithm** proceeds iteratively and monotonically until it reaches a final state that is not left by iterating further.

32

Shiloach/Vishkin's algorithm

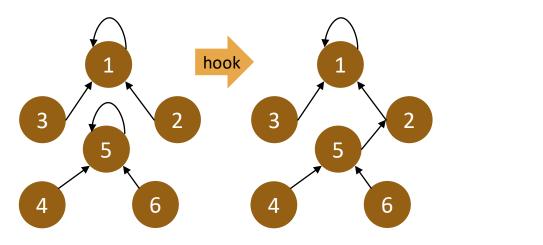
- Pointer graph/forest:
 - Define pointer array P, P[i] is a pointer from i to some other vertex
 - We call the graph defined by *P* (excluding self loops) the pointer graph
 - During the algorithm, P[i] forms a forest such that $\forall i: (i, P[i])$ there exists a path from *i* to P[i] in the original graph!
 - Initially, all P[i] = i
 - The algorithm will run until each forest is a directed star pointing at the (smallest-id) root of the component
- Supervertices:
 - Initially, each vertex is its own supervertex
 - Supervertices induce a graph S_i and S_j are connected iff $\exists (u, v) \in E$ with $u \in S_i$ and $v \in S_j$

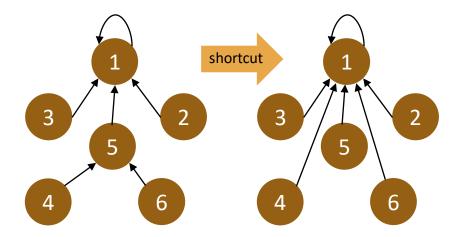


Shiloach/Vishkin's algorithm – key components

- Algorithm proceeds in two operations:
 - Hook merge connected supervertices (must be careful to not introduce cycles!)
 - Shortcut turn trees into stars

Repeat two steps iteratively until fixpoint is reached!





Correctness proofs:

- Lemma 1: The shortcut operation converts rooted trees to rooted stars. Proof: obvious
- Theorem 1: The pointer graph always forms a forest (set of rooted trees). Proof: shortcut doesn't violate, hook works on rooted stars, connects only to smaller label star, no cycles

Shiloach/Vishkin's algorithm – key components

- Algorithm proceeds in two operations:
 - Hook merge connected supervertices (must be careful to not introduce cycles!)
 - Shortcut turn trees into stars

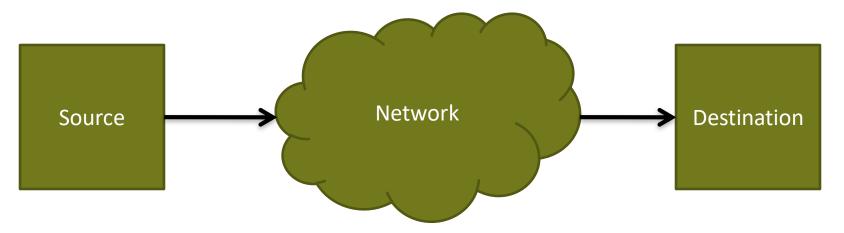
Repeat two steps iteratively until fixpoint is reached!

Performance proofs:

- Lemma 2: The number of iterations of the outer loop is at most log₂ n. Proof: consider connected component, if it
 has two supervertices before hook, number of supervertices is halved, if no hooking happens, component is done
- Lemma 2: The number of iterations of the inner loop in shortcut is at most log₂ n. Proof: consider tree of height > 2 at some iteration, the height of the tree halves during that iteration
- Corollary: Class question: work and depth? $W = O(n^2 \log n)$, $D = O(\log^2 n)$ (assuming conflicts are free!)

Distributed networking basics

- Familiar (non-HPC) network: Internet TCP/IP
 - Common model:



- Class Question: What parameters are needed to model the performance (including pipelining)?
 - Latency, Bandwidth, Injection Rate, Host Overhead
 - What network models do you know and what do they model?

Remember: A Simple Model for Communication

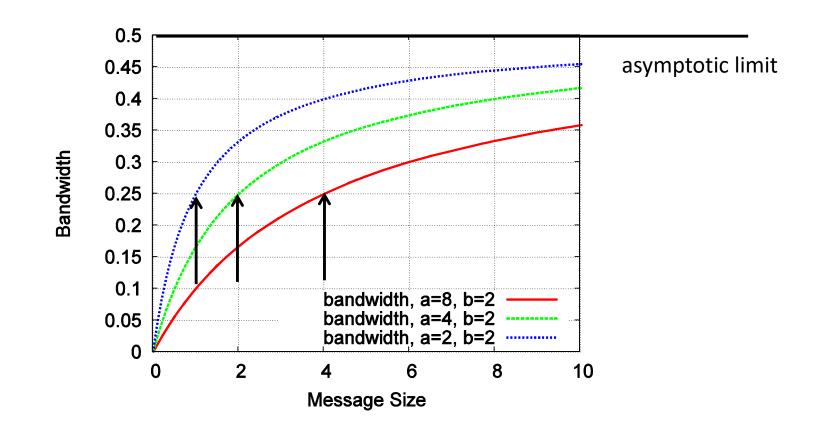
- Transfer time $T(s) = \alpha + \beta s$
 - α = startup time (latency)
 - $\beta = \text{cost per byte (bandwidth=1/}\beta)$
- As s increases, bandwidth approaches $1/\beta$ asymptotically
 - Convergence rate depends on α

•
$$s_{\frac{1}{2}} = \alpha/\beta$$

Assuming no pipelining (new messages can only be issued from a process after all arrived)

Bandwidth vs. Latency

- $s_{\frac{1}{2}} = \alpha/\beta$ is often used to distinguish bandwidth- and latency-bound messages
 - $s_{\frac{1}{2}}$ is in the order of kilobytes on real systems



A CARLES AND THE THE

Quick Example

- Simplest linear broadcast
 - One process has a data item to be distributed to all processes
- Linearly broadcasting s bytes among P processes:
 - $T(s) = (P 1) \cdot (\alpha + \beta s) = O(P)$
- Class question: Do you know a faster method to accomplish the same?

k-ary Tree Broadcast

- Origin process is the root of the tree, passes messages to k neighbors which pass them on
 - k=2 -> binary tree
- Class Question: What is the broadcast time in the simple latency/bandwidth model?
 - $T(s) \approx [\log_k P] \cdot k(\alpha + \beta s)$ (for fixed k)
- Class Question: What is the optimal k?

•
$$0 = \frac{k \ln P}{\ln k} \frac{d}{dk} = \frac{\ln P \ln k - \ln P}{\ln^2 k} \to k = e = 2.71 \dots$$

Independent of *P*, *α*, *βs*? Really?

Martin and State Tall

Faster Trees?

- Class Question: Can we broadcast faster than in a ternary tree?
 - Yes because each respective root is idle after sending three messages!
 - Those roots could keep sending!
 - Result is a k-nomial tree

For k=2, it's a binomial tree

- Class Question: What about the runtime?
 - $T(s) = \lceil log_k(P) \rceil \cdot (k-1) \cdot (\alpha + \beta \cdot s) = \mathcal{O}(log(P))$
- Class Question: What is the optimal k here?
 - T(s) d/dk is monotonically increasing for k>1, thus k_{opt}=2
- Class Question: Can we broadcast faster than in a k-nomial tree?
 - $\mathcal{O}(log(P))$ is asymptotically optimal for s=1!
 - But what about large s?

***SPEL

The second second

Very Large Message Broadcast

- Extreme case (P small, s large): simple pipeline
 - Split message into segments of size z
 - Send segments from PE i to PE i+1
- Class Question: What is the runtime?
 - $T(s) = (P-2+s/z)(\alpha + \beta z)$
- Compare 2-nomial tree with simple pipeline for α=10, β=1, P=4, s=10⁶, and z=10⁵
 - 2,000,020 vs. 1,200,120
- Class Question: Can we do better for given α, β, P, s?

- Derive by z
$$z_{opt} = \sqrt{\frac{s \alpha}{(P-2)\beta}}$$

- What is the time for simple pipeline for $\alpha = 10$, $\beta = 1$, P=4, s=10⁶, z_{opt} ?
 - **1,008,964**

Lower Bounds

- Class Question: What is a simple lower bound on the broadcast time?
 - $T_{BC} \ge \min\{\lceil \log_2(P) \rceil \alpha, s\beta\}$
- How close are the binomial tree for small messages and the pipeline for large messages (approximately)?

12 martin to

- Bin. tree is a factor of log₂(P) slower in bandwidth
- Pipeline is a factor of P/log₂(P) slower in latency
- Class Question: What can we do for intermediate message sizes?
 - Combine pipeline and tree \rightarrow pipelined tree
- Class Question: What is the runtime of the pipelined binary tree algorithm?

•
$$T \approx \left(\frac{s}{z} + \lceil \log_2 P \rceil - 2\right) \cdot 2 \cdot (\alpha + z\beta)$$

Class Question: What is the optimal z?

$$z_{opt} = \sqrt{\frac{\alpha s}{\beta(\lceil \log_2 P \rceil - 2)}}$$

Towards an Optimal Algorithm

- What is the complexity of the pipelined tree with z_{opt} for small s, large P and for large s, constant P?
 - Small messages, large P: s=1; z=1 (s≤z), will give O(log P)
 - Large messages, constant P: assume α, β, P constant, will give asymptotically O(sβ)
 Asymptotically optimal for large P and s but bandwidth is off by a factor of 2! Why?
- Bandwidth-optimal algorithms exist, e.g., Sanders et al. "Full Bandwidth Broadcast, Reduction and Scan with Only Two Trees". 2007
 - Intuition: in binomial tree, all leaves (P/2) only receive data and never send \rightarrow wasted bandwidth
 - Send along two simultaneous binary trees where the leafs of one tree are inner nodes of the other
 - Construction needs to avoid endpoint congestion (makes it complex)
 Can be improved with linear programming and topology awareness
 (talk to me if you're interested)

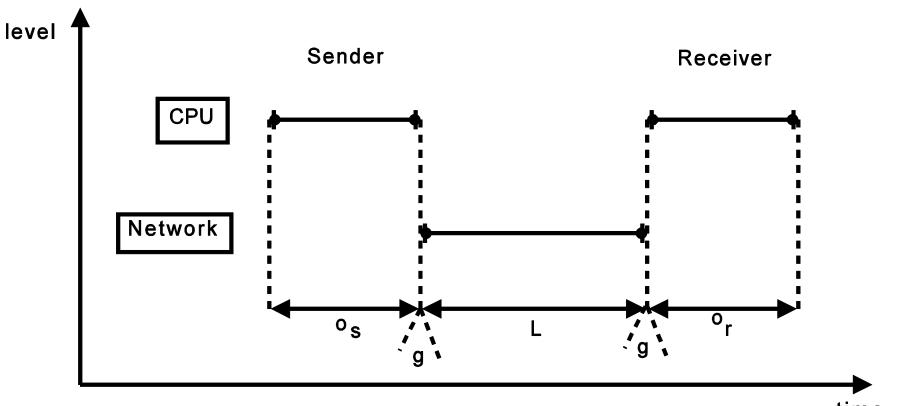
Open Problems

- Look for optimal parallel algorithms (even in simple models!)
 - And then check the more realistic models
 - Useful optimization targets are MPI collective operations Broadcast/Reduce, Scatter/Gather, Alltoall, Allreduce, Allgather, Scan/Exscan, ...
 - Implementations of those (check current MPI libraries ☺)
 - Useful also in scientific computations Barnes Hut, linear algebra, FFT, ...
- Lots of work to do!
 - Contact me for thesis ideas (or check SPCL) if you like this topic
 - Usually involve optimization (ILP/LP) and clever algorithms (algebra) combined with practical experiments on largescale machines (10,000+ processors)

The LogP Model

- Defined by four parameters:
 - L: an upper bound on the latency, or delay, incurred in communicating a message containing a word (or small number of words) from its source module to its target module.
 - o: the overhead, defined as the length of time that a processor is engaged in the transmission or reception of each message; during this time, the processor cannot perform other operations.
 - g: the gap, defined as the minimum time interval between consecutive message transmissions or consecutive message receptions at a processor. The reciprocal of g corresponds to the available perprocessor communication bandwidth.
 - P: the number of processor/memory modules. We assume unit time for local operations and call it a cycle.

The LogP Model



time

A CONTRACTOR

Simple Examples

- Sending a single message
 - T = 2o+L
- Ping-Pong Round-Trip
 - T_{RTT} = 40+2L
- Transmitting n messages
 - T(n) = L+(n-1)*max(g, o) + 2o

Simplifications

- o is bigger than g on some machines
 - g can be ignored (eliminates max() terms)
 - be careful with multicore!
- Offloading networks might have very low o
 - Can be ignored (not yet but hopefully soon)
- L might be ignored for long message streams
 - If they are pipelined
- Account g also for the first message
 - Eliminates "-1"

Benefits over Latency/Bandwidth Model

Models pipelining

- L/g messages can be "in flight"
- Captures state of the art (cf. TCP windows)
- Models computation/communication overlap
 - Asynchronous algorithms
- Models endpoint congestion/overload
 - Benefits balanced algorithms

Example: Broadcasts

- Class Question: What is the LogP running time for a linear broadcast of a single packet?
 - T_{lin} = L + (P-2) * max(o,g) + 2o
- Class Question: Approximate the LogP runtime for a binary-tree broadcast of a single packet?

- $T_{bin} \le \log_2 P * (L + max(o,g) + 2o)$
- Class Question: Approximate the LogP runtime for an k-ary-tree broadcast of a single packet?
 - $T_{k-n} \le \log_k P * (L + (k-1)max(o,g) + 2o)$

Example: Broadcasts

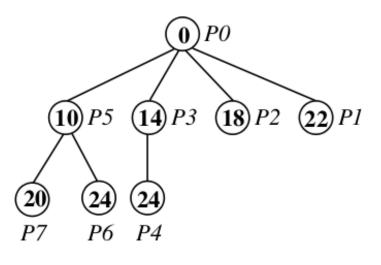
- Class Question: Approximate the LogP runtime for a binomial tree broadcast of a single packet (assume L > g!)?
 - $T_{bin} \le \log_2 P * (L + 20)$
- Class Question: Approximate the LogP runtime for a k-nomial tree broadcast of a single packet?
 - $T_{k-n} \le \log_k P * (L + (k-2)max(o,g) + 2o)$
- Class Question: What is the optimal k (assume o>g)?
 - Derive by k: 0 = o * ln(k_{opt}) L/k_{opt} + o (solve numerically)
 For larger L, k grows and for larger o, k shrinks
 - Models pipelining capability better than simple model!

Example: Broadcasts

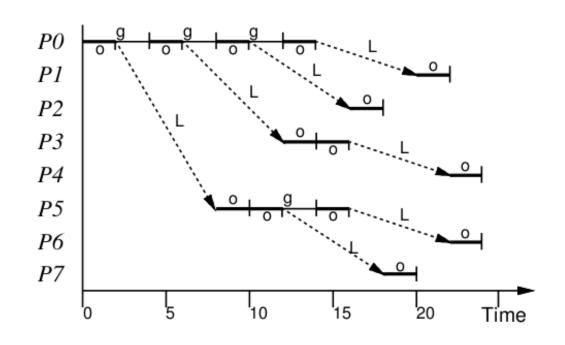
- Class Question: Can we do better than k_{opt}-ary binomial broadcast?
 - Problem: fixed k in all stages might not be optimal
 - We can construct a schedule for the optimal broadcast in practical settings
 - First proposed by Karp et al. in "Optimal Broadcast and Summation in the LogP Model"

Example: Optimal Broadcast

- Broadcast to P-1 processes
 - Each process who received the value sends it on; each process receives exactly once



P=8, L=6, g=4, o=2



Optimal Broadcast Runtime

- This determines the maximum number of PEs (P(t)) that can be reached in time t
- P(t) can be computed with a generalized Fibonacci recurrence (assuming o>g):

$$P(t) = \begin{cases} 1 : & t < 2o + L \\ P(t-o) + P(t-L-2o) : & \text{otherwise.} \end{cases}$$
(1)

- Which can be bounded by (see [1]): $2^{\left\lfloor \frac{t}{L+2o} \right\rfloor} \le P(t) \le 2^{\left\lfloor \frac{t}{o} \right\rfloor}$
 - A closed solution is an interesting open problem!

The Bigger Picture

- We learned how to program shared memory systems
 - Coherency & memory models & linearizability
 - Locks as examples for reasoning about correctness and performance
 - List-based sets as examples for lock-free and wait-free algorithms
 - Consensus number
- We learned about general performance properties and parallelism
 - Amdahl's and Gustafson's laws
 - Little's law, Work-span, ...
 - Balance principles & scheduling
- We learned how to perform model-based optimizations
 - Distributed memory broadcast example with two models
- What next? MPI? OpenMP? UPC?
 - Next-generation machines "merge" shared and distributed memory concepts → Partitioned Global Address Space (PGAS)

If you're interested in any aspect of parallel algorithms, programming, systems, or large-scale computing and are looking for a thesis, let us know! (and check our webpage <u>http://spcl.inf.ethz.ch/SeMa</u>)