. - B h spcl.inf.ethz.ch
ETH:zurich o & Gt e

T. HOEFLER, M. PUESCHEL

Lecture 1: Introduction

Teaching assistant: Salvatore Di Girolamo

,{’

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Goals of this lecture

= Motivate you!
= What is parallel computing?
= And why do we need it?
= What is high-performance computing?
= What’s a Supercomputer and why do we care?
= Basic overview of
= Programming models
Some examples
= Architectures
Some case-studies
= Provide context for coming lectures

spcl.inf.ethz.ch o o
v owi o ETHZzUrich

Let us assume ...

= ...you were to build a machine like this ...

= ..we know how each part works
= There are just many of them!

Source: wikipedia

= Question: How many calculations per second are needed to emulate a brain?

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Exponential Growth of Computing
Twentieth through twenty first century o
1060 _ Logarithmic Plot

10> =

1050 o

Science

Researchers Simulate Mouse Brain on
Computer

Michael Hoffman [Blog) - April 30, 2007 5:.57 PM

1045_

1040 _

1035 |

10™ -

25 All Human Brains

T

1020 N

15 One Human Brain

10 R N ,‘

10 One Mouse Brain

10 e e o it i ot . S N e e e

5 ° One Insect Brain
107 = R :. ®

Calculations per Second per $1,000

B el T
-5 ° [) ®

10 BVt

10-10

T T T T T T
1920 1940 1960 1980 2020 2040 2060 2

1900

1 |
2000 6}\ 2100

Source: www.singularity.com Year Can we dO th'S tOd aY?

Flops (floating point operations)

107

1 020

10]9

1018

l017

10'°

10]5

1014

1013

12

10

11

10

—

(@)
e
o

spcl.inf.ethz.ch
L 4 @spcl_eth

ETH:zurich

Growth in
Supercomputer Power S
_ Logarithmic Plot o
E Required for Human Brain Neural
= Simulation for Uploading (2025) ———
§ Required for Human Brain 1 Exafl op 1 ~20237?
= Functional Simulation (2013) ———m—
é Blue Gene/P MDGrape 3 ba\ed
. ASCI Purple § Blue Genell Summit, ~200 PF (2018)
E Earth Simulator SX-8
a Columbia
; ASCI| White
. ASCI Red ASCI Red Trendline
= Num.
- Wind Tunnel CP-PACS/2048 —O— Planned
- SR2201/1024
= Num. Wind Tunnel
= CM-5/1024 Source: www.singularity.com
1 | 1 | 1 [| 1 |
1990 1995 2000 2005 2010 2015 2020 2025 2030
Doubling time = 1.2 years Year Blue Waters, ~13 PF (2012)

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Human Brain — No Problem!

= ...notso fast, we need to understand how to program those machines ...

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Human Brain — No Problem!

Simulating 1 second of human brain activity
takes 82 944 processors

Sy Ryan Whitwam on Au spm | 21 Comments

Scooped!

The brain is a deviously complex

Share This Article biological computing device that even
the fastest supercomputers in the

& 436 123 @ 108 24 world fail to emulate. Well, that's not

Bl —— 228 g + e entirely true anymore. Researchers at

the Okinawa Institute of Technology
Graduate University in Japan and
Forschungszentrum Julich in Germany have managed to simulate a single second of human
brain activity in a very, very powerful computer. Source: extremetech.com

v owien ETHzUrich
Other problem areas: Scientific Computing

= Most natural sciences are simulation driven or are moving towards simulation
= Theoretical physics (solving the Schrodinger equation, QCD)
= Biology (Gene sequencing)
= Chemistry (Material science)
= Astronomy (Colliding black holes)
= Medicine (Protein folding for drug discovery)
= Meteorology (Storm/Tornado prediction)
= Geology (Oil reservoir management, oil exploration)
= and many more ... (even Pringles uses HPC)

= Quickly emerging areas for HPC/parallel computing technologies
= Big data processing
= Deep learning
= HPC was always at the forefront of specialization

= Many cloud services require HPC/parallel computing
= Transaction processing/analysis
= Stock markets
= Making movies etc.

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

What can faster computers do for us?

= Solving bigger problems than we could solve before!
= E.g., Gene sequencing and search, simulation of whole cells, mathematics of the brain, ...

= The size of the problem grows with the machine power
- Weak Scaling

= Solve today’s problems faster!

= E.g., large (combinatorial) searches, mechanical simulations (aircrafts, cars, weapons, ...)
= The machine power grows with constant problem size
- Strong Scaling

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

High-Performance Computing (HPC)

= a.k.a. “Supercomputing”
= Question: define “Supercomputer”!

= “A supercomputer is a computer at the frontline of contemporary processing capacity--particularly speed of
calculation.” (Wikipedia)

= Usually quite expensive (Ss and MW) and big (space)
= HPCis a quickly growing niche market

= Not all “supercomputers”, wide base

= |mportant enough for vendors to specialize

= Very important in research settings (up to 40% of university spending)
“Goodyear Puts the Rubber to the Road with High Performance Computing”
“High Performance Computing Helps Create New Treatment For Stroke Victims”
“Procter & Gamble: Supercomputers and the Secret Life of Coffee”
“Motorola: Driving the Cellular Revolution With the Help of High Performance Computing”
“Microsoft: Delivering High Performance Computing to the Masses”

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

The Top500 List

= A benchmark, solve Ax=b
= As fast as possible! = as big as possible ©

= Reflects some applications, not all, not even many
= Very good historic data!

= Speed comparison for computing centers, states, countries, nations, continents @
= Politicized (sometimes good, sometimes bad)
= Yet, fun to watch

spcl.inf.ethz.ch 5o o
v owi o ETHZzUrich

The Top500 List (June 2015)

Rmax Rpeak Power

Rank Site System Cores [TFlop/s] [TFlop/s] (kW]
1 DOE/SCf0zk Ridge Mational Laboratory Summit - IEM Power Systern 2,282,544 1223000 1376593 3806
United States ACS22 IEM POWERD 22C

3.07GHz, NVIDIA Volta GV100
Duwal-rail Mellanox EDR

nfiniband
IEM
2 Mational Supercomputing Center in Wwa Sumway Taihulight - Surmeay 10,649,600 93,0146 1254359 15,371
China MPP, Surmway SW25010 2500
1.45GHz, Sunway
MRCPC
3 DOEMMNSALLNL Sierra - IBM Power System 1572480 71,6100 1191934
United States 5922.C, IBM POWERY 22C

3.1GHz, NVIDIA Volta GV100,
Duwal-rail Mellancx EDR

rfiniband
IBM
& Mational Super Computer Centar in Tianhe-2A - TH-IVE-FEP 4,981,780 61,4445 1004678.7 18432
Guangzhou Cluster, Intel Xeon ES-26922
China 12C 2.2GHz, TH Express-2,
Matrze-2000
NUDT
5 Mational Institute of Advanced Industrial Al Bridging Cloud 391,680 12,880.0 325766 1,649
Science and Technology [AIST] Infrastructure [ABCI) -
Japan PRIMERGY CX2550 M&, Xzon

Gold 6148 20C 2 4GH=, NVIDLA
Tesla V100 SXM2, Infiniband
EDR

Fujitsu

& Swiss Mational Supercomputing Centre Pz Daint - Gray XC30, Xeon 361,760 19,2900 253263 2272

[CSCE] ES-26%0h3 12C 2.6GHz, Ares
Switzerland nterconnect , NVIDIA Tesla
F100
Cray Inc.

7 DOE/SCf0ak Ridge Mational Laboratory Titan - Gray XK7, Opteron 60, 650 175900 271125 8,209
United States 6274 160 2.200GHz, Cray 12

ey . O R MIrETRE A

spcl.inf.ethz.ch oo o
; @spzl_eth E'HZUFIC/‘)

More pictures at: http://spcl.inf.ethz.ch/Teaching/2015-dphpc/

spcl.inf.ethz.ch oo o
; @spzl_eth E'HZUFIC/‘)

This is why you need to understand
performance expectations well!

v escien ETH zUrich

e Tt e T T

History and Trends

spcl.inf.ethz.ch
L 4 @spcl_eth

ETH:zurich

Single V100 GPU (7 Tflop/s)

162 PFlop/s
100 Pflop/s -
17.6 PF s
10 Pflop/s e/
1 Pflop/s
100 Tflop/s
10 Tflop/s 76.5 TFlop/s
1 Tflop/s
1.17 TFlop/s
100 Gflop/s | My Laptop (70 Gﬂop/s}+
“59.7 GFlop/s 1
10 Gflop/s
My iPad2 & iPhone 4s (1.02 Gflop/s)
1 Gflop/s +
100 Mflop/s s
1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2012

Source: Jack Dongarra

16

SIPLL

vioor®

soundor GO

g ON

s Law

sraddon Moore prod
{ silicon would dout
ned “Moore’s Law

K t-{\CC Od

H

istor sizes have

» ON & sangle

. .‘OCUC-(‘W

ompany. Wh

3 Bunicate |

“O\’)'l‘ 9

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

spcl.inf.ethz.ch
L 4 @spcl_eth

in Data

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

strongly linked to Moore's law.

20'000'000‘000 IBM 213 Storage Controller SPARG M7
10,000,000,000 18-core Xeon Haswell-£5 p- - e
Xbox One main SaC., @ ©22-core Xeon Broadwell-E5
81-core Xeon Ph b15-core Xeon lvy Bridge-EX
5,000,000,000 gocgm*gom'R 88 o0 Y
a Xeon Nehalem- gx\ ggpc:?_‘l.e AB 'n-cog; »«RP.’M *mobile SoC*)
Xeon 7400 Tora + GPU s Core i7 Broadwell-U
Dual-core tanum 3@ @ . . ouuaoc e+ GPU'GTS Core if Siyiake K
Pentium D Presler POWERS 8 (AJJU core + GPU Core i7 Haswell
1,000,000,000 2ty g (/?“ 7w ©sopla A7 (dual-core ARME4 “mobile SoC")
¢ cache \ K
200,000,000 Hanium 2 Madson 6@ QLD SR MReRa oM L2
" fPa;;:;l-;i'n’D Smithfield « "Iozo%,o C};Bon — A
anium 2 McKinlay. e ore 2 Duo Wolfdale 3M
Pentium 4]5-‘.'4'5:5:0[! N Core 2 Duo Allendale
\P 4 Codar Ml
entium 4 Cedar Ml
100,000,000 AMDKB® B 4 Prescott
Pentium 4 Nerthwoo
b — 50,000,000 P - 29 Quaston Ao
g Pent Pe::;:g; \;)ﬂla;n\em’ °Pe'murﬁ Il Tualatin i
“entiium Vv e Lhixor A o Q
8 AMD K78 Q@Pentium Il Coppermine QARM Cortex-A9
AMD K-l
—
O AMD K6
S 10,000,000 s Pt
‘® 5,000,000 Kiansath
5 Pentiume, AMD K5
'-: Inted BO4B6, L3 i
inted B0466,
1,000,000 i T
TI Expl 5 32-bit
500,000 Lis [‘)Dr?:(};‘yl') nnrh.p’ ARNI700
Intel 80386, :S&)IO Q@AM 3
Motorola 68020 @ P9
° besvm:
KNP, AER ultiTitan
100,000 Motorola Witgl 90206 ARNM
8000 STomI
50.000 Qintel 80186
Intel 80864p € !ntel 088 QrnM 2 AH?J 8
8 oW
Motorola 85¢816 &
S 10¢x Zilog 280 é‘i«“;ﬁ Nowix .
10,000 T™™s 000 e ;20 6_.{3) NC4016
RCA 1802 oG02
intel 8085
5‘000 Intel 8008 ’I”'g' 8080
® e @105 Technology
MQ\"!&(‘“ 6502
Intel 4004 090
1,000
P RS FFSEFSSSTFFS S FF SN ®
N N N N N N N N N N N N N N N v VY Y VY Y Y Y P> Y

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)

The data visualization is available at OQurWorldinData.org. There you find more visualizations and research on this topic.

Year of introduction Source: Wikipedia

Licensed under CC-BY-SA by the author Max Roser.

ETH:zurich

OurWorld

17

spcl.inf.ethz.ch

How to increase the compute power?

Power Density (W/cmz)

ETH:zurich

L 4 @spcl_eth

Not an option anymore!

N
N

Ivy Bridge

~ AMD'K8 AN
100 — Pentium 4
E POWER 5 \ ore 2 Duo
. POWER 4 %0. tanium 2
i AMD K7 _L o POWER 6

A
A A ((a)"WER 7
POWER 3 T entium M

A " |tanjum 2-DC
10 - POWER 2)

—
ul

=
—_—
1

0.01 -

= _ Pentium IlI
A”® Pentium I
.'U_AMD K6

entium Pro

8086 @
80286 ®

AMD K5
0486 ® Pentium
4004 ® /80386 ®

*/Brain

AU BLELRRLLL LR AL IR LU B RLLL B LLL LA B LLLL B R B R]

10" 10> 10° 10* 10° 10° 10" 10° 10°
Clock Frequency (Hz)

10000
<~ 1000
=
2
£
2 100
(7]
c
O
(]
]
3 10
(@]
a

1

1970

<
8086

008 o S SR
40‘1 3085 & 03 Pentium

. 80?0 ey

286 335 $a86 Processors

1980 1990 2000 2010

Source: Intel®

spcl.inf.ethz.ch 0o o
v owien ETHZUrich

Computer Architecture vs. Physics (currently 0:1)

Activity factor
= Physics (technological constraints) (fraction of circuit Voltage
= Cost of data movement that switches)
= Capacity of DRAM cells
= Clock frequencies (constrained by end of Dennard scalin — 2
= Speed of Light
= Melting point of silicon Capacitance
(charged/discharged Frequency

at each clock)

= Computer Architecture (design of the machine)

Higher voltage is needed to drive higher frequency
= Power management

(due to fixed capacitance). Higher voltage also
= |SA / Multithreading increases static power dissipation (leakage).
= SIMD widths

“Computer architecture, like other architecture, is the art of determining the needs of the user of a structure and then

designing to meet those needs as effectively as possible within economic and technological constraints.” — Fred Brooks
(IBM, 1962)

Have converted many former “power” problems into “cost” problems

Credit: John Shalf (LBNL)

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Low-Power Design Principles (2005)

/

Tensilica XTensa

Intel Atom

|

Credit: John Shalf (LBNL)

Cubic power improvement with lower clock rate due to V2F

s

Slower clock rates enable use of simpler cores

=

Simpler cores use less area (lower leakage) and reduce cost

Ll

Tailor design to application to REDUCE WASTE

20

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Low-Power Design Principles (2005)

Tensilica XTensa

Powerb5 (server)
Intel Atom " 120W@1900MHz

® Baseline

Intel Core2 sc (laptop) :
= 1I5W@1000MHz
" 4x more FLOPs/watt than baseline

Intel Atom (handhelds)
" 0.625W@800MHz
= 80x more

GPU Core or XTensa/Embedded
" 0.099W@600MHz
® 400x more (80x-120x sustained)

Even if each simple core is 1/4th as computationally efficient as complex core, you can fit hundreds of them

on a single chip and still be 100x more power efficient.
Credit: John Shalf (LBNL)

v enien ETHZzUrich
Heterogeneous computing on the rise!

0.23
Big cores (very few) Tiny core ~__ """

Lots of them!

ww g'0

| }- Core Agent & |}
T W B - Memory | ¢
4 . LIS ™ Controllen:- 3 3
_.u_l_u_l_. .1
- lu-l-ll-ru I lll-l-u !I' |
Most energy efficient if you don’t have Most energy efficient if you DO have a lot of

. . I
lots of parallelism parallelism!

Credit: John Shalf (LBNL) 22

v orin ETHZzUrich
Data movement — the wires

= Energy Efficiency of copper wire:
= Power = Frequency * Length / cross-section-area

= Wire efficiency does not improve as feature size shrinks ,
y P MOS Transistor

OGRS Photonics could break through

M EEAEMRIE the bandwidth-distance limit :
= Capacitance V= A

= Transistor efficiency Img

= Net result is that moving data on wires is starting to cost more energy than computing on said data (interest
in Silicon Photonics)

Credit: John Shalf (LBNL) 23

spcl.inf.ethz.ch

Pin Limits

= Moore’s law doesn’t apply to adding pins to package
= 30%+ per year nominal Moore’s Law
= Pins grow at ~1.5-3% per year at best

= 4000 Pins is aggressive pin package
= Half of those would need to be for power and ground
= Of the remaining 2k pins, run as differential pairs
= Beyond 15Gbps per pin power/complexity costs hurt!
= 10Gpbs * 1k pins is ~1.2TBytes/sec

= 2.5D Integration gets boost in pin density
= Butit’s a1l time boost (how much headroom?)
= 4TB/sec? (maybe 8TB/s with single wire signaling?)

TSVs

High-Speed Link 5 ==

Wide Data Path
+«—DRAM

Logic Chip

ﬁ

Credit: John Shalf (LBNL)

L 4 @spcl_eth

ETH:zurich

v orin ETHZzUrich
The future?

= Open-source CPUs?
= RISC-V

= Open-source accelerators?
= Talk to us if interested!
= Context of the European Processor Initiative
Collaboration with L. Benini (ITET)

European Processor Initiative
= Many open research topics

= How to program hardware?
= How to combine IPs into a system
= How to build real high-performance CPUs/systems/accelerators!

25

spcl.inf.ethz.ch

ETH:zurich

L 4 @spcl_eth

A more complete view

10

10’

6

Intel 48-Core NVIDIA | 5 i
~ AMD 4- Core Prototype Kepler GPU TLansmtocris
| Opter e Sl , |7 . (thousands)
Intel 3 %w:h | e 7/~ Parallel
F’entlum 4 F"fmﬁ” : ¥ Performance
.................... Séquennal
2705 — Performance
L DEC Alpha = e & A T\ |
21264 = &= .
| « Frequency
x = (MHz)
2 Typical Power
(Watts)
——_ Number of
Cores
homogeneous heterogeneous
1975 1980 1985 1990 1995 2000 2005 2010 2015
Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

So how to invest the transistors?

= Architectural innovations

= Branch prediction, out-of-order logic/rename register, speculative execution, ...
* Help only so much ®

= What else?

= Simplification is beneficial, less transistors per CPU, more CPUs, e.g., Cell B.E., GPUs, MIC, Sunway SW26010
= We call this “cores” these days

= Also, more intelligent devices or higher bandwidths (e.g., DMA controller, intelligent NICs)

Source: IBM Source: NVIDIA Source: Intel

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Towards the age of massive parallelism

= Everything goes parallel

= Desktop computers get more cores
2,4,8, soon dozens, hundreds?
My watch has four (weak) cores ...

= Supercomputers get more PEs (cores, nodes)
> 10 million today
> 50 million on the horizon
» 1 billion in a couple of years (after 2030?)

= Parallel Computing is inevitable!

Parallel vs. Concurrent computing
Concurrent activities may be executed in parallel
Example:
Al starts at T1, ends at T2; A2 starts at T3, ends at T4
Intervals (T1,T2) and (T3,T4) may overlap!
Parallel activities:
Al is executed while A2 is running
Usually requires separate resources!

spcl.inf.ethz.ch 5o o
v owi o ETHZzUrich

Goals of this lecture

= Motivate you!
= What is parallel computing?
= And why do we need it?
= What is high-performance computing?
= What’s a Supercomputer and why do we care?
= Basic overview of
" Programming models
Some examples
= Architectures
Some case-studies
= Provide context for coming lectures

34

spcl.inf.ethz.ch 5o o
v owi o ETHZzUrich

Granularity and Resources

= Micro-code instruction ® |nstruction-level parallelism = Compiler
= Machine-code instruction = Pipelining ® (inline assembly)
(complex or simple) = VLIW/EDGE " Hardware scheduling
® Superscalar
= SIMD operations = Compiler (inline assembly)
= Vector operations " Libraries

35

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

b31b21b11 b32b22b12 b33b23b13

Historic Architecture Examples

813815811 PE;S

‘ :v
»

Source: ni.com

= Systolic Array
= Data-stream driven (data counters)

= Multiple streams for parallelism

= “a” values

= Specialized for applications (reconfigurable)

Q3383831 PE;

= Dataflow Architectures
= No program counter, execute instructions when all input arguments are available

“b” values

= Fine-grained, high overheads

Example: compute f = (a+b) * (c+d) ((a + b) * (c + d))

Both come-back in FPGA computing and EDGE architectures
= |nteresting research opportunities!

Talk to us if you’re interested (i.e., how to program
FPGAs easily and fast)

/ Source: isi.edu

actor

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Von Neumann Architecture (default today)

= Program counter = inherently sequential!
Retrospectively define parallelism in instructions and data

SISD SIMD
Standard Serial Computer Vector Machines or Extensions
(nearly extinct) (very common)
MISD MIMD
Redundant Execution Multicore

(fault tolerance) (ubiquituous)

spcl.inf.ethz.ch
L 4 @spcl_eth

ETH:zurich

Parallel Architectures 101 — Multiple Instruction Streams

UMA
core core co rel co re|
I I | |
cache cache cache cache
memory

Today’s laptops

TDM
corel corel corel core/lrIEtwo rk
L] | |
cache cache cache cache

}nemoryl memoryl |||||||| nemor

Yesterday’s clusters

= ...and mixtures of those

NUMA
core core corel co rel
| I | |
cache —— cache
memory memory

Today’s servers

RDMA

core corel network

COI‘EI core

/ cache

T iF ¥ e

Today’s clusters

spcl.inf.ethz.ch

Parallel Programming Models 101

= Shared Memory Programming (SM/UMA)
= Shared address space
= |mplicit communication
= Hardware for cache-coherent remote memory access
= Cache-coherent Non Uniform Memory Access (cc NUMA)

= (Partitioned) Global Address Space (PGAS)
= Remote Memory Access
= Remote vs. local memory (cf. ncc-NUMA)

= Distributed Memory Programming (DM)
= Explicit communication (typically messages)
= Message Passing

L 4 @spcl_eth

06

@

memory
UMA
0 1 2 3
memory
PGAS
0

0

@

memory|

memory| memor)I

memory

DM

ETH:zurich

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Shared Memory Machines

= Two historical architectures:

= “Mainframe” — all-to-all connection
between memory, I/O and PEs
Often used if PE is the most expensive part
Bandwidth scales with P Source: 1BM

PE Cost scales with P, Question: what about network cost?

Answer: P2, can be cut with multistage connections (butterfly)

= “Minicomputer” — bus-based connection
All traditional SMP systems
High latency, low bandwidth (cache is important)

Tricky to achieve highest performance (contention)
Low cost, extensible

IMC -Memory
Controller

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Shared Memory Machine Abstractions

= Any PE can access all memory 0 L 2 3
= Any I/O can access all memory (maybe limited)
= OS (resource management) can run on any PE

= Can run multiple threads in shared memory

memory

= Used since 40+ years
UMA

= Communication through shared memory
= Load/store commands to memory controller
= Communication is implicit
= Requires coordination

= Coordination through shared memory
= Complex topic
= Memory models

= (ETH students): Most of what we covered in Parallel Programming in the 2"d semester!

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Shared Memory Machine Programming

= Threads or processes ‘ 1 2 2
= Communication through memory
= Synchronization through memory or OS objects

= Lock/mutex (protect critical region)

memory
= Semaphore (generalization of mutex (binary sem.)) UMA

= Barrier (synchronize a group of activities)

= Atomic Operations (CAS, Fetch-and-add)

* Transactional Memory (execute regions atomically)
= Practical Models:

= Posix threads (ugs, will see later)

= MPI-3

= OpenMP

= QOthers: Java Threads, Qthreads, ...

= (ETH students): Most of what we covered in Parallel Programming in the 2"d semester!

An SMM Example: Compute Pi

Using Gregory-Leibnitz Series: (— HHI
4 Z

= |terations of sum can be computed in parallel
= Needs to sum all contributions at the end

spcl.inf.ethz.ch 5o o
v owi o ETHZzUrich

Hﬂﬂﬂﬂﬂﬂﬂﬂﬂnﬂﬂﬂnn

JHU Jooooooo

10

20 30 40 5o "

Source: mathworld.wolfram.com

43

Pthreads Compute Pi Example

spcl.inf.ethz.ch 0o o
v owien ETHZUrich

int n=10000;

double *resultarr;
pthread_t *thread arr;
int nthreads;

void *compute pi(void *data) {
int i, j;
int myid = (int)(long)data;
double mypi, h, x, sum;

for (j=0; j<n; ++j) {

h =1.0 / (double) n;

sum = 0.0;

for (i = myid + 1; i <= n; i += nthreads) {
x = h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x*x));

}

mypi = h * sum;

}

resultarr[myid] = mypi;

int main(int argc, char *argv[])
{
// definitions ..
thread_arr = (pthread _t*)malloc(nthreads *
sizeof(pthread t));
resultarr= (double*)malloc(nthreads *
sizeof(double));

for (i=0; i<nthreads; ++i) {
int ret = pthread create(&thread arr[i],
NULL, compute pi, (void*) i);
}
for (i=0; i<nthreads; ++i) {
pthread join(thread_arr[i], NULL);
}
pi = 0;
for (i=0; i<nthreads; ++i) pi += resultarr[i];

printf ("pi is ~%.16f, Error is %.16f\n",
pi, fabs(pi - PI25DT));

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Additional comments on SMIM

OpenMP would allow to implement this example much simpler (but has other issues)

= Transparent shared memory has some issues in practice:
= False sharing (e.g., resultarr[])
= Race conditions (complex mutual exclusion protocols)
= Little tool support (debuggers need some work)

These issues were predominantly discussed in parallel programming in the 2"d semester
We will briefly repeat some but not all!

= Achieving performance is harder than it seems!

spcl.inf.ethz.ch

Distributed Memory Machine Programming

= Explicit communication between PEs
= Message passing or channels

= Only local memory access, no direct access to
remote memory

= No shared resources (well, the network)

= Programming model: Message Passing (MPI)

L 4 @spcl_eth

0006

memory, memory| memo

memory

DM

= Communication through messages or group operations (broadcast, reduce, etc.)

= Synchronization through messages (sometimes unwanted side effect) or group operations (barrier)

= Typically supports message matching and communication contexts

ETH:zurich

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

DMM Example: Message Passing

Match Receive Y,t P :Ij ’]j @ @
Addess Y
send %, Q1 memory memory| memo memory
Addess X DM
Local pocess Local pocess
addess space addess space
Process P Process Q

Source: John Mellor-Crummey

Send specifies buffer to be transmitted
Recv specifies buffer to receive into

Implies copy operation between named PEs
Optional tag matching

Pair-wise synchronization (cf. happens before)

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

DMM MPI Compute Pi Example A A A A
int main(int argc, char *argv[]) { % g
// definitions
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &numprocs); memory] jmemory] | memory] jmemory

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

double t = -MPI_Wtime();
for (j=0; j<n; ++j) {
h =1.0/(double) n;
sum = 0.0;
for (i=myid + 1; i <= n; i += numprocs) { x = h * ((double)i - 0.5); sum += (4.0 / (1.0 + x*x)); }
mypi = h * sum;
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
}
t+=MPIl_Wtime();

if (!myid) {
printf("pi is approximately %.16f, Error is %.16f\n", pi, fabs(pi - PI25DT));
printf("time: %f\n", t);

}

MPI_Finalize();

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

0 1 2 3
DMM Example: PGAS
= Partitioned Global Address Space
= Shared memory emulation for DMM
memory
Usually non-coherent
PGAS

= “Distributed Shared Memory”
Usually coherent
= Simplifies shared access to distributed data
= Has similar problems as SMM programming
= Sometimes lacks performance transparency
Local vs. remote accesses
= Examples:
= UPC, CAF, Titanium, X10, ...

= |nteresting research question: how to exploit PGAS/RDMA in practice?
= Cf.VLDB’17, Barthels et al.: “Distributed Join Algorithms on Thousands of Cores”

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

How to Tame the Beast?

= How to program large machines?
= No single approach, PMs are not converging yet

= MPI, PGAS, OpenMP, Hybrid (MPI+OpenMP, MPI+MPI, MPI+PGAS?, generally MPI+X), ...
= Architectures converge

= General purpose nodes connected by general purpose or specialized networks

= Small scale often uses commodity networks
= Specialized networks become necessary at scale

= Even worse: accelerators (not covered in this class, yet)

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Example: Shared Memory Programming with OpenMP OpenMP

Source: OpenMP.org |

= Fork-join model

aster thread .- -
L"_ _____ 2 . R T« threads %
_ threads) h_“ El ,
;! . threads .
= Types of constructs: | | |
parallel region parallel region parallel region
l master thread l master thread l master thread
FORK FORK FORK
| | | | + Tasks
JOIN JOIN JOIN

l masfter thread l masfter thread l masfter thread Source: Blaise Barney, LLNL

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Example: Shared Memory Programming with OpenMP

= Annotate sequential code with pragmas (introduce semantic duplication)

#include <omp.h>

main () {
int varl, var2, var3;
// Serial code

// Beginning of parallel section. Fork a team of threads. Specify variable scoping
#pragma omp parallel private(varl, var2) shared(var3)

{

// Parallel section executed by all threads

// Other OpenMP directives

// Run-time Library calls

// All threads join master thread and disband
}
// Resume serial code

Source: Blaise Barney, LLNL

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Example: Practical PGAS Programming with UPC

= PGAS extension to the C99 language

Thread 0 Thread 1 Thread 2 Thread 3
b

Shared
c[0], c[4],.. c[1], c[5].. c[2], c[6],.. c[3], c[7],..

a a a a
Private

= Many helper library functions
= Collective and remote allocation
= (Collective operations

= Complex consistency model

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Example: Practical Distributed Memory Programming: MPI-1

MPI_COMM_WORLD q
- Helper Functions

© % Ly, 00,0,
AR AT N \\//
® Ly
o broadcast s-:atter
o oe group1 group2 o o
© oo’ ®O0OO 0000

¢

C C © 0 i) W,

0 o o 6 gather reduction
kg/ Q/ 0 1 2

0,0) 0.1) 02y | 03

o\o ; (1,0) an | a2 | w3 ma ny more
communications 8 9 10 11

0 20 21y | (22) | 23) (>600 tOtaI)
o 12 13 14 15

(3.0} (3.1) (3.2) (3.3)

Collection of 1D address spaces Source: Blaise Barney, LLNL

L]

°

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Example: Practical Distributed Memory Programming: MPI-1 — Six Functions!

#include <mpi.h>

int main(int argc, char **argv) {
int myrank, sbuf=23, rbuf=32;
MPI_Init(&argc, &argv);

/* Find out my identity in the default communicator */
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank ==0) {

MPI_Send(&sbuf, /* message buffer */
1, /* one data item */
MPI_INT, /* data item is an integer */
rank, /* destination process rank */
99, /* user chosen message tag */
MPI_COMM_WORLD); /* default communicator */
}else {

MPI_Recv(&rbuf, MPI_DOUBLE, 0, 99, MPI_COMM_WORLD, &status);
printf(“received: %i\n”, rbuf);

}

MPI_Finalize();
}

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Example: MPI-2/3 supporting Shared Memory and PGAS-style!

= Support for shared memory in SMM domains @ @ @ @ @ @ @ @

memory memory

UMA UMA
= Support for Remote Memory Access Programming 0 1 2 3
= Direct use of RDMA
= Essentially PGAS
meTnory
= Enhanced support for message passing communication PGAS

= Scalable topologies

= More nonblocking features o 1 2 3
" ... Mmany more @ @ @ @
DM

W —7 o/ = & v osron ETHZzUrich

MPI: de-facto large-scale prog. standard

SCIENTIFIC SCIENTIFIC

AND AND

ENGINEERING ENGINEERING

COMPUTATION COMPUTATION

SERIES SERIES

Using MPI Using Advanced MPI

Portable Parallel Programming Modern Features of the

with the Message-Passing Interface Message-Passing Interface

third edition

William Gropp

William Gropp Torsten Hoefler

Ewing Lusk Rajeev Thakur

Anthony Skjellum Ewing Lusk

Basic MPI Advanced MPI, including MPI-3

Example: Accelerator programming with CUDA

spcl.inf.ethz.ch
L 4 @spcl_eth

ETH:zurich

Hierarchy of Threads

float x = input|threadID]:

float ¥ = func(x):
cutput [threadID] = y:

8 SMX
1536 CUDA Cores

8 Geometry Units
4 Raster Units
128 Texture Units
32 ROP units

* 256-bit GDDR5

Source: NVIDIA

Complex Memory Model

P L L
o
4
el ==

Block (0, 0)

/

Block (1, 0)

|]

Thread (0, 0) | Thread (1, 0)

Thread (0, 0) | Thread (1, 0)

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Example: Accelerator programming with CUDA

Host Code
#define N 10 The Kernel
int main(void) {
int a[N], b[N], c[N]; __global__ void add(int *a, int *b, int *c) {
int *dev_a, *dev_b, *dev_gc; int tid = blockldx.x;
// allocate the memory on the GPU // handle the data at this index
cudaMalloc((void**)&dev_a, N * sizeof(int)); if (tid < N)
cudaMalloc((void**)&dev_b, N * sizeof(int)); c[tid] = a[tid] + b[tid];
cudaMalloc((void**)&dev_c, N * sizeof(int)); }

// fill the arrays 'a' and 'b' on the CPU

for (int i=0; i<N; i++) { a[i] =-i; b[i] =i *i; }

// copy the arrays 'a' and 'b' to the GPU

cudaMemcpy(dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice);
add<<<N,1>>>(dev_a, dev_b, dev_c);

// copy the array 'c' back from the GPU to the CPU

cudaMemcpy(c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost);
// free the memory allocated on the GPU

cudaFree(dev_a); cudaFree(dev_b); cudaFree(dev_c);

}

Interesting research: how to automate compilation to GPUs! Grosser, TH: “Polly-ACC: Transparent compilation to heterogeneous hardware”

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Example: OpenACC / OpenMP 4.0

= Aims to simplify GPU programming
= Compiler support

= Annotations! More pragmas and semantic duplication

#define N 10
int main(void) {
int a[N], b[N], c[N];
#pragma acc kernels
for (inti=0; i< N; ++i)
c[i] = a[i] + b[i];
}

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Many many more programming models/frameworks

= Not covered:
= SMM: Intel Cilk / Cilk Plus, Intel TBB, ...
= Directives: OpenHMPP, PVM, ...
= PGAS: Coarray Fortran (Fortran 2008), ...
= HPCS: IBM X10, Fortress, Chapel, ...
= Accelerator: OpenCL, C++AMP, ...
= This class will not describe any model in more detail!
= There are too many and they will change quickly (only MPI made it >15 yrs)

= No consensus, but fundamental questions remain:
= Data movement (/O complexity)
= Synchronization (avoiding races, deadlock etc.)
= Memory Models (read/write ordering)
= Algorithmics (parallel design/thinking)
= Foundations (conflict minimization, models, static vs. dynamic scheduling etc.)

spcl.inf.ethz.ch 5o o
v owi o ETHZzUrich

Goals of this lecture

= Motivate you!
= What is parallel computing?
= And why do we need it?
= What is high-performance computing?
= What’s a Supercomputer and why do we care?
= Basic overview of
= Programming models
Some examples
= Architectures
Some case-studies
= Provide context for coming lectures

62

spcl.inf.ethz.ch
L 4 @spcl_eth

ETH:zurich

Architecture Developments

<1999

distributed

memory
machines
communicating
through
messages

Sources: various vendors

-

’00-'05

large cache-
coherent
multicore
machines
communicating
through coherent
memory access
and messages

AMD Buldozer 16-cort

>
b

’06-'12

larg: le-
coht ,c
muli

machines
communicating
through coherent
memory access
and remote direct

memory access

-

4

R
\.}_.

’13-20

coherent and non-
coherent
manycore
accelerators and
multicores
communicating
through memory
access and

remote direct

>2020

largely non-
coherent
accelerators and
multicores
communicating
through remote
direct memory
access

63

v owien ETHzUrich
Case Study 1: Cray Cascade (XC30) — Piz Daint!

= Biggest current installation at CSCS! ©
= >2k nodes

= Standard Intel x86 Sandy Bridge Server-class CPUs

\\

~~1" 1‘ S o o Sy Sy Sy Sy Sy Sy Sy Sy Sy Sy —

[FEEEEEEREEREEER

T g g

mmmmmmmmmmmmmrf

t t \t \' ‘F \F \‘- \‘. \‘. i backplanes

~~~~~~~~~~~~~~~ connected with
, copper cables in a
group:
\
£ \v': n ‘h ‘st ‘,v: ‘,v:' ZW: ‘v-. ‘h‘h‘!‘ Bkl G

= Y 4 >
\'- -
! I f \ A\ A\ \
~.‘5!’t‘!’t‘h‘h‘hh!‘..-.
0

T &ﬁhﬁﬁﬁﬁﬁﬁﬁ;’ ot

iﬁ'r"\'_F.‘\P_\Pa\Fp\'4\\?‘;\\PA\\F‘\\FQ\\FA\\FA\\FA\\FA\r “Blue Network”

oo o s, coy R SRR
S Bob Al Cray EEEE

-

x
Aries connected by
4 nodes connect backplane
to a single Aries “Green Network”

67



spcl.inf.ethz.ch 5o o
v owien  ETHZUrich

Case Study 1: Cray Cascade Network Topology

= All-to-all connection among groups (“blue network”)

Source: Bob Alverson, Cray

= |Interesting research opportunities!
= Topology design?
= E.g., Besta, TH: Slim Fly: A Cost Effective Low-Diameter Network Topology
= Interference analysis (can we provide isolation)?
= How to route low-diameter topologies?




spcl.inf.ethz.ch

Case Study 2: IBM POWER7 IH (BW)

L 4 @spcl_eth

Blue Waters System

Building Block

SuperNode
(1024 cores)

Drawer

(256 cores)

SMP node
(32 cores)

P7 Chip
(8 cores)

Source: IBM/NCSA

E
g‘

[o
e

7

i Near-line Storage

On-line Storage

ETH:zurich



spcl.inf.ethz.ch o o
v owi o ETHZzUrich

POWER?7 Core

= Execution Units
= 2 Fixed point units
= 2 Load store units
4 Double precision floating point
1 Branch
1 Condition register
1 Vector unit
1 Decimal floating point unit
6 wide dispatch
Recovery Function Distributed
1,2.4 Way SMT Support
Out of Order Execution
32KB |-Cache
32KB D-Cache

256KB L2
= Tightly coupled to core

Source: IBM/NCSA
70



spcl.inf.ethz.ch o o
v owi o ETHZzUrich

POWER7? Chip (8 cores)

= Base Technology
= 45 nm, 576 mm?
= 1.2 B transistors

= Chip
= 8 cores
4 FMAs/cycle/core
= 32 MB L3 (private/shared)
» Dual DDR3 memory
128 GiB/s peak bandwidth
(1/2 byte/flop)
» Clock range of 3.5 -4 GHz

Source: IBM/NCSA

LS| Ste

Quad-chip MCM

273403

s ST
i b Bl
- -
= 5 189
e i
-3 i=taais

Sl RN ENES e ST R B IS T
CIEIEICICEE - T

T TR ST 2 " 3
B ~ogebadia { i sl

GAIAT A S Lgt

PET W BR B R R R e

"
exl J
ewErenve)
- -
B

71



spcl.inf.ethz.ch

L 4 @spcl_eth

ETH:zurich

Quad Chip Module (4 chips)

= 32 cores

= 32 cores*8 F/core*4 GHz=1TF

= 4 threads per core (max)

» 128 threads per package
= 4x32 MiB L3 cache

= 512 GB/s RAM BW (0.5 B/F)
= 800 W (0.8 W/F)

Source: IBM/NCSA

A Clk Grp

8c uP 8c uP ——
B Clk Grp
o >
% C Clk Grp
P7-0 P7-1 >
e m—
A Clk Grp
B |= A ——
L --— g2Ck G
Y =1 X CCkG
P
e E——
C C D Clk Grp
e E——
Z Y
A X B w ZJ
A CIk Grj C C M’
B Clk Grp Y
CCIk Grp
- Ses
D Clk Grp i X
A Clk Grp
—>
B Clk Grp - P 7 -3
’ O
C Clk Grp >
-
D Clk Grp 80 uP




spcl.inf.ethz.ch 5o o
v owien  ETHZUrich

Adding a Network Interface (Hub)

Connects QCM to PCl-e v G e [ [ g

S S |em] 5

—=1ll p7.0 P71 [P

Two 16x and one 8x PCl-e slot e L

o = .=

Connects 8 QCM's via low latency, BE-_. c c =
high bandwidth, Woax T ew 7~

copper fabric.

7 BW A X Wi
AClk G (© C M» o %
- - B Clk Grp B Clk Gry Z|
Provides a message passing A 4 ipy (L
- - D Clk Grp 1_> : <__> D Clk Grp IM, %
mechanism with very i [ === e ] -
. . B AC\kG; AClk Grp o
high bandwidth T e P =
; Mem CCIKGE E C CIk Grp }
. . = — 8c uP 8c uP =0
Provides the lowest possible
latency between 8 QCM's g ghECPMeMe
1?3‘4 1‘;4 124 1‘;4 1%‘4 1?3‘4 1?;4 ;2 "’/\2 ;2 X

LIO LIl L2 L3 L4 L5 L6 EG2 EGl EG

il
L

N

124 x) [12x
12 x) [12x
12 x| [12
12 X
10
<
¥
=
S
I
%
&
=3
@
o
[0}
<1
=
=
=

320 GB/s 240 GB/s

3.0Gb/s @ 8B+8B, 90% sus. peak

Source: IBM/NCSA



spcl.inf.ethz.ch 5o o
v owi o ETHZzUrich

1.1 TB/s POWER7 IH HUB

PX0 Bus
PX1 Bus
PX2 Bus

Xg———

«—————————» Hot Plug Ctl

XGT———-

«————————————» Hot Plug Ctl

XQT———

«+—————————— Hot Plug Ctl

4—|S4—» FSP1-A
4+——|S4—» FSP1-B
+——0Cl———* TPMD-A, TMPD-B
4—OIANS—» MDC-A
«4—OINS— MDC-B
4—0OCl—* SEEPROM 1
+—0¢l— SEEPROM 2

~—X9T
-—xs

-——xoT

lt——p 12C_0 +Int

192 GB/s Host

12¢C

12C
To Optical
Modules

LL1 Bus-——8B;

gther 1o

LL2 Bus-#——388B,
88

°
[
°

lt——p 12C_27 + Int

336 GB/s to

Copper

cal

Copper

12x—m DO Bus i~

k, Hub Chip

240 GB/s t

Y

HUB TaklUB Coppar Board Wjring
Diff PHYs

LL4 Bus-#——388B
320 GB/s to e T Y b s
LL5 Bus-#—88 ) 2 g S g
Copper 8B ° a3} 8
@
40 GB/s to gengral p R -
Copper 88 Diff PHYs —12x Optical g
IS

::::::
I X P0p O3 d@pp

cf. “The PERCS interconnect” @Hotl"10]

8 &
) L remote 2 HUB to QCM C t
=1 > = 0 QCM Connections
cﬁ 8 Buses [a1] 8 Address/Data
= oS
T Q. N Q
xo el
L remote
4 Drawer Interconnect to Create a Supernode
Optical

Source: IBM/NCSA
74



urich

ETH -

5§
&2
-~ d —_— BUWNINIU-ZN O00WWIQ-LN
:plw. o m 60NWIT-ZN @ TOWWIQ-ZN
£ =Y &
3 Q= ZTNIWIG-ZN o
. 03 B
“n oS o IN
M |D LOWWIQ-ZN
< BUNINIU-YN 00WWIA-9N
O 60AINId-9N © TOWINIA-9N
&
a i
~
L 90NINIQ-9N

- LOWWIG-9N

00NIIA-SN
TOWWIA-SN

P7-1 P7-3

90N
LOWINIQ-SN

60NNIA-YN

CTANNIA-YN
€

P7-1 |P7-3

2UrT-1, 19014 ¥0g'2
Sa|NpoN gNH

OOWINIC-EN
wolj no-uey eondo

TOWWIG-EN

P7-1 P7-3

90WINIC-EN
LOWWIG-EN

O00AWIG-¢N
TOWWIQ-ZN

60NNIA-ZN

CTANINId-¢N

P7-18 |P7-3

"‘ﬂ y -

7

N
LOWWID-¢N

00WWIG-TN
TOWWIC-TN

‘N

60NINIA-TN

~

CTANIQ-

TN
TN

p
e

17
=

17:C1

P7-1 |P7-3

90NINIA-TN
LOWWIG-TN

00AIC-ON

60NNIC-ON TOWWIA-ON

CTWWIG-ON
ETIWAIA-ON

P7-1 P7-3

90WINId-ON
LOWWIG-ON

64/40 Optical
'D-Link’
“7‘ V'
]

i)
@)
Q Qo
c £
c =
w 0 o) =
o = (@) (-
c O Q Q
U N N < O
T on i m
= v = R
o ° o > r 9
V — o o
o o
° » - O 7
o O I N
L A A A

P7 IH Drawer

Source: IBM/NCSA



spcl.inf.ethz.ch oo o
w owien  EETHZUrICh




spcl.inf.ethz.ch 5o o
v owien  ETHZUrich

P7 IH Supernode

Seco N d Leve I I nte rconn ect 2" Level Interconnect (1,024 cores) 2" Level Interéonnect (1,024 cdtes)
- |

=Optical ‘L-Remote’ Links from HUB

=4 drawers
=1,024 Cores
Super Node haNgp
-E ports

(32 Nodes / 4 CEC)

v g SRLLLLLES
; o B -

£

2

) 2" Level Interconnect (1,024 cores)

Source: IBM/NCSA



spcl.inf.ethz.ch 5o o
v owien  ETHZUrich

Goals of this lecture

=  Motivate you!
= What is parallel computing?
= And why do we need it?
= What is high-performance computing?
= What’s a Supercomputer and why do we care?
= Basic overview of
" Programming models
Some examples
= Architectures
Some case-studies
= Provide context for coming lectures



spcl.inf.ethz.ch 5o o
v owien  ETHZUrich

DPHPC Lecture

= You will likely not have access to the largest machines (unless you specialize to HPC)
= But our desktop/laptop will be a “large machine” soon
= HPCis often seen as “Formula 1” of computing (architecture experiments)

= DPHPC will teach you concepts!
= Enable to understand and use all parallel architectures
®" From a quad-core mobile phone to the largest machine on the planet!
MCAPI vs. MPI — same concepts, different syntax
= No particular language (but you should pick/learn one for your project!)
Parallelism is the future:

WE NEED TO FINISH YOUR YOU MIGHT NEED

PROGRAM TWICE AS FAST, TO TRAIN HIM TELL ME AGAIN

SO TM ADDING A PERSON A LITTLE BEFORE WHAT THE BIG

TO HELP YOU. HES PRODUCTIVE. GLOWING
THING I5.

G Arpag E-mail; SCOTTADAMS®ACL.COM

J-F @ 1995 United Faature Syndicats, Ing. (HYC)

o\




spcl.inf.ethz.ch 5o o
v owien  ETHZUrich

Related classes in the SE focus

= 263-2910-00L Program Analysis
http://www.srl.inf.ethz.ch/pa.php
Spring 2017
Lecturer: Prof. M. Vechev

= 263-2300-00L How to Write Fast Numerical Code
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/course.html
Spring 2017
Lecturer: Prof. M. Pueschel

= This list is not exhaustive!


http://www.srl.inf.ethz.ch/pa.php
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/course.html

spcl.inf.ethz.ch 0o o
v owien  ETHZUrich

DPHPC Overview
DPHPC\\\\\\\

” locality parallelism
e
I
2 - caches vector ISA shared memory distributed memory
< - memory hierarchy
2 , cache coherency
o3 |
P memory distributed .
o models algorithms
S
= locks group commu-
o lock free nications

wait free

linearizability

Amdahl's and Gustafson's law

| memory | PRAM | LogP ,
| a-B | | |

I/O complexity
balance principles | balance principles Il
Little's Law scheduling

models



