
spcl.inf.ethz.ch

@spcl_eth

T. HOEFLER, M. PUESCHEL

Lecture 9: Oblivious and non-oblivious algorithms

Teaching assistant: Salvatore Di Girolamo Motivational video: https://www.youtube.com/watch?v=qx2dRIQXnbs

https://www.youtube.com/watch?v=qx2dRIQXnbs

spcl.inf.ethz.ch

@spcl_eth

 Measurements can be expensive!

 Yet necessary to reach certain confidence

 How to determine the minimal number of measurements?

 Measure until the confidence interval has a certain acceptable width

 For example, measure until the 95% CI is within 5% of the mean/median

 Can be computed analytically assuming normal data

 Compute iteratively for nonparametric statistics

 Often heard: “we cannot afford more than a single measurement”

 E.g., Gordon Bell runs

 Well, then one cannot say anything about the variance

Even 3-4 measurement can provide very tight CI (assuming normality)

Can also exploit repetitive nature of many applications

2

How many measurements are needed?

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

3

Experimental design

MPI_Reduce
behaves much

simpler!

I don’t believe you, try
other numbers of

processes!

Rule 9: Document all varying factors and their levels as well as the
complete experimental setup (e.g., software, hardware, techniques)

to facilitate reproducibility and provide interpretability.

 We recommend factorial design

 Consider parameters such as node allocation, process-to-node mapping, network or node contention

 If they cannot be controlled easily, use randomization and model them as random variable

 This is hard in practice and not easy to capture in rules

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

4

Time in parallel systems

My simple
broadcast takes

only one latency!

That’s nonsense!

But I measured it
so it must be true!

t = -MPI_Wtime();
for(i=0; i<1000; i++) {

MPI_Bcast(…);
}
t += MPI_Wtime();
t /= 1000;

…
Measure each

operation
separately!

spcl.inf.ethz.ch

@spcl_eth

5

Summarizing times in parallel systems!

My new reduce
takes only 30us

on 64 ranks.

Come on, show me
the data!

Rule 10: For parallel time measurements, report all measurement,
(optional) synchronization, and summarization techniques.

 Measure events separately

 Use high-precision timers

 Synchronize processes

 Summarize across processes:

 Min/max (unstable), average, median – depends on use-case

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

6

Give times a meaning!

I compute 1010

digits of Pi in 2ms
on Dora!

I have no clue.

Can you provide?
- Ideal speedup
- Amdahl’s speedup
- Parallel overheads

Ok: The code runs
17ms on a single
core, 0.2ms are

initialization and it
has one reduction!

Rule 11: If possible, show upper performance bounds to facilitate
interpretability of the measured results.

 Model computer system as k-dimensional space

 Each dimension represents a capability

Floating point, Integer, memory bandwidth, cache bandwidth, etc.

 Features are typical rates

 Determine maximum rate for each dimension

E.g., from documentation or benchmarks

 Can be used to proof optimality of implementation

 If the requirements of the bottleneck dimension are minimal

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

My most common
request was “show

me the data”

7

Plot as much information as possible!

This is how I should
have presented the

Dora results.

Rule 12: Plot as much information as needed to interpret the
experimental results. Only connect measurements by lines if they

indicate trends and the interpolation is valid.

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

 Final project presentation: next Monday 12/17 during lecture

 Report will be due in January!

Starting to write early is very helpful --- write – rewrite – rewrite (no joke!)

 Coordinate your talk! You have 10 minutes (8 talk + 2 Q&A)

What happened since the intermediate report?

Focus on the key aspects (time is tight)!

Try to wrap up – only minor things left for final report.

Engage the audience 

 Send slides by Sunday night (11:59pm Zurich time) to Salvatore!

We will use a single (windows) laptop to avoid delays when switching

Expect only Windows (powerpoint) or a PDF viewer

The order of talks will again be randomized for fairness

8

Administrivia

spcl.inf.ethz.ch

@spcl_eth

 Impossibility of wait-free consensus with atomic registers

 “perhaps one of the most striking impossibility results in Computer Science” (Herlihy, Shavit)

 Large-scale locks

 Scaling MCS to thousands of nodes with (MPI) RMA

 Oblivious algorithms

 Execution oblivious vs. structural oblivious

 Why do we care about obliviousness?

 Strict optimality of work and depth – reduction  – scan 

Linear scan, tree scan, dissemination scan, surprising work-depth tradeoff W+D ≥ 2n-2

 I/O complexity

 The red-blue pebble game (four rules: input, output, compute, delete)

 S partitioning proof

 Geometric arguments for dense linear algebra – example matrix multiplication

Loomis Whitney inequality: 𝑉 ≤ 𝑉𝑥 + 𝑉𝑦 + |𝑉𝑧| (a set is smaller than sqrt of the sum of orthogonal projections)

 Simple recomputation – trade off I/O for compute
9

Review of last lecture(s)

spcl.inf.ethz.ch

@spcl_eth

 Strict optimality

 Work/depth tradeoffs and bounds

 Applications of prefix sums

Parallelize seemingly sequential algorithms

 Oblivious graph algorithms

 Shortest paths

 Connected components

 Nonoblivious algorithms

 Sums and prefix sums on linked lists

 Connected components

 Distributed algorithms

 Broadcast in alpha-beta and LogP

10

Learning goals for today

spcl.inf.ethz.ch

@spcl_eth

11

DPHPC Overview

spcl.inf.ethz.ch

@spcl_eth

 Obvious question: is there a depth- and work-optimal algorithm?

 This took years to settle! The answer is surprisingly: no

 We know, for parallel prefix: 𝑊 +𝐷 ≥ 2𝑛 − 2

12

Recap: Work-depth tradeoff in parallel prefix sums

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8

𝑥1 +⋯+ 𝑥8

Output tree:
• leaves are all inputs, rooted at 𝑥𝑛
• binary due to binary operation
• 𝑊 = 𝑛 − 1, 𝐷 = 𝐷𝑜

Input tree:
• rooted at 𝑥1, leaves are all outputs
• not binary (simultaneous read)
• 𝑊 = 𝑛 − 1

trees may only overlap
at the “ridge”

Ridge can be at most 𝐷𝑜long!
Now add trees and subtract shared vertices:
𝑛 − 1 + 𝑛 − 1 − 𝐷𝑜 = 2𝑛 − 2 − 𝐷𝑜 ≤ 𝑊

q.e.d.

spcl.inf.ethz.ch

@spcl_eth

13

Work-Depth Tradeoffs and deficiency

“The deficiency of a prefix circuit 𝑐 is defined as def 𝑐 = 𝑊𝑐 + 𝐷𝑐 − (2𝑛 − 2)”

1960

W-D tradeoff: 1986

From Zhu et al.: “Construction of Zero-Deficiency Parallel Prefix Circuits”, 2006

Latest 2006 result for zero-deficiency
construction for 𝑛 > 𝐹 𝐷 + 3 − 1

(𝑓 𝑛 is inverse)

spcl.inf.ethz.ch

@spcl_eth

 Work-optimal?

 Only sequential! Why?

 𝑊 = 𝑛 − 1, thus 𝐷 = 2𝑛 − 2 −𝑊 = 𝑛 − 1 q.e.d. 

 Depth-optimal?

 Ladner and Fischer propose a construction for work-efficient circuits with minimal depth

𝐷 = ⌈log2 𝑛⌉, 𝑊 ≤ 4𝑛

Simple set of recursive construction rules (too boring for class, check 1980’s paper if needed)

Has an unbounded fan-out! May thus not be practical 

 Depth-optimal with bounded fan-out?

 Some constructions exist, interesting open problem

 Nice research topic to define optimal circuits

14

Work- and depth-optimal constructions

spcl.inf.ethz.ch

@spcl_eth

 It’s the simplest problem to demonstrate and prove W-D tradeoffs

 And it’s one of the most important parallel primitives

 Prefix summation as function composition is extremely powerful!

 Many seemingly sequential problems can be parallelized!

 Simple first example: binary adder – 𝑠 = 𝑎 + 𝑏 (n-bit numbers)

 Starting with single-bit (full) adder for bit i

15

But why do we care about this prefix sum so much?

+

𝑎𝑖 𝑏𝑖

𝑐𝑖𝑛, 𝑖 𝑐𝑜𝑢𝑡, 𝑖

𝑠𝑖

𝑠𝑖 = 𝑎𝑖 xor 𝑏𝑖 xor 𝑐𝑖𝑛,𝑖

𝑐𝑜𝑢𝑡,𝑖 = 𝑎𝑖 and 𝑏𝑖 or 𝑐𝑖𝑛,𝑖 and (𝑎𝑖 xor 𝑏𝑖)

Example 4-bit ripple carry adder

source: electronics-tutorials.ws

Show example 4-bit addition!

Question: what is work and depth?

Question: what are the functions for 𝑠𝑖and 𝑐𝑜𝑢𝑡,𝑖?

spcl.inf.ethz.ch

@spcl_eth

 We only want 𝒔!

 Requires 𝑐𝑖𝑛,1, 𝑐𝑖𝑛,2, … , 𝑐𝑖𝑛,𝑛 though 

 Carry bits can be computed with a scan!

 Model carry bit as state starting with 0

Encode state as 1-hot vector: 𝑞0 =
1
0

, 𝑞1 =
0
1

 Each full adder updates the carry bit state according to 𝑎𝑖 and 𝑏𝑖
State update is now represented by matrix operator, depending on 𝑎𝑖 and 𝑏𝑖 (𝑀𝑎𝑖𝑏𝑖):

𝑀00 =
1 1
0 0

, 𝑀10 = 𝑀01 =
1 0
0 1

, 𝑀11 =
0 0
1 1

 Operator composition is defined on algebraic ring ({0, 1, or, and}) – i.e., replace “+” with “and” and “*” with “or”

Prefix sum on the states computes now all carry bits in parallel!

 Example: a=011, b=101 𝑴𝟏𝟏, 𝑴𝟏𝟎, 𝑴𝟎𝟏

 Scan computes: 𝑀11=
0 0
1 1

; 𝑀11𝑀10 =
0 0
1 1

; 𝑀11𝑀10𝑀01 =
0 0
1 1

in parallel

 All carry states and 𝑠𝑖 can now be computed in parallel by multiplying scan result with 𝑞0
16

Seems very sequential, can this be parallelized?

source: electronics-tutorials.ws

𝑠𝑖 = 𝑎𝑖 xor 𝑏𝑖 xor 𝑐𝑖𝑛,𝑖

𝑐𝑜𝑢𝑡,𝑖 = 𝑎𝑖 and 𝑏𝑖 or 𝑐𝑖𝑛,𝑖 and (𝑎𝑖 xor 𝑏𝑖)

spcl.inf.ethz.ch

@spcl_eth

 Any time a sequential chain can be modeled as function composition!

 Let 𝑓1, … , 𝑓𝑛 be an ordered set of functions and 𝑓0 𝑥 = 𝑥

 Define ordered function compositions: 𝑓1(𝑥); 𝑓2(𝑓1 𝑥); … ; 𝑓𝑛(…𝑓1 𝑥)

 If we can write function composition 𝑔 𝑥 = 𝑓𝑖(𝑓𝑖−1 𝑥) as 𝑔 = 𝑓𝑖 ∘ 𝑓𝑖−1 then we can compute ∘ with a prefix sum!

We saw an example with the adder (𝑀𝑎𝑏 were our functions)

 Example: linear recurrence 𝒇𝒊 𝒙 = 𝒂𝒊𝒇𝒊−𝟏 𝒙 + 𝒃𝒊 with 𝒇𝟎 𝒙 =x

 Write as matrix form 𝑓𝑖
𝑥
1

=
𝑎𝑖 𝑏𝑖
0 1

𝑓𝑖−1
𝑥
1

 Function composition is now simple matrix multiplication!

For example: 𝑓2
𝑥
1

=
𝑎2 𝑏2
0 1

𝑎1 𝑏1
0 1

𝑓0
𝑥
1

=
𝑎1𝑎2 𝑎2𝑏1 + 𝑏2
0 1

𝑥
1

 Most powerful! Homework:

 Parallelize tridiagonal solve (e.g., Thomas’ algorithm)

 Parallelize string parsing

17

Prefix sums as magic bullet for other seemingly sequential algorithms

spcl.inf.ethz.ch

@spcl_eth

 Radix sort works bit-by-bit

 Sorts k-bit numbers in k iterations

 In each iteration 𝑖 stably sort all values by the 𝑖-th bit

 Example, k=1:

Iteration 0: 101 111 010 011 110 001

Iteration 1: 010 110 101 111 011 001

Iteration 2: 101 001 010 110 111 011

Iteration 3: 001 010 011 101 110 111

 Now on n processors

 Each processor owns single k-bit number, each iteration

low = prefix_sum(!bit, sum)

high = n+1-backwards_prefix_sum(bit, sum)

new_idx = (bit == 0) : low ? high

b[new_idx] = a[i]

swap(a,b)
18

Another use for prefix sums: Parallel radix sort

Show one example iteration!

Question: work and depth?

spcl.inf.ethz.ch

@spcl_eth

 Seems paradoxical but isn’t (may just not be most efficient)

 Use adjacency matrix representation of graph – “compute with all zeros”

19

Oblivious graph algorithms

1

3

4
5

2

6

0 1 1 0 0 0

0 0 0 0 1 1

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

i

j

1

3

4
5

2

6

0 2 3 0 0 0

0 0 0 0 3 1

0 0 0 0 0 2

0 0 4 0 0 0

0 0 0 7 0 0

0 0 0 0 8 0

i

j

Unweighted graph – binary matrix Weighted graph – general matrix

spcl.inf.ethz.ch

@spcl_eth

 A semiring is an algebraic structure that

 Has two binary operations called “addition” and “multiplication”

 Addition must be associative ((a+b)+c = a+(b+c)) and commutative ((a+b=b+a)) and have an identity element

 Multiplication must be associative and have an identity element

 Multiplication distributes over addition (a*(b+c) = a*b+a*c) and multiplication by additive identity annihilates

 Semirings are denoted by tuples (S, +, *, 0, 1)

“Standard” ring of rational numbers: (ℝ, +, *, 0, 1)

Boolean semiring: ({0,1}, ∨, ∧, 0, 1)

Tropical semiring: (ℝ ∪ {∞}, min, +, ∞, 0) (also called min-plus semiring)

20

Algebraic semirings

spcl.inf.ethz.ch

@spcl_eth

 Construct distance matrix from adjacency matrix by replacing all off-diagonal
zeros with ∞

 Initialize distance vector 𝒅𝟎of size n to ∞ everywhere but zero at start vertex

 E.g., 𝐝𝟎 = ∞,𝟎,∞,∞,∞,∞ 𝑻

Show evolution when multiplied!

 SSSP can be performed with n+1 matrix-vector multiplications!

 Question: total work and depth?

𝑊 = 𝑂(𝑛3), 𝐷 = 𝑂(𝑛 log 𝑛)

 Question: Is this good? Optimal?

Dijkstra = 𝑂(𝐸 + 𝑉 log 𝑉)

 Homework:

 Define a similar APSP algorithm with

𝑊 = 𝑂(𝑛3 log 𝑛), 𝐷 = 𝑂(log2 𝑛)

21

Oblivious shortest path search

0 ∞ ∞ ∞ ∞ ∞

2 0 ∞ ∞ ∞ ∞

3 ∞ 0 4 ∞ ∞

∞ ∞ ∞ 0 7 ∞

∞ 3 ∞ ∞ 0 8

∞ 1 2 ∞ ∞ 0

1

3

4
5

2

6

spcl.inf.ethz.ch

@spcl_eth

 Question: How could we compute the transitive closure of a graph?

 Multiply the matrix (𝐴 + 𝐼) 𝑛 times with itself in the Boolean semiring!

 Why?

Demonstrate that 𝐴 + 𝐼 2 has 1s for each path of at most length 1

By induction show that 𝐴 + 𝐼 𝑘 has 1s for each path of at most length k

 What is work and depth of transitive closure?

 Repeated squaring! 𝑊 = 𝑂(𝑛3log 𝑛) 𝐷 = 𝑂(log2𝑛)

 How to get to connected components from a transitive closure matrix?

 Each component needs unique label

 Create label matrix 𝐿𝑖𝑗 = 𝑗 iff 𝐴𝐼
𝑛
𝑖𝑗 = 1 and 𝐿𝑖𝑗 = ∞ otherwise

 For each column (vertex) perform min-reduction to determine its component label!

 Overall work and depth?

𝑊 = 𝑂(𝑛3log 𝑛), 𝐷 = 𝑂(log2𝑛)

22

Oblivious connected components
0 1 1 0 0 0

0 0 0 0 1 1

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

i

j

1 1 1 0 0 0

0 1 0 0 1 1

0 0 1 0 0 1

0 0 1 1 0 0

0 0 0 1 1 0

0 0 0 0 1 1

+I

spcl.inf.ethz.ch

@spcl_eth

 Not clear whether they are most efficient

 Efforts such as GraphBLAS exploit existing BLAS implementations and techniques

 Generalizations to other algorithms possible

 Can everything be modeled as tensor computations on the right ring?

 E. Solomonik, TH: “Sparse Tensor Algebra as a Parallel Programming Model”

 Much of machine learning/deep learning is oblivious

 Many algorithms get non-oblivious though

 All sparse algorithms are data-dependent!

 E.g., use sparse graphs for graph algorithms on semirings (if 𝐸 < 𝑉 2/log|𝑉|)

May recover some of the lost efficiency by computing zeros!

 Now moving to non-oblivious 

23

Many if not all graph problems have oblivious or tensor variants!

spcl.inf.ethz.ch

@spcl_eth

 Outline:

 Reduction on a linked list

 Prefix sum on a linked list

 Nonoblivious graph algorithms - connected components

 Conflict graphs of bounded degree

 Modeling assumptions:

 When talking about work and depth, we assume each loop iteration on a single PE is unit-cost (may contain multiple
instructions!)

24

Nonoblivious parallel algorithms

spcl.inf.ethz.ch

@spcl_eth

 Given: n values in linked list, looking for sum of all values

 Sequential algorithm:

25

Reduction on a linked list typedef struct elem {
struct elem *next;
int val

} elem;

5 1 6 3 7

set S={all elems}
while (S != empty) {
pick some i ∈ S;
S = S – i.next;
i.val += i.next.val;
i.next = i.next.next;

}

A set 𝐼 ⊂ 𝑆 is called an independent set if no
two elements in 𝐼 are connected!

Are the following sets independent or not?
• {1}
• {1,5}
• {1,5,3}
• {7,6,5}
• {7,6,1}

Class question: What is the maximum
size of an independent set of a linked
list with 𝑛 elements?

spcl.inf.ethz.ch

@spcl_eth

 Given: n values in linked list, looking for sum of all values

 Parallel algorithm:

26

Parallel reduction on a linked list typedef struct elem {
struct elem *next;
int val

} elem;

5 1 6 3 7

set S={all elems}
while (S != empty) {
pick independent subset I ∈ S;
for(each 𝑖 ∈ 𝐼 do in parallel) {
S = S – i.next;
i.val += i.next.val;
i.next = i.next.next;

}
}

A subset 𝐼 ⊂ 𝑆 is called an independent set
if no two elements in 𝐼 are connected!

Basically the same algorithm, just working
on independent subsets!

Class question: Assuming picking a maximum 𝐼 is
free, what are work and depth?

𝑊 = 𝑛 − 1, 𝐷 = ⌈log2n⌉

Is this optimal?

spcl.inf.ethz.ch

@spcl_eth

 That’s now the whole trick!

 It’s simple if all linked values are consecutive in an array – same as “standard” reduction!

Can compute independent set up-front!

 Irregular linked list though?

 Idea 1: find the order of elements  requires parallel prefix sum, D’oh!

 Observation: if we pick 𝐼 > 𝜆|𝑉| in each iteration, we finish in logarithmic time!

 Symmetry breaking:

 Assume 𝑝 processes work on 𝑝 consecutive nodes

 How to find the independent set?

They all look the same (well, only the first and last differ, they have no left/right neighbor)

Local decisions cannot be made 

 Introduce randomness to create local differences!

 Each node tosses a coin  0 or 1

 Let 𝐼 be the set of nodes such that 𝑣 drew 1 and 𝑣. 𝑛𝑒𝑥𝑡 drew 0!

Show that I is indeed independent!

What is the probability that 𝑣 ∈ 𝐼?
27

How to pick the independent set 𝑰?

5 1 6 3 7

0 0 1 0 1
𝑃 𝑣 ∈ 𝐼 =

1

4

spcl.inf.ethz.ch

@spcl_eth

 As the set shrinks, the random selection will get less efficient

 When 𝑝 is close to 𝑛 (𝑆) then most processors will fail to make useful progress

 Switch to a different algorithm

 Recursive doubling!

 Show execution on our example!

 Algorithm computes prefix sum on the list!

Result at original list head is overall sum

28

Optimizations

5 1 6 3 7

for (i=0; i ≤ ⌈log2𝑛⌉; ++i) {
for(each elem do in parallel) {

elem.val += elem.next.val;
elem.next = elem.next.next;

}
} Class question: What are work and depth?

𝑊 = 𝑛⌈log2𝑛⌉, 𝐷 = ⌈log2n⌉

spcl.inf.ethz.ch

@spcl_eth

 Didn’t we just see it? Yes, but work-inefficient (if 𝒑 ≪ 𝒏)!

We extend the randomized symmetry-breaking reduction algorithms

 First step: run the reduction algorithm as before

 Second step: reinsert in reverse order of deletion

When reinserting, add the value of their successor

29

Prefix summation on a linked list

5 1 6 3 7

5 1 11 10 7

5 1 21 10 7

5 1 22 10 7

5 1 22 10 7

5 1 22 11 7

16 1 22 11 8

spcl.inf.ethz.ch

@spcl_eth

 Didn’t we just see it? Yes, but work-inefficient (if 𝒑 ≪ 𝒏)!

We extend the randomized symmetry-breaking reduction algorithms

 First step: run the reduction algorithm as before

 Second step: reinsert in reverse order of deletion

When reinserting, add the value of their successor

 Class question: how to implement this in practice?

 Either recursion or a stack!

 Design the algorithm as homework (using a parallel for loop)

30

Prefix summation on a linked list

spcl.inf.ethz.ch

@spcl_eth

 Straight forward and cheap to compute sequentially – question: how?

 Any traversal algorithm in work 𝑂 𝑉 + 𝐸

Seemingly trivial - becomes very interesting in parallel

 Our oblivious semiring-based algorithm was 𝑊 = 𝑂(𝑛3log 𝑛), 𝐷 = 𝑂(log2𝑛)

FAR from work optimality! Question: can we do better by dropping obliviousness?

 Let’s start simple – assuming concurrent read/write is free

 Arbitrary write wins

 Concept of supervertices

 A supervertex represents a set of vertices in a graph

1. Initially, each vertex is a (singleton) supervertex

2. Successively merge neighboring supervertices

3. When no further merging is possible  each supervertex is a component

 Question is now only about the merging strategy
31

Finding connected components as example

A connected component of an undirected graph is a subgraph in which any two vertices are connected
by a path and no vertex in the subgraph is connected to any vertices outside the subgraph. Each
undirected graph G = (V,E) contains one or multiple (at most |V|) connected components.

A fixpoint algorithm proceeds iteratively and
monotonically until it reaches a final state
that is not left by iterating further.

spcl.inf.ethz.ch

@spcl_eth

 Pointer graph/forest:

 Define pointer array 𝑃, 𝑃[𝑖] is a pointer from 𝑖 to some other vertex

 We call the graph defined by 𝑃 (excluding self loops) the pointer graph

 During the algorithm, 𝑃[𝑖] forms a forest such that ∀𝑖: 𝑖, 𝑃 𝑖 there exists a path from 𝑖 to 𝑃[𝑖] in the original graph!

 Initially, all 𝑃 𝑖 = 𝑖

 The algorithm will run until each forest is a directed star pointing at the (smallest-id) root of the component

 Supervertices:

 Initially, each vertex is its own supervertex

 Supervertices induce a graph - 𝑆𝑖 and 𝑆𝑗 are connected iff ∃ 𝑢, 𝑣 ∈ 𝐸 with 𝑢 ∈ 𝑆𝑖 and 𝑣 ∈ 𝑆𝑗

 A supervertex is represented by its tree in 𝑃

32

Shiloach/Vishkin’s algorithm

1

3

4

5
2

6

graph with single component

1

3

4

5
2

6

possible forest formed by 𝑃

1

3

4

5
2

6

star formed by 𝑃

spcl.inf.ethz.ch

@spcl_eth

 Algorithm proceeds in two operations:

 Hook – merge connected supervertices (must be careful to not introduce cycles!)

 Shortcut – turn trees into stars

Repeat two steps iteratively until fixpoint is reached!

 Correctness proofs:

 Lemma 1: The shortcut operation converts rooted trees to rooted stars. Proof: obvious

 Theorem 1: The pointer graph always forms a forest (set of rooted trees). Proof: shortcut doesn’t violate, hook works
on rooted stars, connects only to smaller label star, no cycles

33

Shiloach/Vishkin’s algorithm – key components

1

3

4

5
2

6

1

3

4

5
2

6

hook 1

3

4

5
2

6

1

3

4

5
2

6

shortcut

spcl.inf.ethz.ch

@spcl_eth

 Algorithm proceeds in two operations:

 Hook – merge connected supervertices (must be careful to not introduce cycles!)

 Shortcut – turn trees into stars

Repeat two steps iteratively until fixpoint is reached!

 Performance proofs:

 Lemma 2: The number of iterations of the outer loop is at most log2 𝑛. Proof: consider connected component, if it
has two supervertices before hook, number of supervertices is halved, if no hooking happens, component is done

 Lemma 2: The number of iterations of the inner loop in shortcut is at most log2 𝑛. Proof: consider tree of height > 2
at some iteration, the height of the tree halves during that iteration

 Corollary: Class question: work and depth? 34

Shiloach/Vishkin’s algorithm – key components

1

3

4

5
2

6

1

3

4

5
2

6

hook 1

3

4

5
2

6

1

3

4

5
2

6

shortcut

𝑊 = 𝑂 𝑛2log 𝑛 , 𝐷 = 𝑂(log2𝑛) (assuming conflicts are free!)

spcl.inf.ethz.ch

@spcl_eth

 Familiar (non-HPC) network: Internet TCP/IP

 Common model:

 Class Question: What parameters are needed to model the performance (including pipelining)?

 Latency, Bandwidth, Injection Rate, Host Overhead

 What network models do you know and what do they model?

35

Distributed networking basics

Network DestinationSource

spcl.inf.ethz.ch

@spcl_eth

 Transfer time 𝑇(𝑠) = 𝛼 + 𝛽𝑠

 𝛼 = startup time (latency)

 𝛽 = cost per byte (bandwidth=1/β)

 As s increases, bandwidth approaches 1/𝛽 asymptotically

 Convergence rate depends on α

 𝑠1
2

= 𝛼/𝛽

 Assuming no pipelining (new messages can only be issued from a process after all arrived)

36

Remember: A Simple Model for Communication

spcl.inf.ethz.ch

@spcl_eth

 𝑠1
2

= 𝛼/𝛽 is often used to distinguish bandwidth- and latency-bound messages

 𝑠1
2

is in the order of kilobytes on real systems

37

Bandwidth vs. Latency

asymptotic limit

spcl.inf.ethz.ch

@spcl_eth

 Simplest linear broadcast

 One process has a data item to be distributed to all processes

 Linearly broadcasting s bytes among P processes:

 𝑇 𝑠 = 𝑃 − 1 ⋅ 𝛼 + 𝛽𝑠 = 𝑂(𝑃)

 Class question: Do you know a faster method to accomplish the same?

38

Quick Example

spcl.inf.ethz.ch

@spcl_eth

 Origin process is the root of the tree, passes messages to k neighbors which pass them on

 k=2 -> binary tree

 Class Question: What is the broadcast time in the simple latency/bandwidth model?

 𝑇 𝑠 ≈ log𝑘𝑃 ⋅ 𝑘(𝛼 + 𝛽𝑠) (for fixed k)

 Class Question: What is the optimal k?

 0 =
𝑘 ln 𝑃

ln 𝑘

𝑑

𝑑𝑘
=

lnP ln 𝑘 − ln 𝑃

ln2𝑘
→ 𝑘 = 𝑒 = 2.71…

 Independent of 𝑃, 𝛼, 𝛽𝑠? Really?

39

k-ary Tree Broadcast

spcl.inf.ethz.ch

@spcl_eth

 Class Question: Can we broadcast faster than in a ternary tree?

 Yes because each respective root is idle after sending three messages!

 Those roots could keep sending!

 Result is a k-nomial tree

For k=2, it’s a binomial tree

 Class Question: What about the runtime?



 Class Question: What is the optimal k here?

 T(s) d/dk is monotonically increasing for k>1, thus kopt=2

 Class Question: Can we broadcast faster than in a k-nomial tree?

 is asymptotically optimal for s=1!

 But what about large s?

40

Faster Trees?

spcl.inf.ethz.ch

@spcl_eth

 Extreme case (P small, s large): simple pipeline

 Split message into segments of size z

 Send segments from PE i to PE i+1

 Class Question: What is the runtime?

 T(s) = (P-2+s/z)(α + βz)

 Compare 2-nomial tree with simple pipeline for α=10, β=1, P=4, s=106, and z=105

 2,000,020 vs. 1,200,120

 Class Question: Can we do better for given α, β, P, s?

 Derive by z

 What is the time for simple pipeline for α=10, β=1, P=4, s=106, zopt?

 1,008,964
41

Very Large Message Broadcast

spcl.inf.ethz.ch

@spcl_eth

 Class Question: What is a simple lower bound on the broadcast time?



 How close are the binomial tree for small messages and the pipeline for large messages (approximately)?

 Bin. tree is a factor of log2(P) slower in bandwidth

 Pipeline is a factor of P/log2(P) slower in latency

 Class Question: What can we do for intermediate message sizes?

 Combine pipeline and tree  pipelined tree

 Class Question: What is the runtime of the pipelined binary tree algorithm?



 Class Question: What is the optimal z?



42

Lower Bounds

spcl.inf.ethz.ch

@spcl_eth

 What is the complexity of the pipelined tree with zopt for small s, large P and for large s, constant P?

 Small messages, large P: s=1; z=1 (s≤z), will give O(log P)

 Large messages, constant P: assume α, β, P constant, will give asymptotically O(sβ)

Asymptotically optimal for large P and s but bandwidth is off by a factor of 2! Why?

 Bandwidth-optimal algorithms exist, e.g., Sanders et al. “Full Bandwidth Broadcast, Reduction and Scan
with Only Two Trees”. 2007

 Intuition: in binomial tree, all leaves (P/2) only receive data and never send  wasted bandwidth

 Send along two simultaneous binary trees where the leafs of one tree are inner nodes of the other

 Construction needs to avoid endpoint congestion (makes it complex)

Can be improved with linear programming and topology awareness

(talk to me if you’re interested)

43

Towards an Optimal Algorithm

spcl.inf.ethz.ch

@spcl_eth

 Look for optimal parallel algorithms (even in simple models!)

 And then check the more realistic models

 Useful optimization targets are MPI collective operations

Broadcast/Reduce, Scatter/Gather, Alltoall, Allreduce, Allgather, Scan/Exscan, …

 Implementations of those (check current MPI libraries )

 Useful also in scientific computations

Barnes Hut, linear algebra, FFT, …

 Lots of work to do!

 Contact me for thesis ideas (or check SPCL) if you like this topic

 Usually involve optimization (ILP/LP) and clever algorithms (algebra) combined with practical experiments on large-
scale machines (10,000+ processors)

44

Open Problems

spcl.inf.ethz.ch

@spcl_eth

 Defined by four parameters:

 L: an upper bound on the latency, or delay, incurred in communicating a message containing a word (or
small number of words) from its source module to its target module.

 o: the overhead, defined as the length of time that a processor is engaged in the transmission or
reception of each message; during this time, the processor cannot perform other operations.

 g: the gap, defined as the minimum time interval between consecutive message transmissions or
consecutive message receptions at a processor. The reciprocal of g corresponds to the available per-
processor communication bandwidth.

 P: the number of processor/memory modules. We assume unit time for local operations and call it a
cycle.

45

The LogP Model

spcl.inf.ethz.ch

@spcl_eth

46

The LogP Model

spcl.inf.ethz.ch

@spcl_eth

 Sending a single message

 T = 2o+L

 Ping-Pong Round-Trip

 TRTT = 4o+2L

 Transmitting n messages

 T(n) = L+(n-1)*max(g, o) + 2o

47

Simple Examples

spcl.inf.ethz.ch

@spcl_eth

 o is bigger than g on some machines

 g can be ignored (eliminates max() terms)

 be careful with multicore!

 Offloading networks might have very low o

 Can be ignored (not yet but hopefully soon)

 L might be ignored for long message streams

 If they are pipelined

 Account g also for the first message

 Eliminates “-1”

48

Simplifications

spcl.inf.ethz.ch

@spcl_eth

 Models pipelining

 L/g messages can be “in flight”

 Captures state of the art (cf. TCP windows)

 Models computation/communication overlap

 Asynchronous algorithms

 Models endpoint congestion/overload

 Benefits balanced algorithms

49

Benefits over Latency/Bandwidth Model

spcl.inf.ethz.ch

@spcl_eth

 Class Question: What is the LogP running time for a linear broadcast of a single packet?

 Tlin = L + (P-2) * max(o,g) + 2o

 Class Question: Approximate the LogP runtime for a binary-tree broadcast of a single packet?

 Tbin ≤ log2P * (L + max(o,g) + 2o)

 Class Question: Approximate the LogP runtime for an k-ary-tree broadcast of a single packet?

 Tk-n ≤ logkP * (L + (k-1)max(o,g) + 2o)

50

Example: Broadcasts

spcl.inf.ethz.ch

@spcl_eth

 Class Question: Approximate the LogP runtime for a binomial tree broadcast of a single packet (assume L
> g!)?

 Tbin ≤ log2P * (L + 2o)

 Class Question: Approximate the LogP runtime for a k-nomial tree broadcast of a single packet?

 Tk-n ≤ logkP * (L + (k-2)max(o,g) + 2o)

 Class Question: What is the optimal k (assume o>g)?

 Derive by k: 0 = o * ln(kopt) – L/kopt + o (solve numerically)

For larger L, k grows and for larger o, k shrinks

 Models pipelining capability better than simple model!

51

Example: Broadcasts

spcl.inf.ethz.ch

@spcl_eth

 Class Question: Can we do better than kopt-ary binomial broadcast?

 Problem: fixed k in all stages might not be optimal

 We can construct a schedule for the optimal broadcast in practical settings

 First proposed by Karp et al. in “Optimal Broadcast and Summation in the LogP Model”

52

Example: Broadcasts

spcl.inf.ethz.ch

@spcl_eth

 Broadcast to P-1 processes

 Each process who received the value sends it on; each process receives exactly once

53

Example: Optimal Broadcast

P=8, L=6, g=4, o=2

spcl.inf.ethz.ch

@spcl_eth

 This determines the maximum number of PEs (P(t)) that can be reached in time t

 P(t) can be computed with a generalized Fibonacci recurrence (assuming o>g):

 Which can be bounded by (see [1]):

 A closed solution is an interesting open problem!

54

Optimal Broadcast Runtime

[1]: Hoefler et al.: “Scalable Communication Protocols for Dynamic Sparse Data Exchange” (Lemma 1)

spcl.inf.ethz.ch

@spcl_eth

 We learned how to program shared memory systems

 Coherency & memory models & linearizability

 Locks as examples for reasoning about correctness and performance

 List-based sets as examples for lock-free and wait-free algorithms

 Consensus number

 We learned about general performance properties and parallelism

 Amdahl’s and Gustafson’s laws

 Little’s law, Work-span, …

 Balance principles & scheduling

 We learned how to perform model-based optimizations

 Distributed memory broadcast example with two models

 What next? MPI? OpenMP? UPC?

 Next-generation machines “merge” shared and distributed memory concepts → Partitioned Global Address Space
(PGAS)

If you’re interested in any aspect of parallel algorithms, programming, systems, or large-scale computing
and are looking for a thesis, let us know! (and check our webpage http://spcl.inf.ethz.ch/SeMa)

55

The Bigger Picture

http://spcl.inf.ethz.ch/SeMa

