. - B h spcl.inf.ethz.ch
ETH:zurich o & Gt e

T. HOEFLER, M. PUESCHEL

Lecture 0: Organization

Teaching assistant: Salvatore Di Girolamo

,{’

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Course Name

= Design of Parallel and High-Performance Computing

= Design of Parallel and High-Performance Computing Platforms?

= Design of Parallel and High-Performance Computing Applications?

= Design of Parallel and High-Performance Computing Systems?

= Design of Parallel and High-Performance Computing Theory?

= Design of Parallel and High-Performance Computing Fundamentals?

= Design of Parallel and High-Performance Computing:
Understand principal issues involved in algorithm, software, and system development for parallel computing

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

The Team

= Professors: Torsten Hoefler & Markus Plischel
= TA: Salvatore di Girolamo

= QGuest lecturer: maybe
= Possibly consultants for projects from Hoefler & Piischel’s labs

= Course website: http://spcl.inf.ethz.ch/Teaching/2018-dphpc/

http://spcl.inf.ethz.ch/Teaching/2018-dphpc/

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Administrative

= Lecture: Mo 13:15 - 16:00

= Recitation: Do 13:15 - 15:00
= Takes place as announced on website
= Sometimes used as lecture or swapped with lecture
= Also used for project updates

= Help:

= Email Salvatore: salvatore.digirolamo@inf.ethz.ch

mailto:salvatore.digirolamo@inf.ethz.ch

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Administrative

= Website: http://spcl.inf.ethz.ch/Teaching/2018-dphpc/
= Will contain all material (slides, homeworks, schedule, etc.)
= Mailing list: https://spcl.inf.ethz.ch/cgi-bin/mailman/listinfo/dphpc-2018

= Background material:

= Maurice Herlihy and Nir Shavit: The Art of Multiprocessor Programming. Morgan Kaufmann, 2012
= Papers as mentioned

http://spcl.inf.ethz.ch/Teaching/2018-dphpc/
https://spcl.inf.ethz.ch/cgi-bin/mailman/listinfo/dphpc-2018

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Work and Grading

= Work during semester:
= Regular homeworks
= Project

= @Grade:
= 50% Project
= 50% Written exam (120 minutes, in exam period as usual)

spcl.inf.ethz.ch
L 4 @spcl_eth

ETH:zurich

Project: Rules

= Count 50% of the grade (work, presentation, report)
= Teams of three-four

= |mportant: organize yourselves
= You may use the mailinglist
= Topic: Some suggestions in a minute
"= Timeline:
= QOct 4t™: Announce project teams to TA
= QOct 11%: Present your project in recitation — to get a baseline
= QOct 29%: Initial progress presentations during class
= Last class (Dec 17t): Final project presentations
= Report:
= 6 pages, template provided on webpage, due January

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Projects: Performance Optimization

= Pick an important algorithm/application

= Develop a parallel implementation that scales well on multicore
= Includes thorough benchmarking and experimental evaluation

= You are in charge of the project: shrink or expand as necessary!

= Requirements:
= No numerical algorithm (dominated by floating point operations)
Exceptions possible if directly related to student’s research
= Not sorting or anything that is mainly sorting

spcl.inf.ethz.ch 5o o
v owi o ETHZzUrich

Example From Before

Best algorithms for different input sizes

1 1

1 I I i T

' ' — Bitonic Mergesort SSE

— LSD Radixsort

—— Parallel Bitonic Mergesort SSE (16)

—— Parallel Radixsort (8)

r = T N S — Parallel Radixsort SSE (4) i
g tbb::parallel_sort
E . R
Q
. -
[«}]
o
= ;
- -
: -
(@]
(W]
Q
g Lo
o 40_ _ .. i
= : \\ :
v) ?
£ 30t f'\J'”T 3
= - N : '
= . : =, - : :
oo 20_- SRS R LR EEE LR
e U f ! ﬁ ——
10"' -~ e T — "“f“'--—';__;' o T i renERREERy '_'___'_'—__'_'__"'
' ' ' = —— . — _— = -
0 1 1 1 1 I L I 1
28 21(] 212 214 216 213 220 222 224 226

Input size

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Example From Before

= Uses our fastest implementations depending
on input size and adapts #threads accordingly

Parallel Bitonic
Mergesort SSE

L 1 1 |
224 226

Bitonic LSD Parallel Radixsort
Mergesort SSE Radixsort with SSE

1 1 1 1 1| | 1 | |
28 21{] 212 214 216

Input Size

-

_

SIPLL

Best project so far!

ACM Principles and Practice of Parallel Programming 2018

Communication-Avoiding Parallel Minimum Cuts
and Connected Components

Lukas Gilaninazzi Pavel Kalvoda® Alessandro De Palma
ETH Zurich ETH Zurich ETH Furich
Departemen of Compuler Seienes Department of Computer Scienes Deepartment of Compater Scienes
glukas@student.ethech kalbeosdapimstudent cthe.ch depalmasi@student ethech

Macie] Besta
ETH Zurich
Departmment of Comgaiter Seienee
miaciej. bestaghind ethz.ch

Abstract

We present novel sealable paralle] alporithms for fnding
hobal mimimum culs sl connected components, which ane
important amnd fundamental problems in graph processing,
To inke .arlvm‘nl.ugt of fulure massively [uu'ul]rl archilechares,
o algorithms are Hor-gvadding: they redice the
cosls of communication across the network and the cache
hierarchy. The fundamental technique underbying our work
i the rundomized sparsification of a graph: removing a Frac-
tion of graph edges, deriving a selution for such a sparsifisd
graph, and using the resull bo oltain a solution for the orig-
mal input. We design and implement sparsification with €0(1)
symchronization steps. Our global minimom oot algorithm
decreases communication costs aml compulation comgrred
L Lhe state—nl-the-art, while our connecled components al-
porithm incurs few cache misses and synchronistion sbeps.
Wie validate our approach by evaluating MPT implemenia-
tons of the algorithms on a pelascale supercompuler. We
also provide an approximate variant of the minimum cut
algorithm and shaover that it approximates the exact solutions
weell while using a fraction of cores in a Fraction off fime

CC8 Cancepts = Theory of computation — Distributed
algorithms;

"Paer] Ealvels was & sivdend ai ETH Furich al the fime ol his Esolvemseni,
lbusk us mowwe employed by Google Inc,

Torsten Hoefler
ETH Zurich
Department of Computer Science
htonginf.ethz.ch

Keywords FParullel Computing, Minimuom cuts, Random-
ized Algorithems, Graph Alporithms

ACM Reference Fonmat:

Liskax Gianmazs, Fawel Kabmula, Alessandreo The Pabmo, Mace)
Heesta, and Torsten FHoefler. 2018, Communication- Avouding Paralle]
Manimuem Cuts and Comnected Components. In PPafP 18 PPalfP 18
#wa ACM SIGFLAN Sympusitem om Frinciples aod Fractice of Paralel
Programmimg. Febrnpry 20-38, 2008, Vienna, Awstria. ACM, New
Yok, MY, UISA, 14 pagen. hitps:/ ided ang/ 10,1 1453 172487 TI7R504

1 Introduction

CGraph computations are behind many problems in machine
learning, social network anabysis, and computational sci-
ences [28), An imiportant and fondamental cliss ane graph
conneclivity algorithms, such as fimding minkmom cots or
oonnected components.

The global mimimom cut problem is a classic problem n
graph theory; it finds a variety of applications in network
reliability studies [23], combinatorial optimization [25], ma-
trix diagonalizalion, memory paging, gene-expression anal-
yaes [¥9], and large-scale graph clustering [40], Conaected
componenls 5 a well-studied problem with a plethora af
applications, for instance in medical imaging [46], mage
processing |21, 32|, and compater vision [49].

Designing eficient parallel graph algorithms is challeng-
ing due bo thetr properties such as rregular and data—driven
comemumication patterns or limited locality. These properties

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Erdos-Rényi graph, n=96'000, m= 16

On 1008 Cores:
+ > 4000x speedup against Boost Graph Library

+ 115x speedup against (sequential) randomized algorithm.

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Some (lame but inspiring) Project Ideas

Parallel Data Structure: Example Priority Queue

spcl.inf.ethz.ch
L 4 @spcl_eth

ETH:zurich

Modified specification: Maintain a collection of data items, identified by a key. Finding the k smallest items
(with the k smallest keys) should be supported in O(k) time. Finding any item by key should also be

supported.

Required Operations

queue_t init()

void insert(queue_t g, void* data, uint64_t key)
void*find(queue_t q, uint64_t key)

void delete(queue_t q, uint64_t key)

void*pop_front(queue_t q, int k) // returns k smallest elements
void finalize(queue_t q)

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Parallel Priority Queue (ll)

= Requirements contd.

= Multiple threads will be accessing the queue simultaneously (with all operations)
= Code may be written in C/C++ (gcc inline assembly is allowed ;-))

= Tips:
= Experiment with different locking strategies and compare the performance

= Pay attention to larger number of threads
= Maybe try MPI-3 One Sided

To make is more interesting: Brodal et al.: “A Parallel Priority Queue with Constant Time Operations”, JPDC’98
Check parallel in-time simulations from computational science for use-cases!

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Collective Communications

= Assume P threads in shared memory

= Each thread p has:
" asetof input elements i; , (0<j<n-1)
" aset of output elements o, , (O<j<n-1)

= The post-condition (result) is:
P . .
" 0jp = 1 tip(0<J <n)

" i.e,all o, areidentical onall p
= Tips:

= Use the memory hierarchy and CC protocols (inline assembly is allowed!)
= First optimize small n, then large n

Check: Li et al.: “NUMA-Aware Shared Memory Collective Communication for MPI1”, HPDC’13

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Parallel Algorithms: Example BFS

= Generate an Erd6s—Rényi graph G(n,p) given nand p

= Perform a breadth-first search (BFS) from n/2 vertices

= Print the average maximum distance for any vertex

= Your implementation should exploit all available cores and perform the BFS as fast as possible

Check: Lin et al.: “ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds”, SC18

https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Parallel Graph Algorithms

= Many more!
= Connected Components (CC)
= Single-source shortest path (SSSP)
= All-pairs-shortest path (APSP) - too simple, looks like MatVec
= Minimum spanning tree (MST)
= Vertex coloring
= Strongly connected components
= ... pick one and enjoy!

= Others
= A*search
= Various ML and Al algorithms (only nontrivial ones)

= Always implement infrastructure to validate your code!

Check: Quinn, Deo: “Parallel graph algorithms”, CSUR’84 (outdated but still good base) — HUGE space to invent!

spcl.inf.ethz.ch 5o o
v owien ETHZUrich

Mind the Lecture!!!

= Try to relate your project to the contents of the lecture!
= E.g., analyze sequential consistency (was very successfull!)
= E.g., deal with memory models!
= E.g., write litmus tests for various architectures (would be very cool)
= Analyze overheads of atomic operations on various architectures in detail
= Reason about the performance obtained
= Many more (be creative!)
= Or talk to the TA(s)

= Remember: you have until the end of October
= You can also check the slides from last year for later lecture topics (mind that this year will be slightly different!)
= This is of course all up to you

