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 Motivate you!

 What is parallel computing?

 And why do we need it?

 What is high-performance computing?

 What’s a Supercomputer and why do we care?

 Basic overview of

 Programming models

Some examples

 Architectures

Some case-studies

 Provide context for coming lectures
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Goals of this lecture
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 … you were to build a machine like this …

 … we know how each part works

 There are just many of them!

 Question: How many calculations per second are needed to emulate a brain?
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Let us assume …

Source: wikipedia
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Source: www.singularity.com Can we do this today?
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Source: www.singularity.com

Blue Waters, ~13 PF (2012)

Summit, ~200 PF (2018)

1 Exaflop! ~2023?
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 … not so fast, we need to understand how to program those machines …
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Human Brain – No Problem!
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Human Brain – No Problem!

Scooped!

Source: extremetech.com
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 Most natural sciences are simulation driven or are moving towards simulation
 Theoretical physics (solving the Schrödinger equation, QCD)
 Biology (Gene sequencing)
 Chemistry (Material science)
 Astronomy (Colliding black holes)
 Medicine (Protein folding for drug discovery)
 Meteorology (Storm/Tornado prediction)
 Geology (Oil reservoir management, oil exploration)
 and many more … (even Pringles uses HPC)

 Quickly emerging areas for HPC/parallel computing technologies
 Big data processing
 Deep learning
 HPC was always at the forefront of specialization

 Many cloud services require HPC/parallel computing
 Transaction processing/analysis
 Stock markets
 Making movies etc.
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Other problem areas: Scientific Computing
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 Solving bigger problems than we could solve before!

 E.g., Gene sequencing and search, simulation of whole cells, mathematics of the brain, …

 The size of the problem grows with the machine power

Weak Scaling

 Solve today’s problems faster!

 E.g., large (combinatorial) searches, mechanical simulations (aircrafts, cars, weapons, …)

 The machine power grows with constant problem size

 Strong Scaling
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What can faster computers do for us?
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 a.k.a. “Supercomputing”

 Question: define “Supercomputer”!

 “A supercomputer is a computer at the frontline of contemporary processing capacity--particularly speed of 
calculation.” (Wikipedia)

 Usually quite expensive ($s and MW) and big (space)

 HPC is a quickly growing niche market

 Not all “supercomputers”, wide base

 Important enough for vendors to specialize

 Very important in research settings (up to 40% of university spending)

“Goodyear Puts the Rubber to the Road with High Performance Computing”

“High Performance Computing Helps Create New Treatment For Stroke Victims”

“Procter & Gamble: Supercomputers and the Secret Life of Coffee”

“Motorola: Driving the Cellular Revolution With the Help of High Performance Computing”

“Microsoft: Delivering High Performance Computing to the Masses”
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High-Performance Computing (HPC)



spcl.inf.ethz.ch

@spcl_eth

 A benchmark, solve Ax=b

 As fast as possible!  as big as possible 

 Reflects some applications, not all, not even many

 Very good historic data!

 Speed comparison for computing centers, states, countries, nations, continents 

 Politicized (sometimes good, sometimes bad)

 Yet, fun to watch
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The Top500 List
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The Top500 List (June 2015)
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Piz Daint @ CSCS

More pictures at: http://spcl.inf.ethz.ch/Teaching/2015-dphpc/
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Imagine you’re designing a $500 M 
supercomputer, and all you have is:
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Blue Waters in 2009

This is why you need to understand 
performance expectations well!
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Blue Waters in 2012
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History and Trends

Source: Jack Dongarra

Single V100 GPU (7 Tflop/s)
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Source: Wikipedia
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How to increase the compute power?
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 Physics (technological constraints)
 Cost of data movement

 Capacity of DRAM cells

 Clock frequencies (constrained by end of Dennard scaling)

 Speed of Light

 Melting point of silicon

 Computer Architecture (design of the machine)
 Power management

 ISA / Multithreading

 SIMD widths

“Computer architecture, like other architecture, is the art of determining the needs of the user of a structure and then 
designing to meet those needs as effectively as possible within economic and technological constraints.” – Fred Brooks 
(IBM, 1962)

Have converted many former “power” problems into “cost” problems

19

Computer Architecture vs. Physics (currently 0:1)

Credit: John Shalf (LBNL)

𝑃𝑑𝑦𝑛 = 𝐴𝐶𝑉2𝐹

Activity factor 
(fraction of circuit 

that switches)

Capacitance 
(charged/discharged 

at each clock)

Voltage

Frequency

Higher voltage is needed to drive higher frequency 
(due to fixed capacitance). Higher voltage also 

increases static power dissipation (leakage).
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 Cubic power improvement with lower clock rate due to V2F

 Slower clock rates enable use of simpler cores

 Simpler cores use less area (lower leakage) and reduce cost

 Tailor design to application to REDUCE WASTE
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Low-Power Design Principles (2005)

Intel Core2

Intel Atom

Tensilica XTensa

Power 5

Credit: John Shalf (LBNL)
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Low-Power Design Principles (2005)

 Power5 (server) 

 120W@1900MHz

 Baseline

 Intel Core2 sc (laptop) :

 15W@1000MHz

 4x more FLOPs/watt than baseline 

 Intel Atom (handhelds)

 0.625W@800MHz

 80x more

 GPU Core or XTensa/Embedded

 0.09W@600MHz

 400x more (80x-120x sustained)

Intel Core2

Intel Atom

Tensilica XTensa

Power 5

Credit: John Shalf (LBNL)

Even if each simple core is 1/4th as computationally efficient as complex core, you can fit hundreds of them 
on a single chip and still be 100x more power efficient.
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Heterogeneous computing on the rise!

0.23mm 0
.2

 m
m

Tiny coreBig cores (very few)
Lots of them!

Latency Optimized Core (LOC)
Most energy efficient if you don’t have 
lots of parallelism

Throughput Optimized Core (TOC)
Most energy efficient if you DO have a lot of 
parallelism!

Credit: John Shalf (LBNL)
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 Energy Efficiency of copper wire:
 Power = Frequency * Length / cross-section-area

 Wire efficiency does not improve as feature size shrinks

 Energy Efficiency of a Transistor:
 Power = V2 * frequency * Capacitance
 Capacitance ~= Area of Transistor
 Transistor efficiency improves as you shrink it

 Net result is that moving data on wires is starting to cost more energy than computing on said data  (interest 
in Silicon Photonics)

23

Data movement – the wires

wire

Photonics could break through 
the bandwidth-distance limit

Credit: John Shalf (LBNL)
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 Moore’s law doesn’t apply to adding pins to package

 30%+ per year nominal Moore’s Law

 Pins grow at ~1.5-3% per year at best

 4000 Pins is aggressive pin package

 Half of those would need to be for power and ground

 Of the remaining 2k pins, run as differential pairs

 Beyond 15Gbps per pin power/complexity costs hurt!

 10Gpbs * 1k pins is ~1.2TBytes/sec

 2.5D Integration gets boost in pin density

 But it’s a 1 time boost (how much headroom?)

 4TB/sec?  (maybe 8TB/s with single wire signaling?)

24

Pin Limits

Credit: John Shalf (LBNL)
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 Open-source CPUs?

 RISC-V

 Open-source accelerators?

 Talk to us if interested! 

 Context of the European Processor Initiative

Collaboration with L. Benini (ITET) 

 Many open research topics

 How to program hardware?

 How to combine IPs into a system

 How to build real high-performance CPUs/systems/accelerators!

25

The future?
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A more complete view
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 Architectural innovations
 Branch prediction, out-of-order logic/rename register, speculative execution, …

 Help only so much 

 What else? 
 Simplification is beneficial, less transistors per CPU, more CPUs, e.g., Cell B.E., GPUs, MIC, Sunway SW26010

 We call this “cores” these days

 Also, more intelligent devices or higher bandwidths (e.g., DMA controller, intelligent NICs) 

32

So how to invest the transistors?

Source: IBM Source: NVIDIA Source: Intel
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 Everything goes parallel

 Desktop computers get more cores

2,4,8, soon dozens, hundreds?

My watch has four (weak) cores …

 Supercomputers get more PEs (cores, nodes)

> 10 million today

> 50 million on the horizon

 1 billion in a couple of years (after 2030?)

 Parallel Computing is inevitable!
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Towards the age of massive parallelism

Parallel vs. Concurrent computing
Concurrent activities may be executed in parallel
Example: 

A1 starts at T1, ends at T2; A2 starts at T3, ends at T4
Intervals (T1,T2) and (T3,T4) may overlap!

Parallel activities: 
A1 is executed while A2  is running
Usually requires separate resources!
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 Motivate you!

 What is parallel computing?

 And why do we need it?

 What is high-performance computing?

 What’s a Supercomputer and why do we care?

 Basic overview of

 Programming models

Some examples

 Architectures

Some case-studies

 Provide context for coming lectures
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Goals of this lecture
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Granularity and Resources

Parallel Resource

 Instruction-level parallelism

 Pipelining

 VLIW/EDGE

 Superscalar

 SIMD operations

 Vector operations

 Instruction sequences

 Multiprocessors

 Multicores

 Multithreading

Execution Activities

 Micro-code instruction

 Machine-code instruction 
(complex or simple)

 Sequence of machine-code 
instructions:

Blocks

Loops

Loop nests

Functions

Function sequences

Programming

 Compiler

 (inline assembly)

 Hardware scheduling

 Compiler (inline assembly)

 Libraries

 Compilers (very limited)

 Expert programmers

 Parallel languages

 Parallel libraries

 Hints
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Historic Architecture Examples

 Systolic Array 

 Data-stream driven (data counters)

 Multiple streams for parallelism

 Specialized for applications (reconfigurable)

 Dataflow Architectures

 No program counter, execute instructions when all input arguments are available

 Fine-grained, high overheads

Example: compute f = (a+b) * (c+d) 

 Both come-back in FPGA computing and EDGE architectures

 Interesting research opportunities!

Talk to us if you’re interested (i.e., how to program
FPGAs easily and fast)

36

Source: ni.com

Source: isi.edu
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 Program counter  inherently sequential!
Retrospectively define parallelism in instructions and data
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Von Neumann Architecture (default today)

SISD
Standard Serial Computer 

(nearly extinct)

SIMD
Vector Machines or Extensions

(very common)

MISD
Redundant Execution

(fault tolerance)

MIMD
Multicore

(ubiquituous)
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 … and mixtures of those
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Parallel Architectures 101 – Multiple Instruction Streams

Today’s laptops Today’s servers

Yesterday’s clusters Today’s clusters
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 Shared Memory Programming (SM/UMA)

 Shared address space

 Implicit communication

 Hardware for cache-coherent remote memory access

 Cache-coherent Non Uniform Memory Access (cc NUMA)

 (Partitioned) Global Address Space (PGAS)

 Remote Memory Access

 Remote vs. local memory (cf. ncc-NUMA)

 Distributed Memory Programming (DM)

 Explicit communication (typically messages)

 Message Passing

39

Parallel Programming Models 101
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 Two historical architectures:
 “Mainframe” – all-to-all connection 

between memory, I/O and PEs
Often used if PE is the most expensive part

Bandwidth scales with P

PE Cost scales with P,  Question: what about network cost?

Answer: P2, can be cut with multistage connections (butterfly)

 “Minicomputer” – bus-based connection
All traditional SMP systems 

High latency, low bandwidth (cache is important)

Tricky to achieve highest performance (contention)

Low cost, extensible

40

Shared Memory Machines

Source: IBM
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 Any PE can access all memory

 Any I/O can access all memory (maybe limited)

 OS (resource management) can run on any PE

 Can run multiple threads in shared memory

 Used since 40+ years

 Communication through shared memory

 Load/store commands to memory controller

 Communication is implicit

 Requires coordination

 Coordination through shared memory

 Complex topic

 Memory models

 (ETH students): Most of what we covered in Parallel Programming in the 2nd semester! 41

Shared Memory Machine Abstractions
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 Threads or processes 

 Communication through memory

 Synchronization through memory or OS objects

 Lock/mutex (protect critical region)

 Semaphore (generalization of mutex (binary sem.))

 Barrier (synchronize a group of activities)

 Atomic Operations (CAS, Fetch-and-add)

 Transactional Memory (execute regions atomically)

 Practical Models:

 Posix threads (ugs, will see later)

 MPI-3

 OpenMP

 Others: Java Threads, Qthreads, …

 (ETH students): Most of what we covered in Parallel Programming in the 2nd semester! 42

Shared Memory Machine Programming
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 Using Gregory-Leibnitz Series:

 Iterations of sum can be computed in parallel

 Needs to sum all contributions at the end

43

An SMM Example: Compute Pi

Source: mathworld.wolfram.com
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Pthreads Compute Pi Example

int main( int argc, char *argv[] ) 
{ 

// definitions …
thread_arr = (pthread_t*)malloc(nthreads * 

sizeof(pthread_t));
resultarr= ( double*)malloc(nthreads * 

sizeof(double));

for (i=0; i<nthreads; ++i) {
int ret = pthread_create( &thread_arr[i], 

NULL, compute_pi, (void*) i);
}
for (i=0; i<nthreads; ++i) {
pthread_join( thread_arr[i], NULL);

}
pi = 0;
for (i=0; i<nthreads; ++i) pi += resultarr[i];

printf ("pi is ~%.16f, Error is %.16f\n", 
pi, fabs(pi - PI25DT)); 

} 

int n=10000;
double *resultarr;
pthread_t *thread_arr;
int nthreads;

void *compute_pi(void *data) {
int i, j; 
int myid = (int)(long)data;
double mypi, h, x, sum; 

for (j=0; j<n; ++j) { 
h   = 1.0 / (double) n; 
sum = 0.0; 
for (i = myid + 1; i <= n; i += nthreads) { 
x = h * ((double)i - 0.5); 
sum += (4.0 / (1.0 + x*x)); 

} 
mypi = h * sum; 

} 
resultarr[myid] = mypi;

}



spcl.inf.ethz.ch

@spcl_eth

 OpenMP would allow to implement this example much simpler (but has other issues)

 Transparent shared memory has some issues in practice:

 False sharing (e.g., resultarr[])

 Race conditions (complex mutual exclusion protocols)

 Little tool support (debuggers need some work)

 These issues were predominantly discussed in parallel programming in the 2nd semester 

We will briefly repeat some but not all!

 Achieving performance is harder than it seems!

45

Additional comments on SMM
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 Explicit communication between PEs

 Message passing or channels

 Only local memory access, no direct access to 
remote memory

 No shared resources (well, the network)

 Programming model: Message Passing (MPI)

 Communication through messages or group operations (broadcast, reduce, etc.)

 Synchronization through messages (sometimes unwanted side effect) or group operations (barrier)

 Typically supports message matching and communication contexts

46

Distributed Memory Machine Programming
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 Send specifies buffer to be transmitted

 Recv specifies buffer to receive into

 Implies copy operation between named PEs

 Optional tag matching

 Pair-wise synchronization (cf. happens before)

47

DMM Example: Message Passing

Process P Process Q

Address Y

Address X

Send X, Q, t

Receive Y, P,tMatch

Local process
address space

Local process
address space

Source: John Mellor-Crummey
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DMM MPI Compute Pi Example
int main( int argc, char *argv[] )  { 

// definitions

MPI_Init(&argc,&argv); 

MPI_Comm_size(MPI_COMM_WORLD, &numprocs); 

MPI_Comm_rank(MPI_COMM_WORLD, &myid); 

double t = -MPI_Wtime();

for (j=0; j<n; ++j) { 

h   = 1.0 / (double) n; 

sum = 0.0; 

for (i = myid + 1; i <= n; i += numprocs) { x = h * ((double)i - 0.5);  sum += (4.0 / (1.0 + x*x)); } 

mypi = h * sum; 

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); 

} 

t+=MPI_Wtime();

if (!myid) {

printf("pi is approximately %.16f, Error is %.16f\n", pi, fabs(pi - PI25DT)); 

printf("time: %f\n", t);

}

MPI_Finalize(); 

} 
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 Partitioned Global Address Space

 Shared memory emulation for DMM

Usually non-coherent

 “Distributed Shared Memory”

Usually coherent

 Simplifies shared access to distributed data

 Has similar problems as SMM programming

 Sometimes lacks performance transparency 

Local vs. remote accesses

 Examples:

 UPC, CAF, Titanium, X10, …

 Interesting research question: how to exploit PGAS/RDMA in practice?

 Cf. VLDB’17,  Barthels et al.: “Distributed Join Algorithms on Thousands of Cores”

49

DMM Example: PGAS
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 How to program large machines?

 No single approach, PMs are not converging yet

 MPI, PGAS, OpenMP, Hybrid (MPI+OpenMP, MPI+MPI, MPI+PGAS?, generally MPI+X), …

 Architectures converge 

 General purpose nodes connected by general purpose or specialized networks

 Small scale often uses commodity networks

 Specialized networks become necessary at scale

 Even worse: accelerators (not covered in this class, yet)

50

How to Tame the Beast?
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 Fork-join model

 Types of constructs:

51

Example: Shared Memory Programming with OpenMP
Source: OpenMP.org

Source: Blaise Barney, LLNL

+ Tasks
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 Annotate sequential code with pragmas (introduce semantic duplication)
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Example: Shared Memory Programming with OpenMP

#include <omp.h>

main ()  {

int var1, var2, var3;

// Serial code 

// Beginning of parallel section. Fork a team of threads. Specify variable scoping 

#pragma omp parallel private(var1, var2) shared(var3)

{

// Parallel section executed by all threads 

// Other OpenMP directives

// Run-time Library calls

// All threads join master thread and disband 

}  

// Resume serial code 

}

Source: Blaise Barney, LLNL
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 PGAS extension to the C99 language

 Many helper library functions 

 Collective and remote allocation

 Collective operations

 Complex consistency model

53

Example: Practical PGAS Programming with UPC
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Example: Practical Distributed Memory Programming: MPI-1

Collection of 1D address spaces

Helper Functions

many more
(>600 total)

Source: Blaise Barney, LLNL
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Example: Practical Distributed Memory Programming: MPI-1 – Six Functions!

#include <mpi.h>

int main(int argc, char **argv) {

int myrank, sbuf=23, rbuf=32;

MPI_Init(&argc, &argv);

/* Find out my identity in the default communicator */

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

if (myrank == 0) {

MPI_Send(&sbuf,    /* message buffer */

1,                /* one data item */

MPI_INT,           /* data item is an integer */

rank,              /* destination process rank */

99,           /* user chosen message tag */

MPI_COMM_WORLD);   /* default communicator */

} else {

MPI_Recv(&rbuf,  MPI_DOUBLE,  0, 99, MPI_COMM_WORLD,  &status);

printf(“received: %i\n”, rbuf);

}

MPI_Finalize();

}
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 Support for shared memory in SMM domains

 Support for Remote Memory Access Programming

 Direct use of RDMA

 Essentially PGAS

 Enhanced support for message passing communication

 Scalable topologies 

 More nonblocking features

 … many more

56

Example: MPI-2/3 supporting Shared Memory and PGAS-style!



spcl.inf.ethz.ch

@spcl_eth

57

MPI: de-facto large-scale prog. standard

Basic MPI Advanced MPI, including MPI-3



spcl.inf.ethz.ch

@spcl_eth

58

Example: Accelerator programming with CUDA

Hierarchy of Threads

Complex Memory Model

Simple Architecture

Source: NVIDIA
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Example: Accelerator programming with CUDA

#define N 10

int main( void ) {

int a[N], b[N], c[N];

int *dev_a, *dev_b, *dev_c;

// allocate the memory on the GPU

cudaMalloc( (void**)&dev_a, N * sizeof(int) );

cudaMalloc( (void**)&dev_b, N * sizeof(int) );

cudaMalloc( (void**)&dev_c, N * sizeof(int) );

// fill the arrays 'a' and 'b' on the CPU

for (int i=0; i<N; i++) { a[i] = -i; b[i] = i * i;  }

// copy the arrays 'a' and 'b' to the GPU

cudaMemcpy( dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice ); 

cudaMemcpy( dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice );

add<<<N,1>>>( dev_a, dev_b, dev_c );

// copy the array 'c' back from the GPU to the CPU

cudaMemcpy( c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost );

// free the memory allocated on the GPU

cudaFree( dev_a ); cudaFree( dev_b ); cudaFree( dev_c );

}

__global__ void add( int *a, int *b, int *c ) {

int tid = blockIdx.x;

// handle the data at this index

if (tid < N)

c[tid] = a[tid] + b[tid];

}

The Kernel

Host Code

Interesting research: how to automate compilation to GPUs! Grosser, TH: “Polly-ACC: Transparent compilation to heterogeneous hardware”
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 Aims to simplify GPU programming

 Compiler support

 Annotations! More pragmas and semantic duplication
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Example: OpenACC / OpenMP 4.0

#define N 10

int main( void ) {

int a[N], b[N], c[N];

#pragma acc kernels

for (int i = 0; i < N; ++i)

c[i] = a[i] + b[i];

}
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 Not covered:

 SMM:  Intel Cilk / Cilk Plus, Intel TBB, …

 Directives: OpenHMPP, PVM, …

 PGAS: Coarray Fortran (Fortran 2008), …

 HPCS: IBM X10, Fortress, Chapel, …

 Accelerator: OpenCL, C++AMP, …

 …

 This class will not describe any model in more detail!

 There are too many and they will change quickly (only MPI made it >15 yrs)

 No consensus, but fundamental questions remain:

 Data movement (I/O complexity)

 Synchronization (avoiding races, deadlock etc.)

 Memory Models (read/write ordering)

 Algorithmics (parallel design/thinking)

 Foundations (conflict minimization, models, static vs. dynamic scheduling etc.)

61

Many many more programming models/frameworks
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 Motivate you!

 What is parallel computing?

 And why do we need it?

 What is high-performance computing?

 What’s a Supercomputer and why do we care?

 Basic overview of

 Programming models

Some examples

 Architectures

Some case-studies

 Provide context for coming lectures
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Goals of this lecture
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large cache-
coherent 
multicore 
machines 
communicating 
through coherent 
memory access 
and remote direct 
memory access

63

Architecture Developments

’00-’05<1999 ’06-’12 ’13-’20 >2020

distributed 
memory 
machines 
communicating 
through 
messages

large cache-
coherent 
multicore 
machines 
communicating 
through coherent 
memory access 
and messages

coherent and non-
coherent 
manycore 
accelerators and 
multicores
communicating 
through memory 
access and 
remote direct 
memory access

largely non-
coherent 
accelerators and 
multicores
communicating 
through remote 
direct memory 
access

Sources: various vendors
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 Biggest current installation at CSCS! 

 >2k nodes

 Standard Intel x86 Sandy Bridge Server-class CPUs
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Case Study 1: Cray Cascade (XC30) – Piz Daint!

Source: Bob Alverson, Cray
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 All-to-all connection among groups (“blue network”)

 Interesting research opportunities!

 Topology design?

 E.g., Besta, TH: Slim Fly: A Cost Effective Low-Diameter Network Topology

 Interference analysis (can we provide isolation)?

 How to route low-diameter topologies?
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Case Study 1: Cray Cascade Network Topology

Source: Bob Alverson, Cray
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Case Study 2: IBM POWER7 IH (BW)

On-line Storage

Near-line Storage

L
-L

in
k
 C

a
b

le
s

Super Node
(32 Nodes / 4 CEC)

P7 Chip
(8 cores)

SMP node
(32 cores)

Drawer
(256 cores)

SuperNode
(1024 cores)

Building Block

Blue Waters System

NPCF

Source: IBM
Source: IBM/NCSA
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POWER7 Core

Source: IBM
Source: IBM/NCSA
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 Base Technology

 45 nm, 576 mm2

 1.2 B transistors

 Chip

 8 cores

 4 FMAs/cycle/core

 32 MB L3 (private/shared)

 Dual DDR3 memory 

128 GiB/s peak bandwidth 

(1/2 byte/flop)

 Clock range of 3.5 – 4 GHz
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POWER7 Chip (8 cores)

Quad-chip MCM

Source: IBM
Source: IBM/NCSA
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Quad Chip Module (4 chips)

Source: IBM
Source: IBM/NCSA
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Adding a Network Interface (Hub)
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 Connects QCM to PCI-e 

 Two 16x and one 8x PCI-e slot

 Connects 8 QCM's via low latency, 

high bandwidth, 

copper fabric.

 Provides a message passing 

mechanism with very 

high bandwidth

 Provides the lowest possible 

latency between 8 QCM's 

Source: IBM
Source: IBM/NCSA
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1.1 TB/s POWER7 IH HUB

 192 GB/s Host Connection

 336 GB/s to 7 other local nodes

 240 GB/s to local-remote nodes

 320 GB/s to remote nodes

 40 GB/s to general purpose I/O

 cf. “The PERCS interconnect” @HotI’10 

Hub Chip

Source: IBM
Source: IBM/NCSA
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P7 IH Drawer
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• 8 nodes

• 32 chips

• 256 cores

Source: IBM
Source: IBM/NCSA
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P7 IH Supernode

Second Level Interconnect

Optical ‘L-Remote’ Links from HUB

4 drawers

1,024 Cores
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Super Node
(32 Nodes / 4 CEC)

Source: IBM
Source: IBM/NCSA



spcl.inf.ethz.ch

@spcl_eth

 Motivate you!

 What is parallel computing?

 And why do we need it?

 What is high-performance computing?

 What’s a Supercomputer and why do we care?

 Basic overview of

 Programming models

Some examples

 Architectures

Some case-studies

 Provide context for coming lectures
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Goals of this lecture
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 You will likely not have access to the largest machines (unless you specialize to HPC)

 But our desktop/laptop will be a “large machine” soon

 HPC is often seen as “Formula 1” of computing (architecture experiments)

 DPHPC will teach you concepts!

 Enable to understand and use all parallel architectures

 From a quad-core mobile phone to the largest machine on the planet!

MCAPI vs. MPI – same concepts, different syntax

 No particular language (but you should pick/learn one for your project!)

Parallelism is the future:
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DPHPC Lecture
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 263-2910-00L Program Analysis
http://www.srl.inf.ethz.ch/pa.php
Spring 2017
Lecturer: Prof. M. Vechev

 263-2300-00L How to Write Fast Numerical Code
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/course.html
Spring 2017
Lecturer: Prof. M. Pueschel

 This list is not exhaustive!
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Related classes in the SE focus

http://www.srl.inf.ethz.ch/pa.php
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/course.html
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DPHPC Overview


