
spcl.inf.ethz.ch

@spcl_eth

T. HOEFLER, M. PUESCHEL

Lecture 9: Oblivious and non-oblivious algorithms

Teaching assistant: Salvatore Di Girolamo Motivational video: https://www.youtube.com/watch?v=qx2dRIQXnbs

https://www.youtube.com/watch?v=qx2dRIQXnbs

spcl.inf.ethz.ch

@spcl_eth

 Measurements can be expensive!

 Yet necessary to reach certain confidence

 How to determine the minimal number of measurements?

 Measure until the confidence interval has a certain acceptable width

 For example, measure until the 95% CI is within 5% of the mean/median

 Can be computed analytically assuming normal data

 Compute iteratively for nonparametric statistics

 Often heard: “we cannot afford more than a single measurement”

 E.g., Gordon Bell runs

 Well, then one cannot say anything about the variance

Even 3-4 measurement can provide very tight CI (assuming normality)

Can also exploit repetitive nature of many applications

2

How many measurements are needed?

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

3

Experimental design

MPI_Reduce
behaves much

simpler!

I don’t believe you, try
other numbers of

processes!

Rule 9: Document all varying factors and their levels as well as the
complete experimental setup (e.g., software, hardware, techniques)

to facilitate reproducibility and provide interpretability.

 We recommend factorial design

 Consider parameters such as node allocation, process-to-node mapping, network or node contention

 If they cannot be controlled easily, use randomization and model them as random variable

 This is hard in practice and not easy to capture in rules

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

4

Time in parallel systems

My simple
broadcast takes

only one latency!

That’s nonsense!

But I measured it
so it must be true!

t = -MPI_Wtime();
for(i=0; i<1000; i++) {

MPI_Bcast(…);
}
t += MPI_Wtime();
t /= 1000;

…
Measure each

operation
separately!

spcl.inf.ethz.ch

@spcl_eth

5

Summarizing times in parallel systems!

My new reduce
takes only 30us

on 64 ranks.

Come on, show me
the data!

Rule 10: For parallel time measurements, report all measurement,
(optional) synchronization, and summarization techniques.

 Measure events separately

 Use high-precision timers

 Synchronize processes

 Summarize across processes:

 Min/max (unstable), average, median – depends on use-case

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

6

Give times a meaning!

I compute 1010

digits of Pi in 2ms
on Dora!

I have no clue.

Can you provide?
- Ideal speedup
- Amdahl’s speedup
- Parallel overheads

Ok: The code runs
17ms on a single
core, 0.2ms are

initialization and it
has one reduction!

Rule 11: If possible, show upper performance bounds to facilitate
interpretability of the measured results.

 Model computer system as k-dimensional space

 Each dimension represents a capability

Floating point, Integer, memory bandwidth, cache bandwidth, etc.

 Features are typical rates

 Determine maximum rate for each dimension

E.g., from documentation or benchmarks

 Can be used to proof optimality of implementation

 If the requirements of the bottleneck dimension are minimal

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

My most common
request was “show

me the data”

7

Plot as much information as possible!

This is how I should
have presented the

Dora results.

Rule 12: Plot as much information as needed to interpret the
experimental results. Only connect measurements by lines if they

indicate trends and the interpolation is valid.

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

spcl.inf.ethz.ch

@spcl_eth

 Final project presentation: next Monday 12/17 during lecture

 Report will be due in January!

Starting to write early is very helpful --- write – rewrite – rewrite (no joke!)

 Coordinate your talk! You have 10 minutes (8 talk + 2 Q&A)

What happened since the intermediate report?

Focus on the key aspects (time is tight)!

Try to wrap up – only minor things left for final report.

Engage the audience

 Send slides by Sunday night (11:59pm Zurich time) to Salvatore!

We will use a single (windows) laptop to avoid delays when switching

Expect only Windows (powerpoint) or a PDF viewer

The order of talks will again be randomized for fairness

8

Administrivia

spcl.inf.ethz.ch

@spcl_eth

 Impossibility of wait-free consensus with atomic registers

 “perhaps one of the most striking impossibility results in Computer Science” (Herlihy, Shavit)

 Large-scale locks

 Scaling MCS to thousands of nodes with (MPI) RMA

 Oblivious algorithms

 Execution oblivious vs. structural oblivious

 Why do we care about obliviousness?

 Strict optimality of work and depth – reduction – scan

Linear scan, tree scan, dissemination scan, surprising work-depth tradeoff W+D ≥ 2n-2

 I/O complexity

 The red-blue pebble game (four rules: input, output, compute, delete)

 S partitioning proof

 Geometric arguments for dense linear algebra – example matrix multiplication

Loomis Whitney inequality: 𝑉 ≤ 𝑉𝑥 + 𝑉𝑦 + |𝑉𝑧| (a set is smaller than sqrt of the sum of orthogonal projections)

 Simple recomputation – trade off I/O for compute
9

Review of last lecture(s)

spcl.inf.ethz.ch

@spcl_eth

 Strict optimality

 Work/depth tradeoffs and bounds

 Applications of prefix sums

Parallelize seemingly sequential algorithms

 Oblivious graph algorithms

 Shortest paths

 Connected components

 Nonoblivious algorithms

 Sums and prefix sums on linked lists

 Connected components

 Distributed algorithms

 Broadcast in alpha-beta and LogP

10

Learning goals for today

spcl.inf.ethz.ch

@spcl_eth

11

DPHPC Overview

spcl.inf.ethz.ch

@spcl_eth

 Obvious question: is there a depth- and work-optimal algorithm?

 This took years to settle! The answer is surprisingly: no

 We know, for parallel prefix: 𝑊 +𝐷 ≥ 2𝑛 − 2

12

Recap: Work-depth tradeoff in parallel prefix sums

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8

𝑥1 +⋯+ 𝑥8

Output tree:
• leaves are all inputs, rooted at 𝑥𝑛
• binary due to binary operation
• 𝑊 = 𝑛 − 1, 𝐷 = 𝐷𝑜

Input tree:
• rooted at 𝑥1, leaves are all outputs
• not binary (simultaneous read)
• 𝑊 = 𝑛 − 1

trees may only overlap
at the “ridge”

Ridge can be at most 𝐷𝑜long!
Now add trees and subtract shared vertices:
𝑛 − 1 + 𝑛 − 1 − 𝐷𝑜 = 2𝑛 − 2 − 𝐷𝑜 ≤ 𝑊

q.e.d.

spcl.inf.ethz.ch

@spcl_eth

13

Work-Depth Tradeoffs and deficiency

“The deficiency of a prefix circuit 𝑐 is defined as def 𝑐 = 𝑊𝑐 + 𝐷𝑐 − (2𝑛 − 2)”

1960

W-D tradeoff: 1986

From Zhu et al.: “Construction of Zero-Deficiency Parallel Prefix Circuits”, 2006

Latest 2006 result for zero-deficiency
construction for 𝑛 > 𝐹 𝐷 + 3 − 1

(𝑓 𝑛 is inverse)

spcl.inf.ethz.ch

@spcl_eth

 Work-optimal?

 Only sequential! Why?

 𝑊 = 𝑛 − 1, thus 𝐷 = 2𝑛 − 2 −𝑊 = 𝑛 − 1 q.e.d.

 Depth-optimal?

 Ladner and Fischer propose a construction for work-efficient circuits with minimal depth

𝐷 = ⌈log2 𝑛⌉, 𝑊 ≤ 4𝑛

Simple set of recursive construction rules (too boring for class, check 1980’s paper if needed)

Has an unbounded fan-out! May thus not be practical

 Depth-optimal with bounded fan-out?

 Some constructions exist, interesting open problem

 Nice research topic to define optimal circuits

14

Work- and depth-optimal constructions

spcl.inf.ethz.ch

@spcl_eth

 It’s the simplest problem to demonstrate and prove W-D tradeoffs

 And it’s one of the most important parallel primitives

 Prefix summation as function composition is extremely powerful!

 Many seemingly sequential problems can be parallelized!

 Simple first example: binary adder – 𝑠 = 𝑎 + 𝑏 (n-bit numbers)

 Starting with single-bit (full) adder for bit i

15

But why do we care about this prefix sum so much?

+

𝑎𝑖 𝑏𝑖

𝑐𝑖𝑛, 𝑖 𝑐𝑜𝑢𝑡, 𝑖

𝑠𝑖

𝑠𝑖 = 𝑎𝑖 xor 𝑏𝑖 xor 𝑐𝑖𝑛,𝑖

𝑐𝑜𝑢𝑡,𝑖 = 𝑎𝑖 and 𝑏𝑖 or 𝑐𝑖𝑛,𝑖 and (𝑎𝑖 xor 𝑏𝑖)

Example 4-bit ripple carry adder

source: electronics-tutorials.ws

Show example 4-bit addition!

Question: what is work and depth?

Question: what are the functions for 𝑠𝑖and 𝑐𝑜𝑢𝑡,𝑖?

spcl.inf.ethz.ch

@spcl_eth

 We only want 𝒔!

 Requires 𝑐𝑖𝑛,1, 𝑐𝑖𝑛,2, … , 𝑐𝑖𝑛,𝑛 though

 Carry bits can be computed with a scan!

 Model carry bit as state starting with 0

Encode state as 1-hot vector: 𝑞0 =
1
0

, 𝑞1 =
0
1

 Each full adder updates the carry bit state according to 𝑎𝑖 and 𝑏𝑖
State update is now represented by matrix operator, depending on 𝑎𝑖 and 𝑏𝑖 (𝑀𝑎𝑖𝑏𝑖):

𝑀00 =
1 1
0 0

, 𝑀10 = 𝑀01 =
1 0
0 1

, 𝑀11 =
0 0
1 1

 Operator composition is defined on algebraic ring ({0, 1, or, and}) – i.e., replace “+” with “and” and “*” with “or”

Prefix sum on the states computes now all carry bits in parallel!

 Example: a=011, b=101 𝑴𝟏𝟏, 𝑴𝟏𝟎, 𝑴𝟎𝟏

 Scan computes: 𝑀11=
0 0
1 1

; 𝑀11𝑀10 =
0 0
1 1

; 𝑀11𝑀10𝑀01 =
0 0
1 1

in parallel

 All carry states and 𝑠𝑖 can now be computed in parallel by multiplying scan result with 𝑞0
16

Seems very sequential, can this be parallelized?

source: electronics-tutorials.ws

𝑠𝑖 = 𝑎𝑖 xor 𝑏𝑖 xor 𝑐𝑖𝑛,𝑖

𝑐𝑜𝑢𝑡,𝑖 = 𝑎𝑖 and 𝑏𝑖 or 𝑐𝑖𝑛,𝑖 and (𝑎𝑖 xor 𝑏𝑖)

spcl.inf.ethz.ch

@spcl_eth

 Any time a sequential chain can be modeled as function composition!

 Let 𝑓1, … , 𝑓𝑛 be an ordered set of functions and 𝑓0 𝑥 = 𝑥

 Define ordered function compositions: 𝑓1(𝑥); 𝑓2(𝑓1 𝑥); … ; 𝑓𝑛(…𝑓1 𝑥)

 If we can write function composition 𝑔 𝑥 = 𝑓𝑖(𝑓𝑖−1 𝑥) as 𝑔 = 𝑓𝑖 ∘ 𝑓𝑖−1 then we can compute ∘ with a prefix sum!

We saw an example with the adder (𝑀𝑎𝑏 were our functions)

 Example: linear recurrence 𝒇𝒊 𝒙 = 𝒂𝒊𝒇𝒊−𝟏 𝒙 + 𝒃𝒊 with 𝒇𝟎 𝒙 =x

 Write as matrix form 𝑓𝑖
𝑥
1

=
𝑎𝑖 𝑏𝑖
0 1

𝑓𝑖−1
𝑥
1

 Function composition is now simple matrix multiplication!

For example: 𝑓2
𝑥
1

=
𝑎2 𝑏2
0 1

𝑎1 𝑏1
0 1

𝑓0
𝑥
1

=
𝑎1𝑎2 𝑎2𝑏1 + 𝑏2
0 1

𝑥
1

 Most powerful! Homework:

 Parallelize tridiagonal solve (e.g., Thomas’ algorithm)

 Parallelize string parsing

17

Prefix sums as magic bullet for other seemingly sequential algorithms

spcl.inf.ethz.ch

@spcl_eth

 Radix sort works bit-by-bit

 Sorts k-bit numbers in k iterations

 In each iteration 𝑖 stably sort all values by the 𝑖-th bit

 Example, k=1:

Iteration 0: 101 111 010 011 110 001

Iteration 1: 010 110 101 111 011 001

Iteration 2: 101 001 010 110 111 011

Iteration 3: 001 010 011 101 110 111

 Now on n processors

 Each processor owns single k-bit number, each iteration

low = prefix_sum(!bit, sum)

high = n+1-backwards_prefix_sum(bit, sum)

new_idx = (bit == 0) : low ? high

b[new_idx] = a[i]

swap(a,b)
18

Another use for prefix sums: Parallel radix sort

Show one example iteration!

Question: work and depth?

spcl.inf.ethz.ch

@spcl_eth

 Seems paradoxical but isn’t (may just not be most efficient)

 Use adjacency matrix representation of graph – “compute with all zeros”

19

Oblivious graph algorithms

1

3

4
5

2

6

0 1 1 0 0 0

0 0 0 0 1 1

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

i

j

1

3

4
5

2

6

0 2 3 0 0 0

0 0 0 0 3 1

0 0 0 0 0 2

0 0 4 0 0 0

0 0 0 7 0 0

0 0 0 0 8 0

i

j

Unweighted graph – binary matrix Weighted graph – general matrix

spcl.inf.ethz.ch

@spcl_eth

 A semiring is an algebraic structure that

 Has two binary operations called “addition” and “multiplication”

 Addition must be associative ((a+b)+c = a+(b+c)) and commutative ((a+b=b+a)) and have an identity element

 Multiplication must be associative and have an identity element

 Multiplication distributes over addition (a*(b+c) = a*b+a*c) and multiplication by additive identity annihilates

 Semirings are denoted by tuples (S, +, *, 0, 1)

“Standard” ring of rational numbers: (ℝ, +, *, 0, 1)

Boolean semiring: ({0,1}, ∨, ∧, 0, 1)

Tropical semiring: (ℝ ∪ {∞}, min, +, ∞, 0) (also called min-plus semiring)

20

Algebraic semirings

spcl.inf.ethz.ch

@spcl_eth

 Construct distance matrix from adjacency matrix by replacing all off-diagonal
zeros with ∞

 Initialize distance vector 𝒅𝟎of size n to ∞ everywhere but zero at start vertex

 E.g., 𝐝𝟎 = ∞,𝟎,∞,∞,∞,∞ 𝑻

Show evolution when multiplied!

 SSSP can be performed with n+1 matrix-vector multiplications!

 Question: total work and depth?

𝑊 = 𝑂(𝑛3), 𝐷 = 𝑂(𝑛 log 𝑛)

 Question: Is this good? Optimal?

Dijkstra = 𝑂(𝐸 + 𝑉 log 𝑉)

 Homework:

 Define a similar APSP algorithm with

𝑊 = 𝑂(𝑛3 log 𝑛), 𝐷 = 𝑂(log2 𝑛)

21

Oblivious shortest path search

0 ∞ ∞ ∞ ∞ ∞

2 0 ∞ ∞ ∞ ∞

3 ∞ 0 4 ∞ ∞

∞ ∞ ∞ 0 7 ∞

∞ 3 ∞ ∞ 0 8

∞ 1 2 ∞ ∞ 0

1

3

4
5

2

6

spcl.inf.ethz.ch

@spcl_eth

 Question: How could we compute the transitive closure of a graph?

 Multiply the matrix (𝐴 + 𝐼) 𝑛 times with itself in the Boolean semiring!

 Why?

Demonstrate that 𝐴 + 𝐼 2 has 1s for each path of at most length 1

By induction show that 𝐴 + 𝐼 𝑘 has 1s for each path of at most length k

 What is work and depth of transitive closure?

 Repeated squaring! 𝑊 = 𝑂(𝑛3log 𝑛) 𝐷 = 𝑂(log2𝑛)

 How to get to connected components from a transitive closure matrix?

 Each component needs unique label

 Create label matrix 𝐿𝑖𝑗 = 𝑗 iff 𝐴𝐼
𝑛
𝑖𝑗 = 1 and 𝐿𝑖𝑗 = ∞ otherwise

 For each column (vertex) perform min-reduction to determine its component label!

 Overall work and depth?

𝑊 = 𝑂(𝑛3log 𝑛), 𝐷 = 𝑂(log2𝑛)

22

Oblivious connected components
0 1 1 0 0 0

0 0 0 0 1 1

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

i

j

1 1 1 0 0 0

0 1 0 0 1 1

0 0 1 0 0 1

0 0 1 1 0 0

0 0 0 1 1 0

0 0 0 0 1 1

+I

spcl.inf.ethz.ch

@spcl_eth

 Not clear whether they are most efficient

 Efforts such as GraphBLAS exploit existing BLAS implementations and techniques

 Generalizations to other algorithms possible

 Can everything be modeled as tensor computations on the right ring?

 E. Solomonik, TH: “Sparse Tensor Algebra as a Parallel Programming Model”

 Much of machine learning/deep learning is oblivious

 Many algorithms get non-oblivious though

 All sparse algorithms are data-dependent!

 E.g., use sparse graphs for graph algorithms on semirings (if 𝐸 < 𝑉 2/log|𝑉|)

May recover some of the lost efficiency by computing zeros!

 Now moving to non-oblivious

23

Many if not all graph problems have oblivious or tensor variants!

spcl.inf.ethz.ch

@spcl_eth

 Outline:

 Reduction on a linked list

 Prefix sum on a linked list

 Nonoblivious graph algorithms - connected components

 Conflict graphs of bounded degree

 Modeling assumptions:

 When talking about work and depth, we assume each loop iteration on a single PE is unit-cost (may contain multiple
instructions!)

24

Nonoblivious parallel algorithms

spcl.inf.ethz.ch

@spcl_eth

 Given: n values in linked list, looking for sum of all values

 Sequential algorithm:

25

Reduction on a linked list typedef struct elem {
struct elem *next;
int val

} elem;

5 1 6 3 7

set S={all elems}
while (S != empty) {
pick some i ∈ S;
S = S – i.next;
i.val += i.next.val;
i.next = i.next.next;

}

A set 𝐼 ⊂ 𝑆 is called an independent set if no
two elements in 𝐼 are connected!

Are the following sets independent or not?
• {1}
• {1,5}
• {1,5,3}
• {7,6,5}
• {7,6,1}

Class question: What is the maximum
size of an independent set of a linked
list with 𝑛 elements?

spcl.inf.ethz.ch

@spcl_eth

 Given: n values in linked list, looking for sum of all values

 Parallel algorithm:

26

Parallel reduction on a linked list typedef struct elem {
struct elem *next;
int val

} elem;

5 1 6 3 7

set S={all elems}
while (S != empty) {
pick independent subset I ∈ S;
for(each 𝑖 ∈ 𝐼 do in parallel) {
S = S – i.next;
i.val += i.next.val;
i.next = i.next.next;

}
}

A subset 𝐼 ⊂ 𝑆 is called an independent set
if no two elements in 𝐼 are connected!

Basically the same algorithm, just working
on independent subsets!

Class question: Assuming picking a maximum 𝐼 is
free, what are work and depth?

𝑊 = 𝑛 − 1, 𝐷 = ⌈log2n⌉

Is this optimal?

spcl.inf.ethz.ch

@spcl_eth

 That’s now the whole trick!

 It’s simple if all linked values are consecutive in an array – same as “standard” reduction!

Can compute independent set up-front!

 Irregular linked list though?

 Idea 1: find the order of elements requires parallel prefix sum, D’oh!

 Observation: if we pick 𝐼 > 𝜆|𝑉| in each iteration, we finish in logarithmic time!

 Symmetry breaking:

 Assume 𝑝 processes work on 𝑝 consecutive nodes

 How to find the independent set?

They all look the same (well, only the first and last differ, they have no left/right neighbor)

Local decisions cannot be made

 Introduce randomness to create local differences!

 Each node tosses a coin 0 or 1

 Let 𝐼 be the set of nodes such that 𝑣 drew 1 and 𝑣. 𝑛𝑒𝑥𝑡 drew 0!

Show that I is indeed independent!

What is the probability that 𝑣 ∈ 𝐼?
27

How to pick the independent set 𝑰?

5 1 6 3 7

0 0 1 0 1
𝑃 𝑣 ∈ 𝐼 =

1

4

spcl.inf.ethz.ch

@spcl_eth

 As the set shrinks, the random selection will get less efficient

 When 𝑝 is close to 𝑛 (𝑆) then most processors will fail to make useful progress

 Switch to a different algorithm

 Recursive doubling!

 Show execution on our example!

 Algorithm computes prefix sum on the list!

Result at original list head is overall sum

28

Optimizations

5 1 6 3 7

for (i=0; i ≤ ⌈log2𝑛⌉; ++i) {
for(each elem do in parallel) {

elem.val += elem.next.val;
elem.next = elem.next.next;

}
} Class question: What are work and depth?

𝑊 = 𝑛⌈log2𝑛⌉, 𝐷 = ⌈log2n⌉

spcl.inf.ethz.ch

@spcl_eth

 Didn’t we just see it? Yes, but work-inefficient (if 𝒑 ≪ 𝒏)!

We extend the randomized symmetry-breaking reduction algorithms

 First step: run the reduction algorithm as before

 Second step: reinsert in reverse order of deletion

When reinserting, add the value of their successor

29

Prefix summation on a linked list

5 1 6 3 7

5 1 11 10 7

5 1 21 10 7

5 1 22 10 7

5 1 22 10 7

5 1 22 11 7

16 1 22 11 8

spcl.inf.ethz.ch

@spcl_eth

 Didn’t we just see it? Yes, but work-inefficient (if 𝒑 ≪ 𝒏)!

We extend the randomized symmetry-breaking reduction algorithms

 First step: run the reduction algorithm as before

 Second step: reinsert in reverse order of deletion

When reinserting, add the value of their successor

 Class question: how to implement this in practice?

 Either recursion or a stack!

 Design the algorithm as homework (using a parallel for loop)

30

Prefix summation on a linked list

spcl.inf.ethz.ch

@spcl_eth

 Straight forward and cheap to compute sequentially – question: how?

 Any traversal algorithm in work 𝑂 𝑉 + 𝐸

Seemingly trivial - becomes very interesting in parallel

 Our oblivious semiring-based algorithm was 𝑊 = 𝑂(𝑛3log 𝑛), 𝐷 = 𝑂(log2𝑛)

FAR from work optimality! Question: can we do better by dropping obliviousness?

 Let’s start simple – assuming concurrent read/write is free

 Arbitrary write wins

 Concept of supervertices

 A supervertex represents a set of vertices in a graph

1. Initially, each vertex is a (singleton) supervertex

2. Successively merge neighboring supervertices

3. When no further merging is possible each supervertex is a component

 Question is now only about the merging strategy
31

Finding connected components as example

A connected component of an undirected graph is a subgraph in which any two vertices are connected
by a path and no vertex in the subgraph is connected to any vertices outside the subgraph. Each
undirected graph G = (V,E) contains one or multiple (at most |V|) connected components.

A fixpoint algorithm proceeds iteratively and
monotonically until it reaches a final state
that is not left by iterating further.

spcl.inf.ethz.ch

@spcl_eth

 Pointer graph/forest:

 Define pointer array 𝑃, 𝑃[𝑖] is a pointer from 𝑖 to some other vertex

 We call the graph defined by 𝑃 (excluding self loops) the pointer graph

 During the algorithm, 𝑃[𝑖] forms a forest such that ∀𝑖: 𝑖, 𝑃 𝑖 there exists a path from 𝑖 to 𝑃[𝑖] in the original graph!

 Initially, all 𝑃 𝑖 = 𝑖

 The algorithm will run until each forest is a directed star pointing at the (smallest-id) root of the component

 Supervertices:

 Initially, each vertex is its own supervertex

 Supervertices induce a graph - 𝑆𝑖 and 𝑆𝑗 are connected iff ∃ 𝑢, 𝑣 ∈ 𝐸 with 𝑢 ∈ 𝑆𝑖 and 𝑣 ∈ 𝑆𝑗

 A supervertex is represented by its tree in 𝑃

32

Shiloach/Vishkin’s algorithm

1

3

4

5
2

6

graph with single component

1

3

4

5
2

6

possible forest formed by 𝑃

1

3

4

5
2

6

star formed by 𝑃

spcl.inf.ethz.ch

@spcl_eth

 Algorithm proceeds in two operations:

 Hook – merge connected supervertices (must be careful to not introduce cycles!)

 Shortcut – turn trees into stars

Repeat two steps iteratively until fixpoint is reached!

 Correctness proofs:

 Lemma 1: The shortcut operation converts rooted trees to rooted stars. Proof: obvious

 Theorem 1: The pointer graph always forms a forest (set of rooted trees). Proof: shortcut doesn’t violate, hook works
on rooted stars, connects only to smaller label star, no cycles

33

Shiloach/Vishkin’s algorithm – key components

1

3

4

5
2

6

1

3

4

5
2

6

hook 1

3

4

5
2

6

1

3

4

5
2

6

shortcut

spcl.inf.ethz.ch

@spcl_eth

 Algorithm proceeds in two operations:

 Hook – merge connected supervertices (must be careful to not introduce cycles!)

 Shortcut – turn trees into stars

Repeat two steps iteratively until fixpoint is reached!

 Performance proofs:

 Lemma 2: The number of iterations of the outer loop is at most log2 𝑛. Proof: consider connected component, if it
has two supervertices before hook, number of supervertices is halved, if no hooking happens, component is done

 Lemma 2: The number of iterations of the inner loop in shortcut is at most log2 𝑛. Proof: consider tree of height > 2
at some iteration, the height of the tree halves during that iteration

 Corollary: Class question: work and depth? 34

Shiloach/Vishkin’s algorithm – key components

1

3

4

5
2

6

1

3

4

5
2

6

hook 1

3

4

5
2

6

1

3

4

5
2

6

shortcut

𝑊 = 𝑂 𝑛2log 𝑛 , 𝐷 = 𝑂(log2𝑛) (assuming conflicts are free!)

spcl.inf.ethz.ch

@spcl_eth

 Familiar (non-HPC) network: Internet TCP/IP

 Common model:

 Class Question: What parameters are needed to model the performance (including pipelining)?

 Latency, Bandwidth, Injection Rate, Host Overhead

 What network models do you know and what do they model?

35

Distributed networking basics

Network DestinationSource

spcl.inf.ethz.ch

@spcl_eth

 Transfer time 𝑇(𝑠) = 𝛼 + 𝛽𝑠

 𝛼 = startup time (latency)

 𝛽 = cost per byte (bandwidth=1/β)

 As s increases, bandwidth approaches 1/𝛽 asymptotically

 Convergence rate depends on α

 𝑠1
2

= 𝛼/𝛽

 Assuming no pipelining (new messages can only be issued from a process after all arrived)

36

Remember: A Simple Model for Communication

spcl.inf.ethz.ch

@spcl_eth

 𝑠1
2

= 𝛼/𝛽 is often used to distinguish bandwidth- and latency-bound messages

 𝑠1
2

is in the order of kilobytes on real systems

37

Bandwidth vs. Latency

asymptotic limit

spcl.inf.ethz.ch

@spcl_eth

 Simplest linear broadcast

 One process has a data item to be distributed to all processes

 Linearly broadcasting s bytes among P processes:

 𝑇 𝑠 = 𝑃 − 1 ⋅ 𝛼 + 𝛽𝑠 = 𝑂(𝑃)

 Class question: Do you know a faster method to accomplish the same?

38

Quick Example

spcl.inf.ethz.ch

@spcl_eth

 Origin process is the root of the tree, passes messages to k neighbors which pass them on

 k=2 -> binary tree

 Class Question: What is the broadcast time in the simple latency/bandwidth model?

 𝑇 𝑠 ≈ log𝑘𝑃 ⋅ 𝑘(𝛼 + 𝛽𝑠) (for fixed k)

 Class Question: What is the optimal k?

 0 =
𝑘 ln 𝑃

ln 𝑘

𝑑

𝑑𝑘
=

lnP ln 𝑘 − ln 𝑃

ln2𝑘
→ 𝑘 = 𝑒 = 2.71…

 Independent of 𝑃, 𝛼, 𝛽𝑠? Really?

39

k-ary Tree Broadcast

spcl.inf.ethz.ch

@spcl_eth

 Class Question: Can we broadcast faster than in a ternary tree?

 Yes because each respective root is idle after sending three messages!

 Those roots could keep sending!

 Result is a k-nomial tree

For k=2, it’s a binomial tree

 Class Question: What about the runtime?

 Class Question: What is the optimal k here?

 T(s) d/dk is monotonically increasing for k>1, thus kopt=2

 Class Question: Can we broadcast faster than in a k-nomial tree?

 is asymptotically optimal for s=1!

 But what about large s?

40

Faster Trees?

spcl.inf.ethz.ch

@spcl_eth

 Extreme case (P small, s large): simple pipeline

 Split message into segments of size z

 Send segments from PE i to PE i+1

 Class Question: What is the runtime?

 T(s) = (P-2+s/z)(α + βz)

 Compare 2-nomial tree with simple pipeline for α=10, β=1, P=4, s=106, and z=105

 2,000,020 vs. 1,200,120

 Class Question: Can we do better for given α, β, P, s?

 Derive by z

 What is the time for simple pipeline for α=10, β=1, P=4, s=106, zopt?

 1,008,964
41

Very Large Message Broadcast

spcl.inf.ethz.ch

@spcl_eth

 Class Question: What is a simple lower bound on the broadcast time?

 How close are the binomial tree for small messages and the pipeline for large messages (approximately)?

 Bin. tree is a factor of log2(P) slower in bandwidth

 Pipeline is a factor of P/log2(P) slower in latency

 Class Question: What can we do for intermediate message sizes?

 Combine pipeline and tree pipelined tree

 Class Question: What is the runtime of the pipelined binary tree algorithm?

 Class Question: What is the optimal z?

42

Lower Bounds

spcl.inf.ethz.ch

@spcl_eth

 What is the complexity of the pipelined tree with zopt for small s, large P and for large s, constant P?

 Small messages, large P: s=1; z=1 (s≤z), will give O(log P)

 Large messages, constant P: assume α, β, P constant, will give asymptotically O(sβ)

Asymptotically optimal for large P and s but bandwidth is off by a factor of 2! Why?

 Bandwidth-optimal algorithms exist, e.g., Sanders et al. “Full Bandwidth Broadcast, Reduction and Scan
with Only Two Trees”. 2007

 Intuition: in binomial tree, all leaves (P/2) only receive data and never send wasted bandwidth

 Send along two simultaneous binary trees where the leafs of one tree are inner nodes of the other

 Construction needs to avoid endpoint congestion (makes it complex)

Can be improved with linear programming and topology awareness

(talk to me if you’re interested)

43

Towards an Optimal Algorithm

spcl.inf.ethz.ch

@spcl_eth

 Look for optimal parallel algorithms (even in simple models!)

 And then check the more realistic models

 Useful optimization targets are MPI collective operations

Broadcast/Reduce, Scatter/Gather, Alltoall, Allreduce, Allgather, Scan/Exscan, …

 Implementations of those (check current MPI libraries)

 Useful also in scientific computations

Barnes Hut, linear algebra, FFT, …

 Lots of work to do!

 Contact me for thesis ideas (or check SPCL) if you like this topic

 Usually involve optimization (ILP/LP) and clever algorithms (algebra) combined with practical experiments on large-
scale machines (10,000+ processors)

44

Open Problems

spcl.inf.ethz.ch

@spcl_eth

 Defined by four parameters:

 L: an upper bound on the latency, or delay, incurred in communicating a message containing a word (or
small number of words) from its source module to its target module.

 o: the overhead, defined as the length of time that a processor is engaged in the transmission or
reception of each message; during this time, the processor cannot perform other operations.

 g: the gap, defined as the minimum time interval between consecutive message transmissions or
consecutive message receptions at a processor. The reciprocal of g corresponds to the available per-
processor communication bandwidth.

 P: the number of processor/memory modules. We assume unit time for local operations and call it a
cycle.

45

The LogP Model

spcl.inf.ethz.ch

@spcl_eth

46

The LogP Model

spcl.inf.ethz.ch

@spcl_eth

 Sending a single message

 T = 2o+L

 Ping-Pong Round-Trip

 TRTT = 4o+2L

 Transmitting n messages

 T(n) = L+(n-1)*max(g, o) + 2o

47

Simple Examples

spcl.inf.ethz.ch

@spcl_eth

 o is bigger than g on some machines

 g can be ignored (eliminates max() terms)

 be careful with multicore!

 Offloading networks might have very low o

 Can be ignored (not yet but hopefully soon)

 L might be ignored for long message streams

 If they are pipelined

 Account g also for the first message

 Eliminates “-1”

48

Simplifications

spcl.inf.ethz.ch

@spcl_eth

 Models pipelining

 L/g messages can be “in flight”

 Captures state of the art (cf. TCP windows)

 Models computation/communication overlap

 Asynchronous algorithms

 Models endpoint congestion/overload

 Benefits balanced algorithms

49

Benefits over Latency/Bandwidth Model

spcl.inf.ethz.ch

@spcl_eth

 Class Question: What is the LogP running time for a linear broadcast of a single packet?

 Tlin = L + (P-2) * max(o,g) + 2o

 Class Question: Approximate the LogP runtime for a binary-tree broadcast of a single packet?

 Tbin ≤ log2P * (L + max(o,g) + 2o)

 Class Question: Approximate the LogP runtime for an k-ary-tree broadcast of a single packet?

 Tk-n ≤ logkP * (L + (k-1)max(o,g) + 2o)

50

Example: Broadcasts

spcl.inf.ethz.ch

@spcl_eth

 Class Question: Approximate the LogP runtime for a binomial tree broadcast of a single packet (assume L
> g!)?

 Tbin ≤ log2P * (L + 2o)

 Class Question: Approximate the LogP runtime for a k-nomial tree broadcast of a single packet?

 Tk-n ≤ logkP * (L + (k-2)max(o,g) + 2o)

 Class Question: What is the optimal k (assume o>g)?

 Derive by k: 0 = o * ln(kopt) – L/kopt + o (solve numerically)

For larger L, k grows and for larger o, k shrinks

 Models pipelining capability better than simple model!

51

Example: Broadcasts

spcl.inf.ethz.ch

@spcl_eth

 Class Question: Can we do better than kopt-ary binomial broadcast?

 Problem: fixed k in all stages might not be optimal

 We can construct a schedule for the optimal broadcast in practical settings

 First proposed by Karp et al. in “Optimal Broadcast and Summation in the LogP Model”

52

Example: Broadcasts

spcl.inf.ethz.ch

@spcl_eth

 Broadcast to P-1 processes

 Each process who received the value sends it on; each process receives exactly once

53

Example: Optimal Broadcast

P=8, L=6, g=4, o=2

spcl.inf.ethz.ch

@spcl_eth

 This determines the maximum number of PEs (P(t)) that can be reached in time t

 P(t) can be computed with a generalized Fibonacci recurrence (assuming o>g):

 Which can be bounded by (see [1]):

 A closed solution is an interesting open problem!

54

Optimal Broadcast Runtime

[1]: Hoefler et al.: “Scalable Communication Protocols for Dynamic Sparse Data Exchange” (Lemma 1)

spcl.inf.ethz.ch

@spcl_eth

 We learned how to program shared memory systems

 Coherency & memory models & linearizability

 Locks as examples for reasoning about correctness and performance

 List-based sets as examples for lock-free and wait-free algorithms

 Consensus number

 We learned about general performance properties and parallelism

 Amdahl’s and Gustafson’s laws

 Little’s law, Work-span, …

 Balance principles & scheduling

 We learned how to perform model-based optimizations

 Distributed memory broadcast example with two models

 What next? MPI? OpenMP? UPC?

 Next-generation machines “merge” shared and distributed memory concepts → Partitioned Global Address Space
(PGAS)

If you’re interested in any aspect of parallel algorithms, programming, systems, or large-scale computing
and are looking for a thesis, let us know! (and check our webpage http://spcl.inf.ethz.ch/SeMa)

55

The Bigger Picture

http://spcl.inf.ethz.ch/SeMa

