
spcl.inf.ethz.ch

@spcl_eth

T. HOEFLER, M. PUESCHEL

Lecture 0: Organization

Teaching assistant: Salvatore Di Girolamo



spcl.inf.ethz.ch

@spcl_eth

 Design of Parallel and High-Performance Computing 

 Design of Parallel and High-Performance Computing Platforms?

 Design of Parallel and High-Performance Computing Applications?

 Design of Parallel and High-Performance Computing Systems?

 Design of Parallel and High-Performance Computing Theory?

 Design of Parallel and High-Performance Computing Fundamentals?

 Design of Parallel and High-Performance Computing:
Understand principal issues involved in algorithm, software, and system development for parallel computing

2

Course Name



spcl.inf.ethz.ch

@spcl_eth

 Professors: Torsten Hoefler & Markus Püschel

 TA: Salvatore di Girolamo

 Guest lecturer: maybe

 Possibly consultants for projects from Hoefler & Püschel’s labs

 Course website: http://spcl.inf.ethz.ch/Teaching/2018-dphpc/

3

The Team

http://spcl.inf.ethz.ch/Teaching/2018-dphpc/


spcl.inf.ethz.ch

@spcl_eth

 Lecture: Mo 13:15 – 16:00

 Recitation: Do 13:15 – 15:00

 Takes place as announced on website

 Sometimes used as lecture or swapped with lecture

 Also used for project updates

 Help: 

 Email Salvatore: salvatore.digirolamo@inf.ethz.ch

4

Administrative

mailto:salvatore.digirolamo@inf.ethz.ch


spcl.inf.ethz.ch

@spcl_eth

 Website: http://spcl.inf.ethz.ch/Teaching/2018-dphpc/

 Will contain all material (slides, homeworks, schedule, etc.)

 Mailing list: https://spcl.inf.ethz.ch/cgi-bin/mailman/listinfo/dphpc-2018

 Background material:

 Maurice Herlihy and Nir Shavit: The Art of Multiprocessor Programming. Morgan Kaufmann, 2012

 Papers as mentioned

5

Administrative

http://spcl.inf.ethz.ch/Teaching/2018-dphpc/
https://spcl.inf.ethz.ch/cgi-bin/mailman/listinfo/dphpc-2018


spcl.inf.ethz.ch

@spcl_eth

 Work during semester:

 Regular homeworks

 Project

 Grade:

 50% Project

 50% Written exam (120 minutes, in exam period as usual)

6

Work and Grading



spcl.inf.ethz.ch

@spcl_eth

 Count 50% of the grade (work, presentation, report)

 Teams of three-four

 Important: organize yourselves

 You may use the mailinglist

 Topic: Some suggestions in a minute

 Timeline:

 Oct 4th: Announce project teams to TA

 Oct 11th: Present your project in recitation – to get a baseline

 Oct 29th: Initial progress presentations during class

 Last class (Dec 17th): Final project presentations

 Report:

 6 pages, template provided on webpage, due January

Project: Rules



spcl.inf.ethz.ch

@spcl_eth

 Pick an important algorithm/application

 Develop a parallel implementation that scales well on multicore

 Includes thorough benchmarking and experimental evaluation

 You are in charge of the project: shrink or expand as necessary!

 Requirements:

 No numerical algorithm (dominated by floating point operations)

Exceptions possible if directly related to student’s research

 Not sorting or anything that is mainly sorting

Projects: Performance Optimization



spcl.inf.ethz.ch

@spcl_eth

Example From Before



spcl.inf.ethz.ch

@spcl_eth

Example From Before



spcl.inf.ethz.ch

@spcl_eth

11

Best project so far!

ACM Principles and Practice of Parallel Programming 2018



spcl.inf.ethz.ch

@spcl_eth

Some (lame but inspiring) Project Ideas



spcl.inf.ethz.ch

@spcl_eth

 Modified specification: Maintain a collection of data items, identified by a key. Finding the k smallest items 
(with the k smallest keys) should be supported in O(k) time. Finding any item by key should also be 
supported.

Required Operations

 queue_t init()

 void insert(queue_t q, void* data, uint64_t key)

 void*find(queue_t q, uint64_t key)

 void delete(queue_t q, uint64_t key)

 void*pop_front(queue_t q, int k) // returns k smallest elements

 void finalize(queue_t q)

Parallel Data Structure: Example Priority Queue



spcl.inf.ethz.ch

@spcl_eth

 Requirements contd.

 Multiple threads will be accessing the queue simultaneously (with all operations)

 Code may be written in C/C++ (gcc inline assembly is allowed ;-))

 Tips:

 Experiment with different locking strategies and compare the performance

 Pay attention to larger number of threads

 Maybe try MPI-3 One Sided

Parallel Priority Queue (II)

To make is more interesting: Brodal et al.: “A Parallel Priority Queue with Constant Time Operations”, JPDC’98
Check parallel in-time simulations from computational science for use-cases!



spcl.inf.ethz.ch

@spcl_eth

 Assume P threads in shared memory

 Each thread p has:

 a set of input elements ij,p (0≤j<n-1)

 a set of output elements oj,p (0≤j<n-1)

 The post-condition (result) is:



 i.e., all oj,p are identical on all p

 Tips:

 Use the memory hierarchy and CC protocols (inline assembly is allowed!)

 First optimize small n, then large n

Collective Communications

Check: Li et al.: “NUMA-Aware Shared Memory Collective Communication for MPI”, HPDC’13



spcl.inf.ethz.ch

@spcl_eth

 Generate an Erdős–Rényi graph G(n,p) given n and p

 Perform a breadth-first search (BFS) from n/2 vertices

 Print the average maximum distance for any vertex

 Your implementation should exploit all available cores and perform the BFS as fast as possible

Parallel Algorithms: Example BFS

Check: Lin et al.: “ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds”, SC18

https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model


spcl.inf.ethz.ch

@spcl_eth

 Many more!

 Connected Components (CC)

 Single-source shortest path (SSSP)

 All-pairs-shortest path (APSP) - too simple, looks like MatVec

 Minimum spanning tree (MST)

 Vertex coloring

 Strongly connected components

 … pick one and enjoy!

 Others

 A* search 

 Various ML and AI algorithms (only nontrivial ones)

 Always implement infrastructure to validate your code!

Parallel Graph Algorithms

Check: Quinn, Deo: “Parallel graph algorithms”, CSUR’84 (outdated but still good base) – HUGE space to invent!



spcl.inf.ethz.ch

@spcl_eth

 Try to relate your project to the contents of the lecture!

 E.g., analyze sequential consistency (was very successful!)

 E.g., deal with memory models!

 E.g., write litmus tests for various architectures (would be very cool)

 Analyze overheads of atomic operations on various architectures in detail

 Reason about the performance obtained

 Many more (be creative!)

 Or talk to the TA(s)

 Remember: you have until the end of October

 You can also check the slides from last year for later lecture topics (mind that this year will be slightly different!)

 This is of course all up to you

Mind the Lecture!!!


