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Goals of this lecture

=  Motivate you!
= What is parallel computing?
= And why do we need it?
= What is high-performance computing?
= What’s a Supercomputer and why do we care?
= Basic overview of
= Programming models
Some examples
= Architectures
Some case-studies
= Provide context for coming lectures
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Let us assume ...

= ...you were to build a machine like this ...

= ..we know how each part works
= There are just many of them!

Source: wikipedia

= Question: How many calculations per second are needed to emulate a brain?
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Exponential Growth of Computing
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Flops (floating point operations)
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Growth in
Supercomputer Power S
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Human Brain — No Problem!

= ...notso fast, we need to understand how to program those machines ...
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Human Brain — No Problem!

Simulating 1 second of human brain activity
takes 82 944 processors

Sy Ryan Whitwam on Au spm | 21 Comments

Scooped!

The brain is a deviously complex

Share This Article biological computing device that even
the fastest supercomputers in the

& 436 123 @ 108 24 world fail to emulate. Well, that's not

Bl —— 228 g + e entirely true anymore. Researchers at

the Okinawa Institute of Technology
Graduate University in Japan and
Forschungszentrum Julich in Germany have managed to simulate a single second of human
brain activity in a very, very powerful computer. Source: extremetech.com
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Other problem areas: Scientific Computing

= Most natural sciences are simulation driven or are moving towards simulation
= Theoretical physics (solving the Schrodinger equation, QCD)
= Biology (Gene sequencing)
= Chemistry (Material science)
=  Astronomy (Colliding black holes)
= Medicine (Protein folding for drug discovery)
= Meteorology (Storm/Tornado prediction)
= Geology (Oil reservoir management, oil exploration)
= and many more ... (even Pringles uses HPC)

= Quickly emerging areas for HPC/parallel computing technologies
= Big data processing
= Deep learning
= HPC was always at the forefront of specialization

= Many cloud services require HPC/parallel computing
= Transaction processing/analysis
= Stock markets
= Making movies etc.
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What can faster computers do for us?

= Solving bigger problems than we could solve before!
= E.g., Gene sequencing and search, simulation of whole cells, mathematics of the brain, ...

= The size of the problem grows with the machine power
- Weak Scaling

= Solve today’s problems faster!

= E.g., large (combinatorial) searches, mechanical simulations (aircrafts, cars, weapons, ...)
= The machine power grows with constant problem size
- Strong Scaling
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High-Performance Computing (HPC)

= a.k.a. “Supercomputing”
= Question: define “Supercomputer”!

= “A supercomputer is a computer at the frontline of contemporary processing capacity--particularly speed of
calculation.” (Wikipedia)

= Usually quite expensive (Ss and MW) and big (space)
= HPCis a quickly growing niche market

= Not all “supercomputers”, wide base

= |mportant enough for vendors to specialize

= Very important in research settings (up to 40% of university spending)
“Goodyear Puts the Rubber to the Road with High Performance Computing”
“High Performance Computing Helps Create New Treatment For Stroke Victims”
“Procter & Gamble: Supercomputers and the Secret Life of Coffee”
“Motorola: Driving the Cellular Revolution With the Help of High Performance Computing”
“Microsoft: Delivering High Performance Computing to the Masses”
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The Top500 List

= A benchmark, solve Ax=b
= As fast as possible! = as big as possible ©

= Reflects some applications, not all, not even many
= Very good historic data!

= Speed comparison for computing centers, states, countries, nations, continents @
= Politicized (sometimes good, sometimes bad)
= Yet, fun to watch
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The Top500 List (June 2015)

Rmax Rpeak Power

Rank Site System Cores [TFlop/s] [TFlop/s] (kW]
1 DOE/SCf0zk Ridge Mational Laboratory  Summit - IEM Power Systern 2,282,544 1223000 1376593 3806
United States ACS22 IEM POWERD 22C

3.07GHz, NVIDIA Volta GV100
Duwal-rail Mellanox EDR

nfiniband
IEM
2 Mational Supercomputing Center in Wwa  Sumway Taihulight - Surmeay 10,649,600 93,0146 1254359 15,371
China MPP, Surmway SW25010 2500
1.45GHz, Sunway
MRCPC
3 DOEMMNSALLNL Sierra - IBM Power System 1572480 71,6100 1191934
United States 5922.C, IBM POWERY 22C

3.1GHz, NVIDIA Volta GV100,
Duwal-rail Mellancx EDR

rfiniband
IBM
& Mational Super Computer Centar in Tianhe-2A - TH-IVE-FEP 4,981,780 61,4445  1004678.7 18432
Guangzhou Cluster, Intel Xeon ES-26922
China 12C 2.2GHz, TH Express-2,
Matrze-2000
NUDT
5 Mational Institute of Advanced Industrial Al Bridging Cloud 391,680 12,880.0 325766 1,649
Science and Technology [AIST] Infrastructure [ABCI) -
Japan PRIMERGY CX2550 M&, Xzon

Gold 6148 20C 2 4GH=, NVIDLA
Tesla V100 SXM2, Infiniband
EDR

Fujitsu

& Swiss Mational Supercomputing Centre Pz Daint - Gray XC30, Xeon 361,760 19,2900 253263 2272

[CSCE] ES-26%0h3 12C 2.6GHz, Ares
Switzerland nterconnect , NVIDIA Tesla
F100
Cray Inc.

7 DOE/SCf0ak Ridge Mational Laboratory  Titan - Gray XK7, Opteron 60, 650 175900 271125 8,209
United States 6274 160 2.200GHz, Cray 12

ey . O R MIrETRE A
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More pictures at: http://spcl.inf.ethz.ch/Teaching/2015-dphpc/
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This is why you need to understand
performance expectations well!
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History and Trends
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Single V100 GPU (7 Tflop/s)

162 PFlop/s
100 Pflop/s -
17.6 PF s
10 Pflop/s e/
1 Pflop/s
100 Tflop/s
10 Tflop/s 76.5 TFlop/s
1 Tflop/s
1.17 TFlop/s
100 Gflop/s | My Laptop (70 Gﬂop/s}+
“59.7 GFlop/s 1
10 Gflop/s
My iPad2 & iPhone 4s (1.02 Gflop/s)
1 Gflop/s +
100 Mflop/s s
1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2012

Source: Jack Dongarra
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Moore’s Law — The number of transistors on integrated circuit chips (1971-2016

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
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in Data

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

strongly linked to Moore's law.
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Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)

The data visualization is available at OQurWorldinData.org. There you find more visualizations and research on this topic.

Year of introduction Source: Wikipedia

Licensed under CC-BY-SA by the author Max Roser.
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How to increase the compute power?

Power Density (W/cmz)

ETH:zurich
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Not an option anymore!
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Computer Architecture vs. Physics (currently 0:1)

Activity factor
= Physics (technological constraints) (fraction of circuit Voltage
= Cost of data movement that switches)
= Capacity of DRAM cells
= Clock frequencies (constrained by end of Dennard scalin — 2
= Speed of Light
= Melting point of silicon Capacitance
(charged/discharged Frequency

at each clock)

= Computer Architecture (design of the machine)

Higher voltage is needed to drive higher frequency
= Power management

(due to fixed capacitance). Higher voltage also
= |SA / Multithreading increases static power dissipation (leakage).
= SIMD widths

“Computer architecture, like other architecture, is the art of determining the needs of the user of a structure and then

designing to meet those needs as effectively as possible within economic and technological constraints.” — Fred Brooks
(IBM, 1962)

Have converted many former “power” problems into “cost” problems

Credit: John Shalf (LBNL)
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Low-Power Design Principles (2005)

/

Tensilica XTensa

Intel Atom

|

Credit: John Shalf (LBNL)

Cubic power improvement with lower clock rate due to V2F

s

Slower clock rates enable use of simpler cores

=

Simpler cores use less area (lower leakage) and reduce cost

Ll

Tailor design to application to REDUCE WASTE

20
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Low-Power Design Principles (2005)

Tensilica XTensa

Powerb5 (server)
Intel Atom " 120W@1900MHz

® Baseline

Intel Core2 sc (laptop) :
= 1I5W@1000MHz
" 4x more FLOPs/watt than baseline

Intel Atom (handhelds)
" 0.625W@800MHz
= 80x more

GPU Core or XTensa/Embedded
" 0.099W@600MHz
® 400x more (80x-120x sustained)

Even if each simple core is 1/4th as computationally efficient as complex core, you can fit hundreds of them

on a single chip and still be 100x more power efficient.
Credit: John Shalf (LBNL)
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Heterogeneous computing on the rise!

0.23
Big cores (very few) Tiny core ~__ """

Lots of them!

ww g'0

| }- Core Agent & |}
T W B - Memory | ¢
4 . LIS ™ Controllen:- 3 3
_.u_l_u_l_. .1
- lu-l-ll-ru I lll-l-u !I' |
Most energy efficient if you don’t have Most energy efficient if you DO have a lot of

. . I
lots of parallelism parallelism!

Credit: John Shalf (LBNL) 22
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Data movement — the wires

= Energy Efficiency of copper wire:
= Power = Frequency * Length / cross-section-area

= Wire efficiency does not improve as feature size shrinks ,
y P MOS Transistor

OGRS Photonics could break through

M EEAEMRIE the bandwidth-distance limit :
= Capacitance V= A

= Transistor efficiency Img

=  Net result is that moving data on wires is starting to cost more energy than computing on said data (interest
in Silicon Photonics)

Credit: John Shalf (LBNL) 23
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Pin Limits

= Moore’s law doesn’t apply to adding pins to package
= 30%+ per year nominal Moore’s Law
= Pins grow at ~1.5-3% per year at best

= 4000 Pins is aggressive pin package
= Half of those would need to be for power and ground
= Of the remaining 2k pins, run as differential pairs
= Beyond 15Gbps per pin power/complexity costs hurt!
= 10Gpbs * 1k pins is ~1.2TBytes/sec

= 2.5D Integration gets boost in pin density
= Butit’s a1l time boost (how much headroom?)
= 4TB/sec? (maybe 8TB/s with single wire signaling?)

TSVs

High-Speed Link 5 ==

Wide Data Path
+«—DRAM

Logic Chip

ﬁ

Credit: John Shalf (LBNL)

L 4 @spcl_eth
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The future?

= Open-source CPUs?
= RISC-V

= Open-source accelerators?
= Talk to us if interested!
= Context of the European Processor Initiative
Collaboration with L. Benini (ITET)

European Processor Initiative
= Many open research topics

= How to program hardware?
= How to combine IPs into a system
= How to build real high-performance CPUs/systems/accelerators!

25
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A more complete view

10

10’

6

Intel 48-Core NVIDIA | 5 i
~ AMD 4- Core Prototype Kepler GPU TLansmtocris
| Opter e Sl , |7 . (thousands)
Intel 3 %w:h | e 7/~ Parallel
F’entlum 4 F"fmﬁ” : ¥ Performance
.................... Séquennal
2705 — Performance
L DEC Alpha = e & A T\ |
21264 = &= .
| « Frequency
x = (MHz)
2 Typical Power
(Watts)
——_ Number of
Cores
homogeneous heterogeneous
1975 1980 1985 1990 1995 2000 2005 2010 2015
Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond
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So how to invest the transistors?

= Architectural innovations

= Branch prediction, out-of-order logic/rename register, speculative execution, ...
* Help only so much ®

=  What else?

= Simplification is beneficial, less transistors per CPU, more CPUs, e.g., Cell B.E., GPUs, MIC, Sunway SW26010
= We call this “cores” these days

= Also, more intelligent devices or higher bandwidths (e.g., DMA controller, intelligent NICs)

Source: IBM Source: NVIDIA Source: Intel
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Towards the age of massive parallelism

= Everything goes parallel

= Desktop computers get more cores
2,4,8, soon dozens, hundreds?
My watch has four (weak) cores ...

= Supercomputers get more PEs (cores, nodes)
> 10 million today
> 50 million on the horizon
» 1 billion in a couple of years (after 2030?)

= Parallel Computing is inevitable!

Parallel vs. Concurrent computing
Concurrent activities may be executed in parallel
Example:
Al starts at T1, ends at T2; A2 starts at T3, ends at T4
Intervals (T1,T2) and (T3,T4) may overlap!
Parallel activities:
Al is executed while A2 is running
Usually requires separate resources!
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Goals of this lecture

=  Motivate you!
=  What is parallel computing?
= And why do we need it?
= What is high-performance computing?
= What’s a Supercomputer and why do we care?
= Basic overview of
" Programming models
Some examples
= Architectures
Some case-studies
= Provide context for coming lectures

34
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Granularity and Resources

= Micro-code instruction ® |nstruction-level parallelism = Compiler
= Machine-code instruction = Pipelining ® (inline assembly)
(complex or simple) = VLIW/EDGE " Hardware scheduling
®  Superscalar
= SIMD operations = Compiler (inline assembly)
= Vector operations " Libraries

35
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b31b21b11 b32b22b12 b33b23b13

Historic Architecture Examples

813815811 PE;S

‘ :v
»

Source: ni.com

= Systolic Array
= Data-stream driven (data counters)

= Multiple streams for parallelism

= “a” values

= Specialized for applications (reconfigurable)

Q3383831 PE;

= Dataflow Architectures
= No program counter, execute instructions when all input arguments are available

“b” values

= Fine-grained, high overheads

Example: compute f = (a+b) * (c+d) ((a + b) * (c + d))

Both come-back in FPGA computing and EDGE architectures
= |nteresting research opportunities!

Talk to us if you’re interested (i.e., how to program
FPGAs easily and fast)

/ Source: isi.edu

actor
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Von Neumann Architecture (default today)

= Program counter = inherently sequential!
Retrospectively define parallelism in instructions and data

SISD SIMD
Standard Serial Computer Vector Machines or Extensions
(nearly extinct) (very common)
MISD MIMD
Redundant Execution Multicore

(fault tolerance) (ubiquituous)
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Parallel Architectures 101 — Multiple Instruction Streams

UMA
core core co rel co re|
I I | |
cache cache cache cache
memory

Today’s laptops

TDM
corel corel corel core/lrIEtwo rk
L] | |
cache cache cache cache

}nemoryl memoryl |||||||| nemor

Yesterday’s clusters

= ...and mixtures of those

NUMA
core core corel co rel
| I | |
cache —— cache
memory memory

Today’s servers

RDMA

core corel network

COI‘EI core

/ cache

T iF ¥ e

Today’s clusters




spcl.inf.ethz.ch

Parallel Programming Models 101

= Shared Memory Programming (SM/UMA)
= Shared address space
= |mplicit communication
= Hardware for cache-coherent remote memory access
= Cache-coherent Non Uniform Memory Access (cc NUMA)

= (Partitioned) Global Address Space (PGAS)
= Remote Memory Access
= Remote vs. local memory (cf. ncc-NUMA)

= Distributed Memory Programming (DM)
= Explicit communication (typically messages)
= Message Passing

L 4 @spcl_eth

06

@

memory
UMA
0 1 2 3
memory
PGAS
0

0

@

memory|

memory| memor)I

memory

DM

ETH:zurich
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Shared Memory Machines

= Two historical architectures:

= “Mainframe” — all-to-all connection
between memory, I/O and PEs
Often used if PE is the most expensive part
Bandwidth scales with P Source: 1BM

PE Cost scales with P, Question: what about network cost?

Answer: P2, can be cut with multistage connections (butterfly)

= “Minicomputer” — bus-based connection
All traditional SMP systems
High latency, low bandwidth (cache is important)

Tricky to achieve highest performance (contention)
Low cost, extensible

IMC -Memory
Controller
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Shared Memory Machine Abstractions

= Any PE can access all memory 0 L 2 3
= Any I/O can access all memory (maybe limited)
= OS (resource management) can run on any PE

= Can run multiple threads in shared memory

memory

= Used since 40+ years
UMA

=  Communication through shared memory
= Load/store commands to memory controller
= Communication is implicit
= Requires coordination

= Coordination through shared memory
= Complex topic
= Memory models

= (ETH students): Most of what we covered in Parallel Programming in the 2"d semester!
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Shared Memory Machine Programming

= Threads or processes ‘ 1 2 2
= Communication through memory
= Synchronization through memory or OS objects

= Lock/mutex (protect critical region)

memory
= Semaphore (generalization of mutex (binary sem.)) UMA

= Barrier (synchronize a group of activities)

= Atomic Operations (CAS, Fetch-and-add)

* Transactional Memory (execute regions atomically)
= Practical Models:

= Posix threads (ugs, will see later)

= MPI-3

= OpenMP

= QOthers: Java Threads, Qthreads, ...

= (ETH students): Most of what we covered in Parallel Programming in the 2"d semester!



An SMM Example: Compute Pi

Using Gregory-Leibnitz Series: (— HHI
4 Z

= |terations of sum can be computed in parallel
= Needs to sum all contributions at the end
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Hﬂﬂﬂﬂﬂﬂﬂﬂﬂnﬂﬂﬂnn

JHU Jooooooo

10

20 30 40 5o "

Source: mathworld.wolfram.com
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Pthreads Compute Pi Example
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int n=10000;

double *resultarr;
pthread_t *thread arr;
int nthreads;

void *compute pi(void *data) {
int i, j;
int myid = (int)(long)data;
double mypi, h, x, sum;

for (j=0; j<n; ++j) {

h =1.0 / (double) n;

sum = 0.0;

for (i = myid + 1; i <= n; i += nthreads) {
x = h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x*x));

}

mypi = h * sum;

}

resultarr[myid] = mypi;

int main( int argc, char *argv[] )
{
// definitions ..
thread_arr = (pthread _t*)malloc(nthreads *
sizeof(pthread t));
resultarr= ( double*)malloc(nthreads *
sizeof(double));

for (i=0; i<nthreads; ++i) {
int ret = pthread create( &thread arr[i],
NULL, compute pi, (void*) i);
}
for (i=0; i<nthreads; ++i) {
pthread join( thread_arr[i], NULL);
}
pi = 0;
for (i=0; i<nthreads; ++i) pi += resultarr[i];

printf ("pi is ~%.16f, Error is %.16f\n",
pi, fabs(pi - PI25DT));
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Additional comments on SMIM

OpenMP would allow to implement this example much simpler (but has other issues)

= Transparent shared memory has some issues in practice:
= False sharing (e.g., resultarr[])
= Race conditions (complex mutual exclusion protocols)
= Little tool support (debuggers need some work)

These issues were predominantly discussed in parallel programming in the 2"d semester
We will briefly repeat some but not all!

= Achieving performance is harder than it seems!
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Distributed Memory Machine Programming

= Explicit communication between PEs
= Message passing or channels

=  Only local memory access, no direct access to
remote memory

= No shared resources (well, the network)

=  Programming model: Message Passing (MPI)

L 4 @spcl_eth

0006

memory, memory| memo

memory

DM

= Communication through messages or group operations (broadcast, reduce, etc.)

= Synchronization through messages (sometimes unwanted side effect) or group operations (barrier)

= Typically supports message matching and communication contexts

ETH:zurich
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DMM Example: Message Passing

Match Receive Y,t P :Ij ’]j @ @
Addess Y
send %, Q1 memory memory| memo memory
Addess X DM
Local pocess Local pocess
addess space addess space
Process P Process Q

Source: John Mellor-Crummey

Send specifies buffer to be transmitted
Recv specifies buffer to receive into

Implies copy operation between named PEs
Optional tag matching

Pair-wise synchronization (cf. happens before)



spcl.inf.ethz.ch 5o o
v owien  ETHZUrich

DMM MPI Compute Pi Example A A A A
int main( int argc, char *argv[] ) { % g
// definitions
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numprocs); memory]  jmemory] | memory]  jmemory

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

double t = -MPI_Wtime();
for (j=0; j<n; ++j) {
h =1.0/(double) n;
sum = 0.0;
for (i=myid + 1; i <= n; i += numprocs) { x = h * ((double)i - 0.5); sum += (4.0 / (1.0 + x*x)); }
mypi = h * sum;
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
}
t+=MPIl_Wtime();

if (!myid) {
printf("pi is approximately %.16f, Error is %.16f\n", pi, fabs(pi - PI25DT));
printf("time: %f\n", t);

}

MPI_Finalize();
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0 1 2 3
DMM Example: PGAS
= Partitioned Global Address Space
= Shared memory emulation for DMM
memory
Usually non-coherent
PGAS

= “Distributed Shared Memory”
Usually coherent
= Simplifies shared access to distributed data
= Has similar problems as SMM programming
= Sometimes lacks performance transparency
Local vs. remote accesses
= Examples:
= UPC, CAF, Titanium, X10, ...

= |nteresting research question: how to exploit PGAS/RDMA in practice?
= Cf.VLDB’17, Barthels et al.: “Distributed Join Algorithms on Thousands of Cores”
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How to Tame the Beast?

= How to program large machines?
= No single approach, PMs are not converging yet

= MPI, PGAS, OpenMP, Hybrid (MPI+OpenMP, MPI+MPI, MPI+PGAS?, generally MPI+X), ...
= Architectures converge

= General purpose nodes connected by general purpose or specialized networks

= Small scale often uses commodity networks
= Specialized networks become necessary at scale

= Even worse: accelerators (not covered in this class, yet)
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Example: Shared Memory Programming with OpenMP OpenMP

Source: OpenMP.org |

= Fork-join model

aster thread .- -
L"_ _____ 2 . R T« threads %
_ threads ) h_“ El ,
;! . threads .
= Types of constructs: | | |
parallel region parallel region parallel region
l master thread l master thread l master thread
FORK FORK FORK
| | | | + Tasks
JOIN JOIN JOIN

l masfter thread l masfter thread l masfter thread Source: Blaise Barney, LLNL
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Example: Shared Memory Programming with OpenMP

= Annotate sequential code with pragmas (introduce semantic duplication)

#include <omp.h>

main () {
int varl, var2, var3;
// Serial code

// Beginning of parallel section. Fork a team of threads. Specify variable scoping
#pragma omp parallel private(varl, var2) shared(var3)

{

// Parallel section executed by all threads

// Other OpenMP directives

// Run-time Library calls

// All threads join master thread and disband
}
// Resume serial code

Source: Blaise Barney, LLNL
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Example: Practical PGAS Programming with UPC

= PGAS extension to the C99 language

Thread 0 Thread 1 Thread 2 Thread 3
b

Shared
c[0], c[4],.. c[1], c[5].. c[2], c[6],.. c[3], c[7],..

a a a a
Private

= Many helper library functions
= Collective and remote allocation
= (Collective operations

= Complex consistency model
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Example: Practical Distributed Memory Programming: MPI-1

MPI_COMM_WORLD q
- Helper Functions

© % Ly, 00,0,
AR AT N \\//
® Ly
o broadcast s-:atter
o oe group1 group2 o o
© oo’ ®O0OO 0000

¢

C C © 0 i) W,

0 o o 6 gather reduction
kg/ Q/ 0 1 2

0,0) 0.1) 02y | 03

o\o ; (1,0) an | a2 | w3 ma ny more
communications 8 9 10 11

0 20 21y | (22) | 23) (>600 tOtaI)
o 12 13 14 15

(3.0} (3.1) (3.2) (3.3)

Collection of 1D address spaces Source: Blaise Barney, LLNL

L]

°
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Example: Practical Distributed Memory Programming: MPI-1 — Six Functions!

#include <mpi.h>

int main(int argc, char **argv) {
int myrank, sbuf=23, rbuf=32;
MPI_Init(&argc, &argv);

/* Find out my identity in the default communicator */
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank ==0) {

MPI_Send(&sbuf, /* message buffer */
1, /* one data item */
MPI_INT, /* data item is an integer */
rank, /* destination process rank */
99, /* user chosen message tag */
MPI_COMM_WORLD); /* default communicator */
}else {

MPI_Recv(&rbuf, MPI_DOUBLE, 0, 99, MPI_COMM_WORLD, &status);
printf(“received: %i\n”, rbuf);

}

MPI_Finalize();
}
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Example: MPI-2/3 supporting Shared Memory and PGAS-style!

= Support for shared memory in SMM domains @ @ @ @ @ @ @ @

memory memory

UMA UMA
= Support for Remote Memory Access Programming 0 1 2 3
= Direct use of RDMA
= Essentially PGAS
meTnory
= Enhanced support for message passing communication PGAS

= Scalable topologies

= More nonblocking features o 1 2 3
" ... Mmany more @ @ @ @
DM
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MPI: de-facto large-scale prog. standard

SCIENTIFIC SCIENTIFIC

AND AND

ENGINEERING ENGINEERING

COMPUTATION COMPUTATION

SERIES SERIES

Using MPI Using Advanced MPI

Portable Parallel Programming Modern Features of the

with the Message-Passing Interface Message-Passing Interface

third edition

William Gropp

William Gropp Torsten Hoefler

Ewing Lusk Rajeev Thakur

Anthony Skjellum Ewing Lusk

Basic MPI Advanced MPI, including MPI-3




Example: Accelerator programming with CUDA
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Hierarchy of Threads

float x = input|threadID]:

float ¥ = func(x):
cutput [threadID] = y:

8 SMX
1536 CUDA Cores

8 Geometry Units
4 Raster Units
128 Texture Units
32 ROP units

* 256-bit GDDR5

Source: NVIDIA

Complex Memory Model

P L L
o
4
el ==

Block (0, 0)

/

Block (1, 0)

| ]

Thread (0, 0) | Thread (1, 0)

Thread (0, 0) | Thread (1, 0)
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Example: Accelerator programming with CUDA

Host Code
#define N 10 The Kernel
int main( void ) {
int a[N], b[N], c[N]; __global__ void add( int *a, int *b, int *c) {
int *dev_a, *dev_b, *dev_gc; int tid = blockldx.x;
// allocate the memory on the GPU // handle the data at this index
cudaMalloc( (void**)&dev_a, N * sizeof(int) ); if (tid < N)
cudaMalloc( (void**)&dev_b, N * sizeof(int) ); c[tid] = a[tid] + b[tid];
cudaMalloc( (void**)&dev_c, N * sizeof(int) ); }

// fill the arrays 'a' and 'b' on the CPU

for (int i=0; i<N; i++) { a[i] =-i; b[i] =i *i; }

// copy the arrays 'a' and 'b' to the GPU

cudaMemcpy( dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice );
cudaMemcpy( dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice );
add<<<N,1>>>( dev_a, dev_b, dev_c);

// copy the array 'c' back from the GPU to the CPU

cudaMemcpy( c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost );
// free the memory allocated on the GPU

cudaFree( dev_a ); cudaFree( dev_b ); cudaFree( dev_c);

}

Interesting research: how to automate compilation to GPUs! Grosser, TH: “Polly-ACC: Transparent compilation to heterogeneous hardware”
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Example: OpenACC / OpenMP 4.0

= Aims to simplify GPU programming
= Compiler support

= Annotations! More pragmas and semantic duplication

#define N 10
int main( void ) {
int a[N], b[N], c[N];
#pragma acc kernels
for (inti=0; i< N; ++i)
c[i] = a[i] + b[i];
}
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Many many more programming models/frameworks

= Not covered:
= SMM: Intel Cilk / Cilk Plus, Intel TBB, ...
= Directives: OpenHMPP, PVM, ...
= PGAS: Coarray Fortran (Fortran 2008), ...
= HPCS: IBM X10, Fortress, Chapel, ...
= Accelerator: OpenCL, C++AMP, ...
= This class will not describe any model in more detail!
= There are too many and they will change quickly (only MPI made it >15 yrs)

= No consensus, but fundamental questions remain:
= Data movement (/O complexity)
= Synchronization (avoiding races, deadlock etc.)
= Memory Models (read/write ordering)
= Algorithmics (parallel design/thinking)
= Foundations (conflict minimization, models, static vs. dynamic scheduling etc.)



spcl.inf.ethz.ch 5o o
v owi o ETHZzUrich

Goals of this lecture

=  Motivate you!
=  What is parallel computing?
= And why do we need it?
= What is high-performance computing?
= What’s a Supercomputer and why do we care?
= Basic overview of
= Programming models
Some examples
= Architectures
Some case-studies
= Provide context for coming lectures

62
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Architecture Developments

<1999

distributed

memory
machines
communicating
through
messages

Sources: various vendors

-

’00-'05

large cache-
coherent
multicore
machines
communicating
through coherent
memory access
and messages

AMD Buldozer 16-cort

>
b

’06-'12

larg: le-
coht ,c
muli

machines
communicating
through coherent
memory access
and remote direct

memory access

-

4

R
\.}_.

’13-20

coherent and non-
coherent
manycore
accelerators and
multicores
communicating
through memory
access and

remote direct

>2020

largely non-
coherent
accelerators and
multicores
communicating
through remote
direct memory
access
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Case Study 1: Cray Cascade (XC30) — Piz Daint!

= Biggest current installation at CSCS! ©
= >2k nodes

= Standard Intel x86 Sandy Bridge Server-class CPUs

\\

~~1" 1‘ S o o Sy Sy Sy Sy Sy Sy Sy Sy Sy Sy —

[FEEEEEEREEREEER

T g g

mmmmmmmmmmmmmrf

t t \t \' ‘F \F \‘- \‘. \‘. i backplanes

~~~~~~~~~~~~~~~ connected with
, copper cables in a
group:
\
£ \v': n ‘h ‘st ‘,v: ‘,v:' ZW: ‘v-. ‘h‘h‘!‘ Bkl G

= Y 4 >
\'- -
! I f \ A\ A\ \
~.‘5!’t‘!’t‘h‘h‘hh!‘..-.
0

T &ﬁhﬁﬁﬁﬁﬁﬁﬁ;’ ot

iﬁ'r"\'_F.‘\P_\Pa\Fp\'4\\?‘;\\PA\\F‘\\FQ\\FA\\FA\\FA\\FA\r “Blue Network”

oo o s, coy R SRR
S Bob Al Cray EEEE

-

x
Aries connected by
4 nodes connect backplane
to a single Aries “Green Network”
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Case Study 1: Cray Cascade Network Topology

= All-to-all connection among groups (“blue network”)

Source: Bob Alverson, Cray

= |Interesting research opportunities!
= Topology design?
= E.g., Besta, TH: Slim Fly: A Cost Effective Low-Diameter Network Topology
= Interference analysis (can we provide isolation)?
= How to route low-diameter topologies?
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Case Study 2: IBM POWER7 IH (BW)

L 4 @spcl_eth

Blue Waters System

Building Block

SuperNode
(1024 cores)

Drawer

(256 cores)

SMP node
(32 cores)

P7 Chip
(8 cores)

Source: IBM/NCSA

E
g‘

[o
e

7

i Near-line Storage

On-line Storage

ETH:zurich
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POWER?7 Core

= Execution Units
= 2 Fixed point units
= 2 Load store units
4 Double precision floating point
1 Branch
1 Condition register
1 Vector unit
1 Decimal floating point unit
6 wide dispatch
Recovery Function Distributed
1,2.4 Way SMT Support
Out of Order Execution
32KB |-Cache
32KB D-Cache

256KB L2
= Tightly coupled to core

Source: IBM/NCSA
70
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POWER7? Chip (8 cores)

= Base Technology
= 45 nm, 576 mm?
= 1.2 B transistors

= Chip
= 8 cores
4 FMAs/cycle/core
= 32 MB L3 (private/shared)
» Dual DDR3 memory
128 GiB/s peak bandwidth
(1/2 byte/flop)
» Clock range of 3.5 -4 GHz

Source: IBM/NCSA

LS| Ste

Quad-chip MCM

273403

s ST
i b Bl
- -
= 5 189
e i
-3 i=taais

Sl RN ENES e ST R B IS T
CIEIEICICEE - T

T TR ST 2 " 3
B ~ogebadia { i sl

GAIAT A S Lgt

PET W BR B R R R e

"
exl J
ewErenve)
- -
B
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Quad Chip Module (4 chips)

= 32 cores

= 32 cores*8 F/core*4 GHz=1TF

= 4 threads per core (max)

» 128 threads per package
= 4x32 MiB L3 cache

= 512 GB/s RAM BW (0.5 B/F)
= 800 W (0.8 W/F)

Source: IBM/NCSA
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Adding a Network Interface (Hub)

Connects QCM to PCl-e v G e [ [ g
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1.1 TB/s POWER7 IH HUB

PX0 Bus
PX1 Bus
PX2 Bus

Xg———
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P7 IH Supernode

Seco N d Leve I I nte rconn ect 2" Level Interconnect (1,024 cores) 2" Level Interéonnect (1,024 cdtes)
- |

=Optical ‘L-Remote’ Links from HUB

=4 drawers
=1,024 Cores
Super Node haNgp
-E ports

(32 Nodes / 4 CEC)

v g SRLLLLLES
; o B -

£

2

) 2" Level Interconnect (1,024 cores)

Source: IBM/NCSA
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Goals of this lecture

=  Motivate you!
= What is parallel computing?
= And why do we need it?
= What is high-performance computing?
= What’s a Supercomputer and why do we care?
= Basic overview of
" Programming models
Some examples
= Architectures
Some case-studies
= Provide context for coming lectures
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DPHPC Lecture

= You will likely not have access to the largest machines (unless you specialize to HPC)
= But our desktop/laptop will be a “large machine” soon
= HPCis often seen as “Formula 1” of computing (architecture experiments)

= DPHPC will teach you concepts!
= Enable to understand and use all parallel architectures
®" From a quad-core mobile phone to the largest machine on the planet!
MCAPI vs. MPI — same concepts, different syntax
= No particular language (but you should pick/learn one for your project!)
Parallelism is the future:

WE NEED TO FINISH YOUR YOU MIGHT NEED

PROGRAM TWICE AS FAST, TO TRAIN HIM TELL ME AGAIN

SO TM ADDING A PERSON A LITTLE BEFORE WHAT THE BIG

TO HELP YOU. HES PRODUCTIVE. GLOWING
THING I5.

G Arpag E-mail; SCOTTADAMS®ACL.COM

J-F @ 1995 United Faature Syndicats, Ing. (HYC)

o\
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Related classes in the SE focus

= 263-2910-00L Program Analysis
http://www.srl.inf.ethz.ch/pa.php
Spring 2017
Lecturer: Prof. M. Vechev

= 263-2300-00L How to Write Fast Numerical Code
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/course.html
Spring 2017
Lecturer: Prof. M. Pueschel

= This list is not exhaustive!


http://www.srl.inf.ethz.ch/pa.php
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/course.html
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DPHPC Overview
DPHPC\\\\\\\

” locality parallelism
e
I
2 - caches vector ISA shared memory distributed memory
< - memory hierarchy
2 , cache coherency
o3 |
P memory distributed .
o models algorithms
S
= locks group commu-
o lock free nications

wait free

linearizability

Amdahl's and Gustafson's law

| memory | PRAM | LogP ,
| a-B | | |

I/O complexity
balance principles | balance principles Il
Little's Law scheduling

models



