
spcl.inf.ethz.ch

@spcl_eth

T. HOEFLER, M. PUESCHEL

Lecture 1: Introduction

Teaching assistant: Salvatore Di Girolamo

spcl.inf.ethz.ch

@spcl_eth

 Motivate you!

 What is parallel computing?

 And why do we need it?

 What is high-performance computing?

 What’s a Supercomputer and why do we care?

 Basic overview of

 Programming models

Some examples

 Architectures

Some case-studies

 Provide context for coming lectures

2

Goals of this lecture

spcl.inf.ethz.ch

@spcl_eth

 … you were to build a machine like this …

 … we know how each part works

 There are just many of them!

 Question: How many calculations per second are needed to emulate a brain?

3

Let us assume …

Source: wikipedia

spcl.inf.ethz.ch

@spcl_eth

Source: www.singularity.com Can we do this today?
4

spcl.inf.ethz.ch

@spcl_eth

Source: www.singularity.com

Blue Waters, ~13 PF (2012)

Summit, ~200 PF (2018)

1 Exaflop! ~2023?

5

spcl.inf.ethz.ch

@spcl_eth

 … not so fast, we need to understand how to program those machines …

6

Human Brain – No Problem!

spcl.inf.ethz.ch

@spcl_eth

7

Human Brain – No Problem!

Scooped!

Source: extremetech.com

spcl.inf.ethz.ch

@spcl_eth

 Most natural sciences are simulation driven or are moving towards simulation
 Theoretical physics (solving the Schrödinger equation, QCD)
 Biology (Gene sequencing)
 Chemistry (Material science)
 Astronomy (Colliding black holes)
 Medicine (Protein folding for drug discovery)
 Meteorology (Storm/Tornado prediction)
 Geology (Oil reservoir management, oil exploration)
 and many more … (even Pringles uses HPC)

 Quickly emerging areas for HPC/parallel computing technologies
 Big data processing
 Deep learning
 HPC was always at the forefront of specialization

 Many cloud services require HPC/parallel computing
 Transaction processing/analysis
 Stock markets
 Making movies etc.

8

Other problem areas: Scientific Computing

spcl.inf.ethz.ch

@spcl_eth

 Solving bigger problems than we could solve before!

 E.g., Gene sequencing and search, simulation of whole cells, mathematics of the brain, …

 The size of the problem grows with the machine power

Weak Scaling

 Solve today’s problems faster!

 E.g., large (combinatorial) searches, mechanical simulations (aircrafts, cars, weapons, …)

 The machine power grows with constant problem size

 Strong Scaling

9

What can faster computers do for us?

spcl.inf.ethz.ch

@spcl_eth

 a.k.a. “Supercomputing”

 Question: define “Supercomputer”!

 “A supercomputer is a computer at the frontline of contemporary processing capacity--particularly speed of
calculation.” (Wikipedia)

 Usually quite expensive ($s and MW) and big (space)

 HPC is a quickly growing niche market

 Not all “supercomputers”, wide base

 Important enough for vendors to specialize

 Very important in research settings (up to 40% of university spending)

“Goodyear Puts the Rubber to the Road with High Performance Computing”

“High Performance Computing Helps Create New Treatment For Stroke Victims”

“Procter & Gamble: Supercomputers and the Secret Life of Coffee”

“Motorola: Driving the Cellular Revolution With the Help of High Performance Computing”

“Microsoft: Delivering High Performance Computing to the Masses”

10

High-Performance Computing (HPC)

spcl.inf.ethz.ch

@spcl_eth

 A benchmark, solve Ax=b

 As fast as possible! as big as possible

 Reflects some applications, not all, not even many

 Very good historic data!

 Speed comparison for computing centers, states, countries, nations, continents

 Politicized (sometimes good, sometimes bad)

 Yet, fun to watch

11

The Top500 List

spcl.inf.ethz.ch

@spcl_eth

12

The Top500 List (June 2015)

spcl.inf.ethz.ch

@spcl_eth

13

Piz Daint @ CSCS

More pictures at: http://spcl.inf.ethz.ch/Teaching/2015-dphpc/

spcl.inf.ethz.ch

@spcl_eth

Imagine you’re designing a $500 M
supercomputer, and all you have is:

14

Blue Waters in 2009

This is why you need to understand
performance expectations well!

spcl.inf.ethz.ch

@spcl_eth

15

Blue Waters in 2012

spcl.inf.ethz.ch

@spcl_eth

16

History and Trends

Source: Jack Dongarra

Single V100 GPU (7 Tflop/s)

spcl.inf.ethz.ch

@spcl_eth

17
Source: Wikipedia

spcl.inf.ethz.ch

@spcl_eth

18

How to increase the compute power?

4004
8008

8080

8085

8086

286 386 486

Pentium®
Processors

1

10

100

1000

10000

1970 1980 1990 2000 2010
P

o
w

e
r

D
e

n
si

ty
 (

W
/c

m
2)

Source: Intel

Hot Plate

Nuclear Reactor

Rocket Nozzle

Sun’s Surface

Clock Speed:

Not an option anymore!

spcl.inf.ethz.ch

@spcl_eth

 Physics (technological constraints)
 Cost of data movement

 Capacity of DRAM cells

 Clock frequencies (constrained by end of Dennard scaling)

 Speed of Light

 Melting point of silicon

 Computer Architecture (design of the machine)
 Power management

 ISA / Multithreading

 SIMD widths

“Computer architecture, like other architecture, is the art of determining the needs of the user of a structure and then
designing to meet those needs as effectively as possible within economic and technological constraints.” – Fred Brooks
(IBM, 1962)

Have converted many former “power” problems into “cost” problems

19

Computer Architecture vs. Physics (currently 0:1)

Credit: John Shalf (LBNL)

𝑃𝑑𝑦𝑛 = 𝐴𝐶𝑉2𝐹

Activity factor
(fraction of circuit

that switches)

Capacitance
(charged/discharged

at each clock)

Voltage

Frequency

Higher voltage is needed to drive higher frequency
(due to fixed capacitance). Higher voltage also

increases static power dissipation (leakage).

spcl.inf.ethz.ch

@spcl_eth

 Cubic power improvement with lower clock rate due to V2F

 Slower clock rates enable use of simpler cores

 Simpler cores use less area (lower leakage) and reduce cost

 Tailor design to application to REDUCE WASTE

20

Low-Power Design Principles (2005)

Intel Core2

Intel Atom

Tensilica XTensa

Power 5

Credit: John Shalf (LBNL)

spcl.inf.ethz.ch

@spcl_eth

21

Low-Power Design Principles (2005)

 Power5 (server)

 120W@1900MHz

 Baseline

 Intel Core2 sc (laptop) :

 15W@1000MHz

 4x more FLOPs/watt than baseline

 Intel Atom (handhelds)

 0.625W@800MHz

 80x more

 GPU Core or XTensa/Embedded

 0.09W@600MHz

 400x more (80x-120x sustained)

Intel Core2

Intel Atom

Tensilica XTensa

Power 5

Credit: John Shalf (LBNL)

Even if each simple core is 1/4th as computationally efficient as complex core, you can fit hundreds of them
on a single chip and still be 100x more power efficient.

spcl.inf.ethz.ch

@spcl_eth

22

Heterogeneous computing on the rise!

0.23mm 0
.2

 m
m

Tiny coreBig cores (very few)
Lots of them!

Latency Optimized Core (LOC)
Most energy efficient if you don’t have
lots of parallelism

Throughput Optimized Core (TOC)
Most energy efficient if you DO have a lot of
parallelism!

Credit: John Shalf (LBNL)

spcl.inf.ethz.ch

@spcl_eth

 Energy Efficiency of copper wire:
 Power = Frequency * Length / cross-section-area

 Wire efficiency does not improve as feature size shrinks

 Energy Efficiency of a Transistor:
 Power = V2 * frequency * Capacitance
 Capacitance ~= Area of Transistor
 Transistor efficiency improves as you shrink it

 Net result is that moving data on wires is starting to cost more energy than computing on said data (interest
in Silicon Photonics)

23

Data movement – the wires

wire

Photonics could break through
the bandwidth-distance limit

Credit: John Shalf (LBNL)

spcl.inf.ethz.ch

@spcl_eth

 Moore’s law doesn’t apply to adding pins to package

 30%+ per year nominal Moore’s Law

 Pins grow at ~1.5-3% per year at best

 4000 Pins is aggressive pin package

 Half of those would need to be for power and ground

 Of the remaining 2k pins, run as differential pairs

 Beyond 15Gbps per pin power/complexity costs hurt!

 10Gpbs * 1k pins is ~1.2TBytes/sec

 2.5D Integration gets boost in pin density

 But it’s a 1 time boost (how much headroom?)

 4TB/sec? (maybe 8TB/s with single wire signaling?)

24

Pin Limits

Credit: John Shalf (LBNL)

spcl.inf.ethz.ch

@spcl_eth

 Open-source CPUs?

 RISC-V

 Open-source accelerators?

 Talk to us if interested!

 Context of the European Processor Initiative

Collaboration with L. Benini (ITET)

 Many open research topics

 How to program hardware?

 How to combine IPs into a system

 How to build real high-performance CPUs/systems/accelerators!

25

The future?

spcl.inf.ethz.ch

@spcl_eth

31

A more complete view

spcl.inf.ethz.ch

@spcl_eth

 Architectural innovations
 Branch prediction, out-of-order logic/rename register, speculative execution, …

 Help only so much

 What else?
 Simplification is beneficial, less transistors per CPU, more CPUs, e.g., Cell B.E., GPUs, MIC, Sunway SW26010

 We call this “cores” these days

 Also, more intelligent devices or higher bandwidths (e.g., DMA controller, intelligent NICs)

32

So how to invest the transistors?

Source: IBM Source: NVIDIA Source: Intel

spcl.inf.ethz.ch

@spcl_eth

 Everything goes parallel

 Desktop computers get more cores

2,4,8, soon dozens, hundreds?

My watch has four (weak) cores …

 Supercomputers get more PEs (cores, nodes)

> 10 million today

> 50 million on the horizon

 1 billion in a couple of years (after 2030?)

 Parallel Computing is inevitable!

33

Towards the age of massive parallelism

Parallel vs. Concurrent computing
Concurrent activities may be executed in parallel
Example:

A1 starts at T1, ends at T2; A2 starts at T3, ends at T4
Intervals (T1,T2) and (T3,T4) may overlap!

Parallel activities:
A1 is executed while A2 is running
Usually requires separate resources!

spcl.inf.ethz.ch

@spcl_eth

 Motivate you!

 What is parallel computing?

 And why do we need it?

 What is high-performance computing?

 What’s a Supercomputer and why do we care?

 Basic overview of

 Programming models

Some examples

 Architectures

Some case-studies

 Provide context for coming lectures

34

Goals of this lecture

spcl.inf.ethz.ch

@spcl_eth

35

Granularity and Resources

Parallel Resource

 Instruction-level parallelism

 Pipelining

 VLIW/EDGE

 Superscalar

 SIMD operations

 Vector operations

 Instruction sequences

 Multiprocessors

 Multicores

 Multithreading

Execution Activities

 Micro-code instruction

 Machine-code instruction
(complex or simple)

 Sequence of machine-code
instructions:

Blocks

Loops

Loop nests

Functions

Function sequences

Programming

 Compiler

 (inline assembly)

 Hardware scheduling

 Compiler (inline assembly)

 Libraries

 Compilers (very limited)

 Expert programmers

 Parallel languages

 Parallel libraries

 Hints

spcl.inf.ethz.ch

@spcl_eth

Historic Architecture Examples

 Systolic Array

 Data-stream driven (data counters)

 Multiple streams for parallelism

 Specialized for applications (reconfigurable)

 Dataflow Architectures

 No program counter, execute instructions when all input arguments are available

 Fine-grained, high overheads

Example: compute f = (a+b) * (c+d)

 Both come-back in FPGA computing and EDGE architectures

 Interesting research opportunities!

Talk to us if you’re interested (i.e., how to program
FPGAs easily and fast)

36

Source: ni.com

Source: isi.edu

spcl.inf.ethz.ch

@spcl_eth

 Program counter inherently sequential!
Retrospectively define parallelism in instructions and data

37

Von Neumann Architecture (default today)

SISD
Standard Serial Computer

(nearly extinct)

SIMD
Vector Machines or Extensions

(very common)

MISD
Redundant Execution

(fault tolerance)

MIMD
Multicore

(ubiquituous)

spcl.inf.ethz.ch

@spcl_eth

 … and mixtures of those

38

Parallel Architectures 101 – Multiple Instruction Streams

Today’s laptops Today’s servers

Yesterday’s clusters Today’s clusters

spcl.inf.ethz.ch

@spcl_eth

 Shared Memory Programming (SM/UMA)

 Shared address space

 Implicit communication

 Hardware for cache-coherent remote memory access

 Cache-coherent Non Uniform Memory Access (cc NUMA)

 (Partitioned) Global Address Space (PGAS)

 Remote Memory Access

 Remote vs. local memory (cf. ncc-NUMA)

 Distributed Memory Programming (DM)

 Explicit communication (typically messages)

 Message Passing

39

Parallel Programming Models 101

spcl.inf.ethz.ch

@spcl_eth

 Two historical architectures:
 “Mainframe” – all-to-all connection

between memory, I/O and PEs
Often used if PE is the most expensive part

Bandwidth scales with P

PE Cost scales with P, Question: what about network cost?

Answer: P2, can be cut with multistage connections (butterfly)

 “Minicomputer” – bus-based connection
All traditional SMP systems

High latency, low bandwidth (cache is important)

Tricky to achieve highest performance (contention)

Low cost, extensible

40

Shared Memory Machines

Source: IBM

spcl.inf.ethz.ch

@spcl_eth

 Any PE can access all memory

 Any I/O can access all memory (maybe limited)

 OS (resource management) can run on any PE

 Can run multiple threads in shared memory

 Used since 40+ years

 Communication through shared memory

 Load/store commands to memory controller

 Communication is implicit

 Requires coordination

 Coordination through shared memory

 Complex topic

 Memory models

 (ETH students): Most of what we covered in Parallel Programming in the 2nd semester! 41

Shared Memory Machine Abstractions

spcl.inf.ethz.ch

@spcl_eth

 Threads or processes

 Communication through memory

 Synchronization through memory or OS objects

 Lock/mutex (protect critical region)

 Semaphore (generalization of mutex (binary sem.))

 Barrier (synchronize a group of activities)

 Atomic Operations (CAS, Fetch-and-add)

 Transactional Memory (execute regions atomically)

 Practical Models:

 Posix threads (ugs, will see later)

 MPI-3

 OpenMP

 Others: Java Threads, Qthreads, …

 (ETH students): Most of what we covered in Parallel Programming in the 2nd semester! 42

Shared Memory Machine Programming

spcl.inf.ethz.ch

@spcl_eth

 Using Gregory-Leibnitz Series:

 Iterations of sum can be computed in parallel

 Needs to sum all contributions at the end

43

An SMM Example: Compute Pi

Source: mathworld.wolfram.com

spcl.inf.ethz.ch

@spcl_eth

44

Pthreads Compute Pi Example

int main(int argc, char *argv[])
{

// definitions …
thread_arr = (pthread_t*)malloc(nthreads *

sizeof(pthread_t));
resultarr= (double*)malloc(nthreads *

sizeof(double));

for (i=0; i<nthreads; ++i) {
int ret = pthread_create(&thread_arr[i],

NULL, compute_pi, (void*) i);
}
for (i=0; i<nthreads; ++i) {
pthread_join(thread_arr[i], NULL);

}
pi = 0;
for (i=0; i<nthreads; ++i) pi += resultarr[i];

printf ("pi is ~%.16f, Error is %.16f\n",
pi, fabs(pi - PI25DT));

}

int n=10000;
double *resultarr;
pthread_t *thread_arr;
int nthreads;

void *compute_pi(void *data) {
int i, j;
int myid = (int)(long)data;
double mypi, h, x, sum;

for (j=0; j<n; ++j) {
h = 1.0 / (double) n;
sum = 0.0;
for (i = myid + 1; i <= n; i += nthreads) {
x = h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x*x));

}
mypi = h * sum;

}
resultarr[myid] = mypi;

}

spcl.inf.ethz.ch

@spcl_eth

 OpenMP would allow to implement this example much simpler (but has other issues)

 Transparent shared memory has some issues in practice:

 False sharing (e.g., resultarr[])

 Race conditions (complex mutual exclusion protocols)

 Little tool support (debuggers need some work)

 These issues were predominantly discussed in parallel programming in the 2nd semester

We will briefly repeat some but not all!

 Achieving performance is harder than it seems!

45

Additional comments on SMM

spcl.inf.ethz.ch

@spcl_eth

 Explicit communication between PEs

 Message passing or channels

 Only local memory access, no direct access to
remote memory

 No shared resources (well, the network)

 Programming model: Message Passing (MPI)

 Communication through messages or group operations (broadcast, reduce, etc.)

 Synchronization through messages (sometimes unwanted side effect) or group operations (barrier)

 Typically supports message matching and communication contexts

46

Distributed Memory Machine Programming

spcl.inf.ethz.ch

@spcl_eth

 Send specifies buffer to be transmitted

 Recv specifies buffer to receive into

 Implies copy operation between named PEs

 Optional tag matching

 Pair-wise synchronization (cf. happens before)

47

DMM Example: Message Passing

Process P Process Q

Address Y

Address X

Send X, Q, t

Receive Y, P,tMatch

Local process
address space

Local process
address space

Source: John Mellor-Crummey

spcl.inf.ethz.ch

@spcl_eth

48

DMM MPI Compute Pi Example
int main(int argc, char *argv[]) {

// definitions

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

double t = -MPI_Wtime();

for (j=0; j<n; ++j) {

h = 1.0 / (double) n;

sum = 0.0;

for (i = myid + 1; i <= n; i += numprocs) { x = h * ((double)i - 0.5); sum += (4.0 / (1.0 + x*x)); }

mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

}

t+=MPI_Wtime();

if (!myid) {

printf("pi is approximately %.16f, Error is %.16f\n", pi, fabs(pi - PI25DT));

printf("time: %f\n", t);

}

MPI_Finalize();

}

spcl.inf.ethz.ch

@spcl_eth

 Partitioned Global Address Space

 Shared memory emulation for DMM

Usually non-coherent

 “Distributed Shared Memory”

Usually coherent

 Simplifies shared access to distributed data

 Has similar problems as SMM programming

 Sometimes lacks performance transparency

Local vs. remote accesses

 Examples:

 UPC, CAF, Titanium, X10, …

 Interesting research question: how to exploit PGAS/RDMA in practice?

 Cf. VLDB’17, Barthels et al.: “Distributed Join Algorithms on Thousands of Cores”

49

DMM Example: PGAS

spcl.inf.ethz.ch

@spcl_eth

 How to program large machines?

 No single approach, PMs are not converging yet

 MPI, PGAS, OpenMP, Hybrid (MPI+OpenMP, MPI+MPI, MPI+PGAS?, generally MPI+X), …

 Architectures converge

 General purpose nodes connected by general purpose or specialized networks

 Small scale often uses commodity networks

 Specialized networks become necessary at scale

 Even worse: accelerators (not covered in this class, yet)

50

How to Tame the Beast?

spcl.inf.ethz.ch

@spcl_eth

 Fork-join model

 Types of constructs:

51

Example: Shared Memory Programming with OpenMP
Source: OpenMP.org

Source: Blaise Barney, LLNL

+ Tasks

spcl.inf.ethz.ch

@spcl_eth

 Annotate sequential code with pragmas (introduce semantic duplication)

52

Example: Shared Memory Programming with OpenMP

#include <omp.h>

main () {

int var1, var2, var3;

// Serial code

// Beginning of parallel section. Fork a team of threads. Specify variable scoping

#pragma omp parallel private(var1, var2) shared(var3)

{

// Parallel section executed by all threads

// Other OpenMP directives

// Run-time Library calls

// All threads join master thread and disband

}

// Resume serial code

}

Source: Blaise Barney, LLNL

spcl.inf.ethz.ch

@spcl_eth

 PGAS extension to the C99 language

 Many helper library functions

 Collective and remote allocation

 Collective operations

 Complex consistency model

53

Example: Practical PGAS Programming with UPC

spcl.inf.ethz.ch

@spcl_eth

54

Example: Practical Distributed Memory Programming: MPI-1

Collection of 1D address spaces

Helper Functions

many more
(>600 total)

Source: Blaise Barney, LLNL

spcl.inf.ethz.ch

@spcl_eth

55

Example: Practical Distributed Memory Programming: MPI-1 – Six Functions!

#include <mpi.h>

int main(int argc, char **argv) {

int myrank, sbuf=23, rbuf=32;

MPI_Init(&argc, &argv);

/* Find out my identity in the default communicator */

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

if (myrank == 0) {

MPI_Send(&sbuf, /* message buffer */

1, /* one data item */

MPI_INT, /* data item is an integer */

rank, /* destination process rank */

99, /* user chosen message tag */

MPI_COMM_WORLD); /* default communicator */

} else {

MPI_Recv(&rbuf, MPI_DOUBLE, 0, 99, MPI_COMM_WORLD, &status);

printf(“received: %i\n”, rbuf);

}

MPI_Finalize();

}

spcl.inf.ethz.ch

@spcl_eth

 Support for shared memory in SMM domains

 Support for Remote Memory Access Programming

 Direct use of RDMA

 Essentially PGAS

 Enhanced support for message passing communication

 Scalable topologies

 More nonblocking features

 … many more

56

Example: MPI-2/3 supporting Shared Memory and PGAS-style!

spcl.inf.ethz.ch

@spcl_eth

57

MPI: de-facto large-scale prog. standard

Basic MPI Advanced MPI, including MPI-3

spcl.inf.ethz.ch

@spcl_eth

58

Example: Accelerator programming with CUDA

Hierarchy of Threads

Complex Memory Model

Simple Architecture

Source: NVIDIA

spcl.inf.ethz.ch

@spcl_eth

59

Example: Accelerator programming with CUDA

#define N 10

int main(void) {

int a[N], b[N], c[N];

int *dev_a, *dev_b, *dev_c;

// allocate the memory on the GPU

cudaMalloc((void**)&dev_a, N * sizeof(int));

cudaMalloc((void**)&dev_b, N * sizeof(int));

cudaMalloc((void**)&dev_c, N * sizeof(int));

// fill the arrays 'a' and 'b' on the CPU

for (int i=0; i<N; i++) { a[i] = -i; b[i] = i * i; }

// copy the arrays 'a' and 'b' to the GPU

cudaMemcpy(dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice);

cudaMemcpy(dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice);

add<<<N,1>>>(dev_a, dev_b, dev_c);

// copy the array 'c' back from the GPU to the CPU

cudaMemcpy(c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost);

// free the memory allocated on the GPU

cudaFree(dev_a); cudaFree(dev_b); cudaFree(dev_c);

}

__global__ void add(int *a, int *b, int *c) {

int tid = blockIdx.x;

// handle the data at this index

if (tid < N)

c[tid] = a[tid] + b[tid];

}

The Kernel

Host Code

Interesting research: how to automate compilation to GPUs! Grosser, TH: “Polly-ACC: Transparent compilation to heterogeneous hardware”

spcl.inf.ethz.ch

@spcl_eth

 Aims to simplify GPU programming

 Compiler support

 Annotations! More pragmas and semantic duplication

60

Example: OpenACC / OpenMP 4.0

#define N 10

int main(void) {

int a[N], b[N], c[N];

#pragma acc kernels

for (int i = 0; i < N; ++i)

c[i] = a[i] + b[i];

}

spcl.inf.ethz.ch

@spcl_eth

 Not covered:

 SMM: Intel Cilk / Cilk Plus, Intel TBB, …

 Directives: OpenHMPP, PVM, …

 PGAS: Coarray Fortran (Fortran 2008), …

 HPCS: IBM X10, Fortress, Chapel, …

 Accelerator: OpenCL, C++AMP, …

 …

 This class will not describe any model in more detail!

 There are too many and they will change quickly (only MPI made it >15 yrs)

 No consensus, but fundamental questions remain:

 Data movement (I/O complexity)

 Synchronization (avoiding races, deadlock etc.)

 Memory Models (read/write ordering)

 Algorithmics (parallel design/thinking)

 Foundations (conflict minimization, models, static vs. dynamic scheduling etc.)

61

Many many more programming models/frameworks

spcl.inf.ethz.ch

@spcl_eth

 Motivate you!

 What is parallel computing?

 And why do we need it?

 What is high-performance computing?

 What’s a Supercomputer and why do we care?

 Basic overview of

 Programming models

Some examples

 Architectures

Some case-studies

 Provide context for coming lectures

62

Goals of this lecture

spcl.inf.ethz.ch

@spcl_eth

large cache-
coherent
multicore
machines
communicating
through coherent
memory access
and remote direct
memory access

63

Architecture Developments

’00-’05<1999 ’06-’12 ’13-’20 >2020

distributed
memory
machines
communicating
through
messages

large cache-
coherent
multicore
machines
communicating
through coherent
memory access
and messages

coherent and non-
coherent
manycore
accelerators and
multicores
communicating
through memory
access and
remote direct
memory access

largely non-
coherent
accelerators and
multicores
communicating
through remote
direct memory
access

Sources: various vendors

spcl.inf.ethz.ch

@spcl_eth

 Biggest current installation at CSCS!

 >2k nodes

 Standard Intel x86 Sandy Bridge Server-class CPUs

67

Case Study 1: Cray Cascade (XC30) – Piz Daint!

Source: Bob Alverson, Cray

spcl.inf.ethz.ch

@spcl_eth

 All-to-all connection among groups (“blue network”)

 Interesting research opportunities!

 Topology design?

 E.g., Besta, TH: Slim Fly: A Cost Effective Low-Diameter Network Topology

 Interference analysis (can we provide isolation)?

 How to route low-diameter topologies?

68

Case Study 1: Cray Cascade Network Topology

Source: Bob Alverson, Cray

spcl.inf.ethz.ch

@spcl_eth

69

Case Study 2: IBM POWER7 IH (BW)

On-line Storage

Near-line Storage

L
-L

in
k
 C

a
b

le
s

Super Node
(32 Nodes / 4 CEC)

P7 Chip
(8 cores)

SMP node
(32 cores)

Drawer
(256 cores)

SuperNode
(1024 cores)

Building Block

Blue Waters System

NPCF

Source: IBM
Source: IBM/NCSA

spcl.inf.ethz.ch

@spcl_eth

70

POWER7 Core

Source: IBM
Source: IBM/NCSA

spcl.inf.ethz.ch

@spcl_eth

 Base Technology

 45 nm, 576 mm2

 1.2 B transistors

 Chip

 8 cores

 4 FMAs/cycle/core

 32 MB L3 (private/shared)

 Dual DDR3 memory

128 GiB/s peak bandwidth

(1/2 byte/flop)

 Clock range of 3.5 – 4 GHz

71

POWER7 Chip (8 cores)

Quad-chip MCM

Source: IBM
Source: IBM/NCSA

spcl.inf.ethz.ch

@spcl_eth

M
C

1
M

C
 0

8c uP

M
C

1
M

C
0

8c uP

M
C

0
M

C
1

8c uP

M
C

0
M

C
1

8c uP

P7-0 P7-1

P7-3 P7-2

A

B

X

W

B

A

W

X

B A

Y X

A B

X Y

C

Z

C

Z

W

Z

Z

W

C

Y

C

Y

A Clk Grp

B Clk Grp

C Clk Grp

D Clk Grp

A Clk Grp

B Clk Grp

C Clk Grp

D Clk Grp

A Clk Grp

B Clk Grp

C Clk Grp

D Clk Grp

A Clk Grp

B Clk Grp

C Clk Grp

D Clk Grp

A Clk Grp

B Clk Grp

C Clk Grp

D Clk Grp

A Clk Grp

B Clk Grp

C Clk Grp

D Clk Grp

A Clk Grp

B Clk Grp

C Clk Grp

D Clk Grp

A Clk Grp

B Clk Grp

C Clk Grp

D Clk Grp

M
C

 0
M

C
 1

M
C

 0
M

C
 1

M
C

 0
M

C
 1

M
C

 0
M

C
 1

 32 cores

 32 cores*8 F/core*4 GHz = 1 TF

 4 threads per core (max)

 128 threads per package

 4x32 MiB L3 cache

 512 GB/s RAM BW (0.5 B/F)

 800 W (0.8 W/F)

72

Quad Chip Module (4 chips)

Source: IBM
Source: IBM/NCSA

spcl.inf.ethz.ch

@spcl_eth

73

Adding a Network Interface (Hub)

D
IM

M
 1

5
D

IM
M

 8
D

IM
M

 9
D

IM
M

 1
4

D
IM

M
 4

D
IM

M
 1

2
D

IM
M

 1
3

D
IM

M
 5

D
IM

M
 1

1
D

IM
M

 3
D

IM
M

 2
D

IM
M

 1
0

D
IM

M
 0

D
IM

M
 7

D
IM

M
 6

D
IM

M
 1

P7-IH Quad Block Diagram
32w SMP w/ 2 Tier SMP Fabric, 4 chip Processor MCM + Hub SCM w/ On-Board Optics

M
C

1

Mem

Mem

Mem

Mem

M
C

 0

Mem

Mem

8c uP

M
C

1

Mem

Mem

Mem

Mem

M
C

0

Mem

Mem

Mem

Mem

8c uP

7 Inter-Hub Board Level L-Buses

3.0Gb/s @ 8B+8B, 90% sus. peak

D0-D15 Lr0-Lr23

320 GB/s 240 GB/s

28x XMIT/RCV pairs
@ 10 Gb/s

832

624

5
+

5
G

B
/s

 (
6

x
=

5
+

1
)

Hub Chip Module

2
2

+
2

2
G

B
/s

164

Ll0

2
2

+
2

2
G

B
/s

164

Ll1

2
2

+
2

2
G

B
/s

164

Ll2

2
2

+
2

2
G

B
/s

164

Ll3

2
2

+
2

2
G

B
/s

164

Ll4

2
2

+
2

2
G

B
/s

164

Ll5

2
2

+
2

2
G

B
/s

164

Ll6

12x 12x

12x 12x

12x 12x

12x 12x

12x 12x

12x 12x

1
0

+
1

0
G

B
/s

 (
1

2
x
=

1
0

+
2

)

12x 12x 12x 12x

12x 12x 12x 12x

12x 12x 12x 12x

12x 12x 12x 12x

7
+

7
G

B
/s

72

EG2

P
C

Ie
 6

1
x

7
+

7
G

B
/s

72

EG1

P
C

Ie
 1

6
x

7
+

7
G

B
/s

72

EG2

P
C

Ie
 8

x

M
C

0

Mem

Mem

Mem

Mem

M
C

1

Mem

Mem

Mem

Mem

8c uP

M
C

0

Mem

Mem

Mem

Mem

M
C

1

Mem

Mem

Mem

Mem

8c uP

Mem

Mem

P7-0 P7-1

P7-3 P7-2

A

B

X

W

B

A

W

X

B A

Y X

A B

X Y

C

Z

C

Z

W

Z

Z

W

C

Y

C

Y

Z

W

Y

X

A Clk Grp

B Clk Grp

C Clk Grp

D Clk Grp

A Clk Grp

B Clk Grp

C Clk Grp

D Clk Grp

A Clk Grp

B Clk Grp

C Clk Grp

D Clk Grp

A Clk Grp

B Clk Grp

C Clk Grp

D Clk Grp

A Clk Grp

B Clk Grp

C Clk Grp

D Clk Grp

A Clk Grp

B Clk Grp

C Clk Grp

D Clk Grp

A Clk Grp

B Clk Grp

C Clk Grp

D Clk Grp

A Clk Grp

B Clk Grp

C Clk Grp

D Clk Grp

M
C

 0
M

C
 1

M
C

 0
M

C
 1

M
C

 0
M

C
 1

M
C

 0
M

C
 1

D
IM

M
 1

Mem

Mem

D
IM

M
 0

Mem

Mem

D
IM

M
 5Mem

Mem

D
IM

M
 4Mem

Mem

D
IM

M
 7

Mem

Mem

D
IM

M
 6

Mem

Mem

D
IM

M
 1

0

Mem

Mem

D
IM

M
 1

1

Mem

Mem

D
IM

M
 2

Mem

Mem

D
IM

M
 3

Mem

Mem

D
IM

M
 1

4Mem

Mem

D
IM

M
 1

5Mem

Mem

D
IM

M
 8Mem

Mem

D
IM

M
 9Mem

Mem

D
IM

M
 1

2Mem

Mem

D
IM

M
 1

3Mem

Mem

 Connects QCM to PCI-e

 Two 16x and one 8x PCI-e slot

 Connects 8 QCM's via low latency,

high bandwidth,

copper fabric.

 Provides a message passing

mechanism with very

high bandwidth

 Provides the lowest possible

latency between 8 QCM's

Source: IBM
Source: IBM/NCSA

spcl.inf.ethz.ch

@spcl_eth

E
I-

3
 P

H
Y

s

Torrent

Diff PHYs

L
 l
o

c
a

l

H
U

B
 T

o
 H

U
B

 C
o

p
p

e
r

B
o

a
rd

 W
ir

in
g

L remote

4 Drawer Interconnect to Create a Supernode

Optical

L
R

0
 B

u
s

O
p

ti
c

a
l

6
x 6
x

L
R

2
3

 B
u

s

O
p

ti
c

a
l

6
x 6
x

LL0 Bus

Copper

8B

8B

8B

8B

LL1 Bus

Copper

8B

8B

LL2 Bus

Copper

8B

8B

LL4 Bus

Copper

8B

8B

LL5 Bus

Copper

8B

8B

LL6 Bus

Copper

8B

8B

LL3 Bus

Copper

D
if

f
P

H
Y

s

P
X

0
 B

u
s

1
6

x

1
6

x

P
C

I-
E

IO
 P

H
Y

H
o

t
P

lu
g

 C
tl

P
X

1
 B

u
s

1
6

x

1
6

x

P
C

I-
E

IO
 P

H
Y

H
o

t
P

lu
g

 C
tl

P
X

2
 B

u
s

8
x8
x

P
C

I-
E

IO
 P

H
Y

H
o

t
P

lu
g

 C
tl

F
S

I

F
S

P
1

-A

F
S

I

F
S

P
1

-B

I2
C

T
P

M
D

-A
,
T

M
P

D
-B

S
V

IC

M
D

C
-A

S
V

IC

M
D

C
-B

I2
C

S
E

E
P

R
O

M
 1

I2
C

S
E

E
P

R
O

M
 2

24

L remote

Buses
HUB to QCM Connections

Address/Data

D
 B

u
s

In
te

rc
o

n
n

e
c

t
o

f
S

u
p

e
rn

o
d

e
s

O
p

ti
c

a
l

D0 Bus

Optical

12x

12x

D15 Bus

Optical

12x

12x

1
6

D
 B

u
s

e
s

2
8

I2
C

I2C_0 + Int

I2C_27 + Int

I2
C

T
o

 O
p

ti
c

a
l

M
o

d
u

le
s

T
O

D
 S

y
n

c

8
B

 Z
-B

u
s

8
B

 Z
-B

u
s

T
O

D
 S

y
n

c

8
B

 Y
-B

u
s

8
B

 Y
-B

u
s

T
O

D
 S

y
n

c

8
B

 X
-B

u
s

8
B

 X
-B

u
s

T
O

D
 S

y
n

c

8
B

 W
-B

u
s

8
B

 W
-B

u
s

74

1.1 TB/s POWER7 IH HUB

 192 GB/s Host Connection

 336 GB/s to 7 other local nodes

 240 GB/s to local-remote nodes

 320 GB/s to remote nodes

 40 GB/s to general purpose I/O

 cf. “The PERCS interconnect” @HotI’10

Hub Chip

Source: IBM
Source: IBM/NCSA

spcl.inf.ethz.ch

@spcl_eth

75

P7 IH Drawer

First Level Interconnect

L-Local

HUB to HUB Copper Wiring

256 Cores

DCA-0 Connector (Top DCA)

DCA-1 Connector (Bottom DCA)

1st Level Local Interconnect (256 cores)

HUB

7

HUB

6

HUB

4

HUB

3

HUB

5

HUB

1

HUB

0

HUB

2

P

C

I

e

9

P

C

I

e

10

P

C

I

e

11

P

C

I

e

12

P

C

I

e

13

P

C

I

e

14

P

C

I

e

15

P

C

I

e

16

P

C

I

e

17

P
1
-C

1
7

-C
1

P

C

I

e

1

P

C

I

e

2

P

C

I

e

3

P

C

I

e

4

P

C

I

e

5

P

C

I

e

6

P

C

I

e

7

P

C

I

e

8

O
p

ti
c
a

l
F

a
n
-o

u
t
fr

o
m

H
U

B
 M

o
d

u
le

s

2
,3

0
4

 F
ib

e
r

'L
-L

in
k
'

64/40 Optical
'D-Link'

64/40 Optical
'D-Link'

P7-0

P7-2

P7-3P7-1

QCM 0

U-P1-M1

P7-0

P7-2

P7-3P7-1

QCM 1

U-P1-M2

P7-0

P7-2

P7-3P7-1

QCM 2

U-P1-M3

P7-0

P7-2

P7-3P7-1

QCM 3

U-P1-M4

P7-0

P7-2

P7-3P7-1

QCM 4

U-P1-M5

P7-0

P7-2

P7-3P7-1

QCM 5

U-P1-M6

P7-0

P7-2

P7-3P7-1

QCM 6

U-P1-M7

P7-0

P7-2

P7-3P7-1

QCM 7

U-P1-M8

P
1
-C

1
6

-C
1

P
1
-C

1
5

-C
1

P
1
-C

1
4

-C
1

P
1
-C

1
3

-C
1

P
1
-C

1
2

-C
1

P
1
-C

1
1

-C
1

P
1
-C

1
0

-C
1

P
1
-C

9
-C

1

P
1
-C

8
-C

1

P
1
-C

7
-C

1

P
1
-C

6
-C

1

P
1
-C

5
-C

1

P
1
-C

4
-C

1

P
1
-C

3
-C

1

P
1
-C

2
-C

1

P
1
-C

1
-C

1

N
0

-D
IM

M
1

5
N

0
-D

IM
M

1
4

N
0

-D
IM

M
1

3
N

0
-D

IM
M

1
2

N
0

-D
IM

M
1

1
N

0
-D

IM
M

1
0

N
0

-D
IM

M
0

9
N

0
-D

IM
M

0
8

N
0

-D
IM

M
0

7
N

0
-D

IM
M

0
6

N
0

-D
IM

M
0

5
N

0
-D

IM
M

0
4

N
0

-D
IM

M
0

3
N

0
-D

IM
M

0
2

N
0

-D
IM

M
0

1
N

0
-D

IM
M

0
0

N
1

-D
IM

M
1

5
N

1
-D

IM
M

1
4

N
1

-D
IM

M
1

3
N

1
-D

IM
M

1
2

N
1

-D
IM

M
1

1
N

1
-D

IM
M

1
0

N
1

-D
IM

M
0

9
N

1
-D

IM
M

0
8

N
1

-D
IM

M
0

7
N

1
-D

IM
M

0
6

N
1

-D
IM

M
0

5
N

1
-D

IM
M

0
4

N
1

-D
IM

M
0

3
N

1
-D

IM
M

0
2

N
1

-D
IM

M
0

1
N

1
-D

IM
M

0
0

N
2

-D
IM

M
1

5
N

2
-D

IM
M

1
4

N
2

-D
IM

M
1

3
N

2
-D

IM
M

1
2

N
2

-D
IM

M
1

1
N

2
-D

IM
M

1
0

N
2

-D
IM

M
0

9
N

2
-D

IM
M

0
8

N
2

-D
IM

M
0

7
N

2
-D

IM
M

0
6

N
2

-D
IM

M
0

5
N

2
-D

IM
M

0
4

N
2

-D
IM

M
0

3
N

2
-D

IM
M

0
2

N
2

-D
IM

M
0

1
N

2
-D

IM
M

0
0

N
3

-D
IM

M
1

5
N

3
-D

IM
M

1
4

N
3

-D
IM

M
1

3
N

3
-D

IM
M

1
2

N
3

-D
IM

M
1

1
N

3
-D

IM
M

1
0

N
3

-D
IM

M
0

9
N

3
-D

IM
M

0
8

N
3

-D
IM

M
0

7
N

3
-D

IM
M

0
6

N
3

-D
IM

M
0

5
N

3
-D

IM
M

0
4

N
3

-D
IM

M
0

3
N

3
-D

IM
M

0
2

N
3

-D
IM

M
0

1
N

3
-D

IM
M

0
0

N
4

-D
IM

M
1

5
N

4
-D

IM
M

1
4

N
4

-D
IM

M
1

3
N

4
-D

IM
M

1
2

N
4

-D
IM

M
1

1
N

4
-D

IM
M

1
0

N
4

-D
IM

M
0

9
N

4
-D

IM
M

0
8

N
4

-D
IM

M
0

7
N

4
-D

IM
M

0
6

N
4

-D
IM

M
0

5
N

4
-D

IM
M

0
4

N
4

-D
IM

M
0

3
N

4
-D

IM
M

0
2

N
4

-D
IM

M
0

1
N

4
-D

IM
M

0
0

N
5

-D
IM

M
1

5
N

5
-D

IM
M

1
4

N
5

-D
IM

M
1

3
N

5
-D

IM
M

1
2

N
5

-D
IM

M
1

1
N

5
-D

IM
M

1
0

N
5

-D
IM

M
0

9
N

5
-D

IM
M

0
8

N
5

-D
IM

M
0

7
N

5
-D

IM
M

0
6

N
5

-D
IM

M
0

5
N

5
-D

IM
M

0
4

N
5

-D
IM

M
0

3
N

5
-D

IM
M

0
2

N
5

-D
IM

M
0

1
N

5
-D

IM
M

0
0

N
6

-D
IM

M
1

5
N

6
-D

IM
M

1
4

N
6

-D
IM

M
1

3
N

6
-D

IM
M

1
2

N
6

-D
IM

M
1

1
N

6
-D

IM
M

1
0

N
6

-D
IM

M
0

9
N

6
-D

IM
M

0
8

N
6

-D
IM

M
0

7
N

6
-D

IM
M

0
6

N
6

-D
IM

M
0

5
N

6
-D

IM
M

0
4

N
6

-D
IM

M
0

3
N

6
-D

IM
M

0
2

N
6

-D
IM

M
0

1
N

6
-D

IM
M

0
0

N
7

-D
IM

M
1

5
N

7
-D

IM
M

1
4

N
7

-D
IM

M
1

3
N

7
-D

IM
M

1
2

N
7

-D
IM

M
1

1
N

7
-D

IM
M

1
0

N
7

-D
IM

M
0

9
N

7
-D

IM
M

0
8

N
7

-D
IM

M
0

7
N

7
-D

IM
M

0
6

N
7

-D
IM

M
0

5
N

7
-D

IM
M

0
4

N
7

-D
IM

M
0

3
N

7
-D

IM
M

0
2

N
7

-D
IM

M
0

1
N

7
-D

IM
M

0
0

• 8 nodes

• 32 chips

• 256 cores

Source: IBM
Source: IBM/NCSA

spcl.inf.ethz.ch

@spcl_eth

POWER7 IH Drawer @ SC09

76

spcl.inf.ethz.ch

@spcl_eth

P7-IH Board Layout
2nd Level of Interconnect (1,024 cores)

4.6 TB/s

Bisection BW
BW of 1150

10G-E ports

DCA-0 Connector (Top DCA)

DCA-1 Connector (Bottom DCA)

2
nd

 Level Interconnect (1,024 cores)

HUB

7

61x96mm

HUB

6

61x96mm

HUB

4

61x96mm

HUB

3

61x96mm

HUB

5

61x96mm

HUB

1

61x96mm

HUB

0

61x96mm

HUB

2

61x96mm

P

C

I

e

9

P

C

I

e

10

P

C

I

e

11

P

C

I

e

12

P

C

I

e

13

P

C

I

e

14

P

C

I

e

15

P

C

I

e

16

P

C

I

e

17

P

C

I

e

1

P

C

I

e

2

P

C

I

e

3

P

C

I

e

4

P

C

I

e

5

P

C

I

e

6

P

C

I

e

7

P

C

I

e

8

O
p

tic
a

l F
a

n
-o

u
t fro

m

H
U

B
 M

o
d

u
le

s

2
,3

0
4

 F
ib

e
r 'L

-L
in

k
'

64/40 Optical
'D-Link'

FSP/CLK-A

64/40 Optical
'D-Link'

FSP/CLK-B

P7-0

P7-2

P7-3P7-1

QCM 0

P7-0

P7-2

P7-3P7-1

QCM 1

P7-0

P7-2

P7-3P7-1

QCM 2

P7-0

P7-2

P7-3P7-1

QCM 3

P7-0

P7-2

P7-3P7-1

QCM 4

P7-0

P7-2

P7-3P7-1

QCM 5

P7-0

P7-2

P7-3P7-1

QCM 6

P7-0

P7-2

P7-3P7-1

QCM 7

DCA-0 Connector (Top DCA)

DCA-1 Connector (Bottom DCA)

2
nd

 Level Interconnect (1,024 cores)

HUB

7

61x96mm

HUB

6

61x96mm

HUB

4

61x96mm

HUB

3

61x96mm

HUB

5

61x96mm

HUB

1

61x96mm

HUB

0

61x96mm

HUB

2

61x96mm

P

C

I

e

9

P

C

I

e

10

P

C

I

e

11

P

C

I

e

12

P

C

I

e

13

P

C

I

e

14

P

C

I

e

15

P

C

I

e

16

P

C

I

e

17

P

C

I

e

1

P

C

I

e

2

P

C

I

e

3

P

C

I

e

4

P

C

I

e

5

P

C

I

e

6

P

C

I

e

7

P

C

I

e

8

O
p

tic
a

l F
a

n
-o

u
t fro

m

H
U

B
 M

o
d

u
le

s

2
,3

0
4

 F
ib

e
r 'L

-L
in

k
'

64/40 Optical
'D-Link'

FSP/CLK-A

64/40 Optical
'D-Link'

FSP/CLK-B

P7-0

P7-2

P7-3P7-1

QCM 0

P7-0

P7-2

P7-3P7-1

QCM 1

P7-0

P7-2

P7-3P7-1

QCM 2

P7-0

P7-2

P7-3P7-1

QCM 3

P7-0

P7-2

P7-3P7-1

QCM 4

P7-0

P7-2

P7-3P7-1

QCM 5

P7-0

P7-2

P7-3P7-1

QCM 6

P7-0

P7-2

P7-3P7-1

QCM 7

DCA-0 Connector (Top DCA)

DCA-1 Connector (Bottom DCA)

2
nd

 Level Interconnect (1,024 cores)

HUB

7
61x96mm

HUB

6
61x96mm

HUB

4
61x96mm

HUB

3
61x96mm

HUB

5
61x96mm

HUB

1
61x96mm

HUB

0
61x96mm

HUB

2
61x96mm

P

C

I

e

9

P

C

I

e

10

P

C

I

e

11

P

C

I

e

12

P

C

I

e

13

P

C

I

e

14

P

C

I

e

15

P

C

I

e

16

P

C

I

e

17

P

C

I

e

1

P

C

I

e

2

P

C

I

e

3

P

C

I

e

4

P

C

I

e

5

P

C

I

e

6

P

C

I

e

7

P

C

I

e

8

O
p

ti
c
a

l
F

a
n
-o

u
t
fr

o
m

H
U

B
 M

o
d

u
le

s

2
,3

0
4

 F
ib

e
r

'L
-L

in
k
'

64/40 Optical
'D-Link'

FSP/CLK-A

64/40 Optical
'D-Link'

FSP/CLK-B

P7-0

P7-2

P7-3P7-1

QCM 0

P7-0

P7-2

P7-3P7-1

QCM 1

P7-0

P7-2

P7-3P7-1

QCM 2

P7-0

P7-2

P7-3P7-1

QCM 3

P7-0

P7-2

P7-3P7-1

QCM 4

P7-0

P7-2

P7-3P7-1

QCM 5

P7-0

P7-2

P7-3P7-1

QCM 6

P7-0

P7-2

P7-3P7-1

QCM 7

DCA-0 Connector (Top DCA)

DCA-1 Connector (Bottom DCA)

2
nd

 Level Interconnect (1,024 cores)

HUB

7
61x96mm

HUB

6
61x96mm

HUB

4
61x96mm

HUB

3
61x96mm

HUB

5
61x96mm

HUB

1
61x96mm

HUB

0
61x96mm

HUB

2
61x96mm

P

C

I

e

9

P

C

I

e

10

P

C

I

e

11

P

C

I

e

12

P

C

I

e

13

P

C

I

e

14

P

C

I

e

15

P

C

I

e

16

P

C

I

e

17

P

C

I

e

1

P

C

I

e

2

P

C

I

e

3

P

C

I

e

4

P

C

I

e

5

P

C

I

e

6

P

C

I

e

7

P

C

I

e

8

O
p

ti
c
a

l
F

a
n
-o

u
t
fr

o
m

H
U

B
 M

o
d

u
le

s

2
,3

0
4

 F
ib

e
r

'L
-L

in
k
'

64/40 Optical
'D-Link'

FSP/CLK-A

64/40 Optical
'D-Link'

FSP/CLK-B

P7-0

P7-2

P7-3P7-1

QCM 0

P7-0

P7-2

P7-3P7-1

QCM 1

P7-0

P7-2

P7-3P7-1

QCM 2

P7-0

P7-2

P7-3P7-1

QCM 3

P7-0

P7-2

P7-3P7-1

QCM 4

P7-0

P7-2

P7-3P7-1

QCM 5

P7-0

P7-2

P7-3P7-1

QCM 6

P7-0

P7-2

P7-3P7-1

QCM 7

77

P7 IH Supernode

Second Level Interconnect

Optical ‘L-Remote’ Links from HUB

4 drawers

1,024 Cores

L
-L

in
k
 C

a
b

le
s

Super Node
(32 Nodes / 4 CEC)

Source: IBM
Source: IBM/NCSA

spcl.inf.ethz.ch

@spcl_eth

 Motivate you!

 What is parallel computing?

 And why do we need it?

 What is high-performance computing?

 What’s a Supercomputer and why do we care?

 Basic overview of

 Programming models

Some examples

 Architectures

Some case-studies

 Provide context for coming lectures

78

Goals of this lecture

spcl.inf.ethz.ch

@spcl_eth

 You will likely not have access to the largest machines (unless you specialize to HPC)

 But our desktop/laptop will be a “large machine” soon

 HPC is often seen as “Formula 1” of computing (architecture experiments)

 DPHPC will teach you concepts!

 Enable to understand and use all parallel architectures

 From a quad-core mobile phone to the largest machine on the planet!

MCAPI vs. MPI – same concepts, different syntax

 No particular language (but you should pick/learn one for your project!)

Parallelism is the future:

79

DPHPC Lecture

spcl.inf.ethz.ch

@spcl_eth

 263-2910-00L Program Analysis
http://www.srl.inf.ethz.ch/pa.php
Spring 2017
Lecturer: Prof. M. Vechev

 263-2300-00L How to Write Fast Numerical Code
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/course.html
Spring 2017
Lecturer: Prof. M. Pueschel

 This list is not exhaustive!

80

Related classes in the SE focus

http://www.srl.inf.ethz.ch/pa.php
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring16/course.html

spcl.inf.ethz.ch

@spcl_eth

81

DPHPC Overview

