ETHziirich

T. HOEFLER, M. PUESCHEL

Rule 9: Document all varying factors and their levels as well as the
complete experimental setup (e.g., software, hardware, techniques)
to facilitate reproducibility and provide interpretability.

= We recommend factorial design

= Consider parameters such as node process-ti di network or node contention
= If they cannot be controlled easily, use randomization and model them as random variable

(=

How many measurements are needed?

- can be
= Yet necessary to reach certain confidence

* How to determine the of measur ?
Measure until the confidence interval has a certain acceptable width
For example, measure until the 95% Cl is within 5% of the mean/median

Can be computed analytically assuming normal data

Compute iteratively for nonparametric statistics

= Often heard: “we cannot afford more than a single measurement”
= E.g., Gordon Bell runs
= Well, then one cannot say anything about the variance
Even 3-4 measurement can provide very tight Cl (assuming normality)
Can also exploit repetitive nature of many applications

IE€E/ACM SIS

+ ETHzirich

Time in parallel systems

That’s nonsense!
My simple
broadcast takes
only one latency!

But | measured it
so it must be true!

t = -MPI_Wtime(); '
for(i=0; i<1000; i++) { o

Measure each
operation
separately!

= Use high-precision timers
= Synchronize processes

= Summarize across processes:
= Min/max (unstable), average, median — depends on use-case

™, IEEE/ACMSC1S

= This is hard in practice and not easy to capture in rules )MP'—B““('

t += MPI_Wtime();
t/=1000;

™ ece/acmscr

ML veniw ETHziUrich [l " SPCL Ve ETHZzirich

Rule 10: For parallel time measurements, report all measurement, Rk ible. sh bounds & Tt
(optional) synchronization, and summarization techniques. ule 11: If p ‘?SS' €, S| um'/'upp er performance bounds to facilitate
interpretability of the measured results.
= Measure events separately = Model system as k- | space

Each dimension represents a capability

Floating point, Integer, memory bandwidth, cache bandwidth, etc.
Features are typical rates

Determine maximum rate for each dimension

E.g., from documentation or benchmarks
= Can be used to proof optimality of implementation
= |f the requirements of the bottleneck dimension are minimal

eEE/ACMSCls




Vonien ETHzirich

Rule 12: Plot as much information as needed to interpret the
experimental results. Only connect measurements by lines if they
indicate trends and the interpolation is valid.

Parllel IEEE/ACM SC1S

+a

L w [ETHzirich

Administrivia

Final project presentation: next Monday 12/17 during lecture
= Report will be due in January!
Starting to write early is very helpful --- write — rewrite — rewrite (no joke!)

= Coordinate your talk! You have 10 minutes (8 talk + 2 Q&A)
What happened since the intermediate report?
Focus on the key aspects (time is tight)!
Try to wrap up — only minor things left for final report.
Engage the audience @

Send slides by Sunday night (11:59pm Zurich time) to Salvatore!

We will use a single (windows) laptop to avoid delays when switching
Expect only Windows (powerpoint) or a PDF viewer

The order of talks will again be randomized for fairness

Review of last lecture(s)

Impossibility of wait-free consensus with atomic registers
= “perhaps one of the most striking impossibility results in Computer Science” (Herlihy, Shavit)
Large-scale locks
= Scaling MCS to thousands of nodes with (MPI) RMA
Oblivious algorithms
= Execution oblivious vs. structural oblivious
= Why do we care about obliviousness?
= Strict optimality of work and depth — reduction © —scan ®
Linear scan, tree scan, dissemination scan, surprising work-depth tradeoff W+D = 2n-2
1/0 complexity
= The red-blue pebble game (four rules: input, output, compute, delete)
= S partitioning proof
= Geometric arguments for dense linear algebra — example matrix multiplication

Loomis Whitney inequality: |V| < _[|V| + |Vy| + |V, | (a set is smaller than sqrt of the sum of orthogonal projections)

= Simple recomputation — trade off I/O for compute

L =

Learning goals for today

Strict optimality
= Work/depth tradeoffs and bounds
= Applications of prefix sums
Parallelize seemingly sequential algorithms

Oblivious graph algorithms
= Shortest paths
= Connected components

Nonoblivious algorithms
= Sums and prefix sums on linked lists
= Connected components

Distributed algorithms
= Broadcast in alpha-beta and LogP

ML e ETHzUrich
DPHPC Overview
DPHPC
. locality parallelism
] L
3 -
g -caches vector ISA  shared memory distributed memory
5 - memory hierarchy
ﬁ } cache coherency |
1
P memory distributed
@. models algorithms
= locks group commu-
8 lock free nications
wait free
linearizability
| Amdahl's and Gustafson's law |
I 1
é |_memoy PRAM Iy LogP :
a-B
] .
1/0 complexity

speLinfethz.ch

balance principles | balance principles I
Little's Law scheduling

MR v enien ETHzirich

Recap: Work-depth tradeoff in parallel prefix sums

Obvious question: is there a depth- and work-optimal algorithm?
= This took years to settle! The answer is surprisingly: no
= We know, for parallel prefix: W + D > 2n —2

Output tree:

+ leaves are all inputs, rooted at x,,
+ binary due to binary operation

« W=n-1,D=D,

Input tree:

* rooted at x4, leaves are all outputs
* not binary (simultaneous read)

c W=n-1

Ridge can be at most D,long!

Now add trees and subtract shared vertices:
m—-1D+m—-1)—-D,=2n—2-D, <W

g.e.d.




S Vo ETHZzirich
Work-Depth Tradeoffs and deficiency

“The deficiency of a prefix circuit c is defined as def(c) = W, + D, — (2n — 2)”

T T T T T T
Serial Prefix Circuit ——
Sklansky Circuit
1960

Latest 2006 result for zero-deficiency
construction forn > F(D +3) — 1
(f(n) is inverse)

d (depth)

ol W-D tradeoff: 1986 ‘

zero—deficiency prefix circuits
wh (lincar depth-—size tradeoff) J}

L I
20 40 60
n (width)

From Zhu et al.: “Construction of Zero-Deficiency Parallel Prefix Circuits”, 2006

MG

« ETHzirich
Work- and depth-optimal constructions

= Work-optimal?
= Only sequential! Why?
= W=n-1thusD=2n—-2-W=n-1qed.®

= Depth-optimal?

Ladner and Fischer propose a construction for work-efficient circuits with minimal depth

D =[logyn], W < 4n

Simple set of recursive construction rules (too boring for class, check 1980’s paper if needed)
Has an unbounded fan-out! May thus not be practical &

= Depth-optimal with bounded fan-out?
= Some constructions exist, interesting open problem
= Nice research topic to define optimal circuits

But why do we care about this prefix sum so much?

= |t’s the simplest problem to demonstrate and prove W-D tradeoffs
= And it’s one of the most important parallel primitives

= Prefix ion as

position is extremely powerful!
= Many seemingly sequential problems can be parallelized!

L =

[p—
2004 bt number Ls8

Seems very sequential, can this be parallelized?

Couti = @;and b; or ¢j; and (a; xor b;)

Si = @; Xor b; Xor ¢pn;

*= We only want s!
= Requires Cin,1, Cin2, -+ Cinn though &

Ca-

= Carry bits can be computed with a scan! s
Model carry bit as state starting with 0

s: s.
source: electronics-tutorials.ws

Encode state as 1-hot vector: q, = (;), q = ((,7)

Prefix sums as magic bullet for other seemingly sequential algorithms

= Anytimea ial chain can be as
= Letfj, ..., f be an ordered set of functions and fo(x) = x
= Define ordered function compositions: f; (x); fo(fi (x)); ...; fu (.. (X))
= If we can write function composition g(x) = f;(fi-1(x)) as g =
We saw an example with the adder (M, were our functions)

i © fi—1 then we can compute o with a prefix sum!

= Example: linear recurrence f;(x) = a;f;_1(x) + b; with f(x)=x
) . a; by
= Write as matrix form fl(’l‘) = (Ol 1’)f1—1 (’;)
= Function composition is now simple matrix multiplication!
L. (xy_ (a2 by\(a; by x) = (W42 @by + by (x
Fmexample.fz(l)—(o 1)(0 1)f0(1)—( 0 1 )(1)

= Most powerful! Homework:
= Parallelize tridiagonal solve (e.g., Thomas’ algorithm)
= Parallelize string parsing

= Simple first example: binary adder —s = a + b (n-bit numbers) = Each full adder updates the carry bit state according to a; and b; E){el‘ciSe.
= Starting with single-bit (full) adder for bit i State update is now represented by matrix operator, depending on a; and b; (Ma,p,): N s,mp/if ,
b Example 4-bit ripple carry adder Mgo = (é é)’ Mo = Mgy = ((1) (1)) My, = ((l) (1)) 1Z;
a; b, ) ) -
o Question: what are the functions for s;and coye,i? MsB ot Yichinived Lse = Operator ition is defined on ic ring ({0, 1, or, and}) — i.e., replace “+” with “and” and “*” with “or”
¢ ¢ Si = @ XOr by Xor Cini he b b i Prefix sum on the states computes now all carry bits in parallel!
n i out, i
! : Couti = a;and b; or ¢ and (a; xor by) . N
= Example: a=011, b=101 = M4, Mo, Moy
Si Show example 4-bit addition! = Scan computes: My;= (? (1)), My 1My = (2 g) My MyoMyy = (2 (l)) in parallel
Question: what is work and depth? = All carry states and s; can now be computed in parallel by multiplying scan result with qq
MSPCL v'emion ETHziirich PSP v enaen ETHzUrich

Another use for prefix sums: Parallel radix sort

= Radix sort works bit-by-bit
= Sorts k-bit numbers in k iterations
= In each iteration i stably sort all values by the i-th bit
= Example, k=1:
Iteration 0: 101 111 010 011 110 001
Iteration 1: 010 110 101 111 011 001
Iteration 2: 101 001 010 110 111 011
Iteration 3: 001 010 011 101 110 111

= Now on n processors
= Each processor owns single k-bit number, each iteration
low = prefix_sum(!bit, sum)
high = n+l-backwards_prefix_sum(bit, sum)
new_idx = (bit == @) : low ? high
b[new_idx] = a[i]
swap(a,b)

Show one example iteration!

Question: work and depth?




Vo ETHZzirich
Oblivious graph algorithms

= Seems paradoxical but isn’t (may just not be most efficient)
= Use adjacency matrix representation of graph — “compute with all zeros”

—_—

-
011000 ;

023000
0000 11

000031
00000 1

000002
001000
' 004000
jooo0o 100 ’

joo o700
000010

000080

Unweighted graph — binary matrix Weighted graph — general matrix

+a

L w [ETHzirich

Algebraic semirings

= A semiring is an algebraic structure that

Has two binary operations called “addition” and “multiplication”

Addition must be associative ((a+b)+c = a+(b+c)) and commutative ((a+b=b+a)) and have an identity element
Multiplication must be associative and have an identity element

Multiplication distributes over addition (a*(b+c) = a*b+a*c) and multiplication by additive identity annihilates
Semirings are denoted by tuples (S, +, *, 0, 1)

“Standard” ring of rational numbers: (R, +, *, 0, 1)

Boolean semiring: ({0,1}, V, A, 0, 1)

Tropical semiring: (R U {0}, min, +, o, 0) (also called min-plus semiring)

Oblivious shortest path search

"

= Construct distance matrix from
zeros with oo

matrix by replacing all off-di I

= Initialize distance vector d of size n to c everywhere but zero at start vertex
= Eg,dy = (c0,0,0,00,0,00)
Show evolution when multiplied!

= SSSP can be performed with n+1 matrix-vector multiplications!
= Question: total work and depth?
W =0(?%), D =0(nlogn)

Oblivious connected components

—_ i

: et 0110 00

= Question: How could we compute the transitive closure of a graph? slolelelala
= Multiply the matrix (A + ) n times with itself in the Boolean semiring!

= Why? 0000O0O0 1

Demonstrate that (A + I)? has 1s for each path of at most length 1 001000

By induction show that (A + I)* has 1s for each path of at most length k jo oo 100

0 00O 10

= What is work and depth of transitive closure?
= Repeated squaring! W = 0(n’*log n) D = 0(log?n)

Many if not all graph problems have oblivious or tensor variants!

= Not clear whether they are most efficient
= Efforts such as GraphBLAS exploit existing BLAS implementations and techniques

= Generalizations to other algorithms possible
= Can everything be modeled as tensor computations on the right ring?
= E. Solomonik, TH: “Sparse Tensor Algebra as a Parallel Programming Model”
= Much of machine learning/deep learning is oblivious

= Many algorithms get non-oblivious though
= All sparse algorithms are data-dependent!
= E.g., use sparse graphs for graph algorithms on semirings (if |E| < [V|?/log|V|)
May recover some of the lost efficiency by computing zeros!

= Now moving to non-oblivious @

0 © o ™ 0w ™ 111000

* Question: Is this good? Optimal? 2 0 ® 0 ® ® * Howtogetto d comp froma closure matrix? 010011

Dijkstra = O(|E| + |V[log|V]) & 3 0 0 4 © = Each component needs unique label 00100 1

® 0o 0 7 ® = Create label matrix L;; = j iff (A,)"”. = 1and L;j = o otherwise 001100

= Homework: ©w 3 o o 0 8 = For each column (vertex) perform min-reduction to determine its component label! 000110

= Define a s|3m||ar APSP algorlthr: with | 1| 2| |@| o = Overall work and depth? 0000 1 1

W = 0(n®logn), D = 0(log? n) W = 0(n®logn), D = 0(log?n)

AL o ETHzirich ] o = B ven ETHziirich

Nonoblivious parallel algorithms

= Outline:
Reduction on a linked list

Prefix sum on a linked list

Nonoblivious graph algorithms - connected components

Conflict graphs of bounded degree

* Modeling assumptions:

= When talking about work and depth, we assume each loop iteration on a single PE is unit-cost (may contain multiple
instructions!)




Vo ETHzirich [l L w ETHziirich
Reduction on a linked list R ——— Parallel reduction on a linked list e ———
struct elem *next; struct elem *next;
= Given: n values in linked list, looking for sum of all values int val = Given: nvalues in linked list, looking for sum of all values int val
} elem; } elem;
Asubset I C S is called an independent set
if no two elements in I are connected!
= Sequential algorithm: = Parallel algorithm:
set S={all elems} Aset ] c Sis called an independent set if no set S={all elems}
while (S 1= empty) { two elements in I are connected! while (S != empty) { . ) . .
pick some i € S; pick independent subset I € S; Bas_'C:”V thz same Elgor'lthm’w“ working
S =S - i.next; Are the following sets independent or not? for(each i €1 do in parallel) { on independent subsets!
i.val += i.next.val; < {1} S =S - i.next;
i.next = i.next.next; « {1,5} X ) ) i.val += i.next.val; Class question: Assuming picking a maximum [ is
} + {1,53} Class question: What is the maximum i.next = i.next.next; free, what are work and depth?
« {7,6,5} size of an independent set of a linked } _ —
. {761} list with n elements? } W=n-1D = [log,n]
Is this optimal?

" SPCL

L =

How to pick the independent set I? Optimizations

ETHzirich

= That’s now the whole trick! = As the set shrinks, the random selection will get less efficient

= When p is close to n (|S|) then most processors will fail to make useful progress
= Switch to a different algorithm

= It's simple if all linked values are consecutive in an array — same as “standard” reduction!
Can compute independent set up-front!

= Irregular linked list though? = Recursive doubling!
= Idea 1: find the order of elements = requires parallel prefix sum, D'oh!
= Observation: if we pick |/| > A|V| in each iteration, we finish in logarithmic time! for (i=0; i <[logyn]; ++i) {
= Symmetry breaking: for(each elem do in parallel) {
= Assume p processes work on p consecutive nodes eiem.valt+= eiem.nex:.vali.
= How to find the independent set? } S-em.next = elem-next-next;
They all look the same (well, only the first and last differ, they have no left/right neighbor) } Class question: What are work and depth?
Local decisions cannot be made &
* Introduce randomness to create local differences! = Show execution on our example! W = n[logzn], D = [log,n]
= Each node tosses a coin = 0 or 1 = Algorithm computes prefix sum on the list!
= Let [ be the set of nodes such that v drew 1 and v.next drew 0! Result at original list head is overall sum
Show that | is indeed independent! 1 0 0 1 0 1
What is the probability that v € 17 P(v € 1) = 7
ML vena ETHzirich [l ASPCL v enaen ETHzUrich
Prefix summation on a linked list Prefix summation on a linked list
= Didn’t we just see it? Yes, but work-inefficient (if p << n)! = Didn’t we just see it? Yes, but work-inefficient (if p < n)!

We extend the randomized symmetry-breaking reduction algorithms

We extend the randomized symmetry-breaking reduction algorithms
= First step: run the reduction algorithm as before

= First step: run the reduction algorithm as before
= Second step: reinsert in reverse order of deletion = Second step: reinsert in reverse order of deletion

When reinserting, add the value of their successor When reinserting, add the value of their successor

= Class question: how to implement this in practice?
= Either recursion or a stack!

= Design the algorithm as homework (using a parallel for loop)




speLinfethz.ch
W @spcLeth

ETHzirich

Finding connected components as example

A connected component of an undirected graph is a subgraph in which any two vertices are connected
by a path and no vertex in the subgraph is connected to any vertices outside the subgraph. Each
undirected graph G = (V,E) contains one or multiple (at most [V[) connected components.

= Straight forward and cheap to compute sequentially — question: how?
= Any traversal algorithm in work O(|V| + |E])
Seemingly trivial - becomes very interesting in parallel
= Our oblivious semiring-based algorithm was W = 0(n®log n), D = 0(log?n)
FAR from work optimality! Question: can we do better by dropping obliviousness?
= Let’s start simple — assuming concurrent read/write is free
= Arbitrary write wins
= Concept of supervertices
= Asupervertex represents a set of vertices in a graph

A fixpoint algorithm proceeds iteratively and
monotonically until it reaches a final state

. Initially, each vertex is a (singleton) supervertex that is not left by iterating further.
. When no further merging is possible = each supervertex is a component

1

2. Successively merge neighboring supervertices
3

= Question is now only about the merging strategy

-

ETHzirich

Shiloach/Vishkin’s algorithm

= Pointer graph/forest:
Define pointer array P, P[i] is a pointer from i to some other vertex
We call the graph defined by P (excluding self loops) the pointer graph
During the algorithm, P[i] forms a forest such that Vi: (i, P[i]) there exists a path from i to P[i] in the original graph!
Initially, all P[i] = i
The algorithm will run until each forest is a directed star pointing at the I
= Supervertices:
= |nitially, each vertex is its own supervertex
= Supervertices induce a graph - S; and S; are connected iff 3(u,v) EE withu € S;andv € Sj

= Asupervertex is represented by its tree in P

W

graph with single component

-id) root of the

®

possible forest formed by P star formed by P

Shiloach/Vishkin’s algorithm — key components

= Algorithm proceeds in two operations:
= Hook — merge connected supervertices (must be careful to not introduce cycles!)
= Shortcut - turn trees into stars
Repeat two steps iteratively until fixpoint is reached!

ook shortcut

= Correctness proofs:
= Lemma 1: The shortcut operation converts rooted trees to rooted stars. Proof: obvious

= Theorem 1: The pointer graph always forms a forest (set of rooted trees). Proof: shortcut doesn’t violate, hook works
on rooted stars, connects only to smaller label star, no cycles

Shiloach/Vishkin’s algorithm — key components

= Algorithm proceeds in two operations:
= Hook — merge connected supervertices (must be careful to not introduce cycles!)
= Shortcut - turn trees into stars
Repeat two steps iteratively until fixpoint is reached!

= Performance proofs:

Lemma 2: The number of iterations of the outer loop is at most log, n. Proof: consider connected component, if it
has two supervertices before hook, number of supervertices is halved, if no hooking happens, component is done
Lemma 2: The number of iterations of the inner loop in shortcut is at most log, n. Proof: consider tree of height > 2
at some iteration, the height of the tree halves during that iteration

Corollary: Class question: work and depth? W = 0(n?log n), D = 0(log?n) (assuming conflicts are free!)

ML

clinf.ethz.ch
et

ETHzirich

Distributed networking basics

= Familiar (non-HPC) network: Internet TCP/IP
= Common model:

Network

Source

Destination

= Class Question: What parameters are needed to model the performance (including pipelining)?
= Latency, Bandwidth, Injection Rate, Host Overhead
= What network models do you know and what do they model?

MR e ETHzirich

Remember: A Simple Model for Communication

= Transfertime T(s) = a + fs
= q = startup time (latency)
= = cost per byte (bandwidth=1/pB)

= Assincreases, bandwidth app hes 1/ icall
= Convergence rate depends on a
= s1=a/B
2
= A no lining (new can only be issued from a process after all arrived)




Bandwidth vs. Latency

= si1 = a/f is often used to distinguish bandwidth- and latency-bound messages
2

= s is in the order of kilobytes on real systems
z

asymptotic limit

Bandwidth

Vo ETHZzirich

+a

w [ETHzirich

(=
Quick Example

= Simplest linear broadcast
= One process has a data item to be distributed to all processes

= Linearly broadcasting s bytes among P processes:
* T = (P=1) (@+ps)=0(P)

= Class question: Do you know a faster method to accomplish the same?

k-ary Tree Broadcast

= Origin process is the root of the tree, passes messages to k neighbors which pass them on
= k=2 ->binary tree

= Class Question: What is the broadcast time in the simple latency/bandwidth model?
= T(s) ~ [logyP] - k(a + Bs) (for fixed k)

= Class Question: What is the optimal k?

_kinPd _InPInk-InP
Tk dk InZk

-k =271..

= Independent of P, a, Bs? Really?

L =

Faster Trees?

= (Class Question: Can we broadcast faster than in a ternary tree?
= Yes because each respective root is idle after sending three messages!
= Those roots could keep sending!
= Resultis a k-nomial tree
For k=2, it’s a binomial tree

= Class Question: What about the runtime?

* T(s) = [logr(P)] - (k= 1) - (a+ B - s) = O(log(P))

= Class Question: What is the optimal k here?
= T(s) d/dk is monotonically increasing for k>1, thus Kopt=2

= Class Question: Can we broadcast faster than in a k-nomial tree?
= O(log(P)) is asymptotically optimal for s=1!
= But what about large s?

speLinfethz.ch
speleth

PSP

Very Large Message Broadcast

= Extreme case (P small, s large): simple pipeline
= Split message into segments of size z
= Send segments from PE i to PE i+1

= Class Question: What is the runtime?
= T(s) = (P-2+s/z)(a + Bz)

= Compare 2-nomial tree with simple pipeline for a=10, B=1, P=4, s=10°, and 2=10°
= 2,000,020 vs. 1,200,120

= (Class Question: Can we do better for given a, 8, P, s?

= Derivebyz » —
opt )8

= What s the time for simple pipeline for a=10, =1, P=4, s=10, z,,?
= 1,008,964

ETHzirich

MASPCL v enien ETHzirich
Lower Bounds

= Class Question: What is a simple lower bound on the broadcast time?
* Tpc > min{[logy(P)]a,s3}

= How close are the binomial tree for small
= Bin. tree is a factor of log,(P) slower in bandwidth

and the pipeli

for large (app ly)?
= Pipeline is a factor of P/log,(P) slower in latency

= Class Question: What can we do for intermediate message sizes?
= Combine pipeline and tree - pipelined tree

= Class Question: What is the runtime of the pipelined binary tree algorithm?

T (24 logy P1—2) -2 (a+2zp)

= Class Question: What is the optimal z?

Zopt =4/ B




ISP

speLinfethz.ch
v

ETHzirich

Towards an Optimal Algorithm

* What is the complexity of the pipelined tree with z,, for small s, large P and for large s, constant P?
= Small messages, large P: s=1; z=1 (s<z), will give O(log P)
= Large messages, constant P: assume a, 3, P constant, will give asymptotically O(sB)
Asymptotically optimal for large P and s but bandwidth is off by a factor of 2! Why?
= Bandwidth-optimal algorithms exist, e.g., Sanders et al. “Full Bandwidth Broadcast, Reduction and Scan
with Only Two Trees”. 2007
Intuition: in binomial tree, all leaves (P/2) only receive data and never send = wasted bandwidth
Send along two simultaneous binary trees where the leafs of one tree are inner nodes of the other
Construction needs to avoid endpoint congestion (makes it complex)
Can be improved with linear programming and topology awareness
(talk to me if you're interested)

mMSPCL + ETHzirich

Open Problems

= Look for optimal parallel algorithms (even in simple models!)
And then check the more realistic models

Useful optimization targets are MPI collective operations
Broadcast/Reduce, Scatter/Gather, Alltoall, Allreduce, Allgather, Scan/Exscan, ...
Implementations of those (check current MPI libraries ©)

Useful also in scientific computations
Barnes Hut, linear algebra, FFT, ...
= Lots of work to do!
= Contact me for thesis ideas (or check SPCL) if you like this topic

= Usually involve optimization (ILP/LP) and clever algorithms (algebra) combined with practical experiments on large-
scale machines (10,000+ processors)

Simple Examples

= Sending a single message
= T=20+L

= Ping-Pong Round-Trip
= Tarr=4o+2L

= Transmitting n messages
= T(n) = L+(n-1)*max(g, o) + 20

Pl i ETHZzlrich
The LogP Model The LogP Model
= Defined by four parameters:
= L:an upper bound on the latency, or delay, incurred in communicating a message containing a word (or
small number of words) from its source module to its target module. level 4
= o: the overhead, defined as the length of time that a processor is engaged in the transmission or Sender Receiver
reception of each message; during this time, the processor cannot perform other operations.
— —
= g:the gap, defined as the minimum time interval between consecutive message transmissions or . . . :
consecutive message receptions at a processor. The reciprocal of g corresponds to the available per- H H H H
processor communication bandwidth. H H H H
= P: the number of processor/memory modules. We assume unit time for local operations and call it a H — H
cycle. E ' E E
>
time
ML vena ETHzirich [l ASPCL Ve ETHZzirich

= ois bigger than g on some machines
= gcan be ignored (eliminates max() terms)
= be careful with multicore!
= Offloading networks might have very low o
= Can be ignored (not yet but hopefully soon)
= L might be ignored for long message streams
= |f they are pipelined
= Account g also for the first message
= Eliminates “-1”




Benefits over Latency/Bandwidth Model

= Models pipelining
= L/g messages can be “in flight”
= Captures state of the art (cf. TCP windows)
= Models computation/communication overlap
= Asynchronous algorithms
= Models endpoint congestion/overload
= Benefits balanced algorithms

] o =
Example: Broadcasts

= Class Question: What is the LogP running time for a linear broadcast of a single packet?
= T;,=L+(P-2) * max(o,g) + 20

= Class Question: Approximate the LogP runtime for a binary-tree broadcast of a single packet?
= Ty < log,P * (L+ max(o,g) + 20)

= Class Question: Approximate the LogP runtime for an k-ary-tree broadcast of a single packet?
" T <logP * (L+ (k-1)max(o,g) + 20)

Example: Broadcasts

= Class Question: Approximate the LogP runtime for a binomial tree broadcast of a single packet (assume L
>gl)?
= Ty, <log,P * (L+20)
= Class Question: Approximate the LogP runtime for a k-nomial tree broadcast of a single packet?
= T, <logP * (L+(k-2)max(o,g) + 20)
= Class Question: What is the optimal k (assume 0>g)?
= Derive by k: 0= 0 * In(kyy) = L/ky + O (solve numerically)
For larger L, k grows and for larger o, k shrinks
= Models pipelining capability better than simple model!

"
eth

Example: Broadcasts

= Class Question: Can we do better than k,-ary binomial broadcast?
= Problem: fixed k in all stages might not be optimal
= We can construct a schedule for the optimal broadcast in practical settings
= First proposed by Karp et al. in “Optimal Broadcast and Summation in the LogP Model”

ETHzirich

MSPCL v ETHzirich
Example: Optimal Broadcast

= Broadcast to P-1 processes
= Each process who received the value sends it on; each process receives exactly once

P=8, L=6, g=4, 0=2

MASPCL
Optimal Broadcast Runtime

= This determines the maximum number of PEs (P(t)) that can be reached in time t

= P(t) can be lized Fik i recurrence (

d witha g 0>g):

t<20+L

Piy=4
® {P(l —0)+ P(t— L —20): otherwise.

= Which can be bounded by (see [1]): 2l_ﬁj < P(t) < QI.%J

= Aclosed solution is an interesting open problem!

[1]: Hoefler et al.: “Scalable Communication Protocols for Dynamic Sparse Data Exchange” (Lemma 1)

ETHzirich




] o/ = B Vo ETHZzirich

The Bigger Picture

We learned how to program shared memory systems
= Coherency & memory models & linearizability
= Locks as examples for reasoning about correctness and performance
= List-based sets as examples for lock-free and wait-free algorithms
= Consensus number
We learned about general performance properties and parallelism
= Amdahl’s and Gustafson’s laws
= Little’s law, Work-span, ...
= Balance principles & scheduling
We learned how to perform model-based optimizations
= Distributed memory broadcast example with two models
What next? MPI? OpenMP? UPC?
= Next-generation machines “merge” shared and distributed memory concepts -> Partitioned Global Address Space
(PGAS)
If you're interested in any aspect of parallel algorithms, programming, systems, or large-scale computing
and are looking for a thesis, let us know! (and check our webpage http://spcl.inf.ethz.ch/SeMa)




