
spcl.inf.ethz.ch

@spcl_eth

T. HOEFLER, M. PUESCHEL

Lecture 0: Organization

Teaching assistant: Salvatore Di Girolamo



spcl.inf.ethz.ch

@spcl_eth

 Design of Parallel and High-Performance Computing 

 Design of Parallel and High-Performance Computing Platforms?

 Design of Parallel and High-Performance Computing Applications?

 Design of Parallel and High-Performance Computing Systems?

 Design of Parallel and High-Performance Computing Theory?

 Design of Parallel and High-Performance Computing Fundamentals?

 Design of Parallel and High-Performance Computing:
Understand principal issues involved in algorithm, software, and system development for parallel computing

2

Course Name



spcl.inf.ethz.ch

@spcl_eth

 Professors: Torsten Hoefler & Markus Püschel

 TA: Salvatore di Girolamo

 Guest lecturer: maybe

 Possibly consultants for projects from Hoefler & Püschel’s labs

 Course website: http://spcl.inf.ethz.ch/Teaching/2018-dphpc/

3

The Team

http://spcl.inf.ethz.ch/Teaching/2018-dphpc/


spcl.inf.ethz.ch

@spcl_eth

 Lecture: Mo 13:15 – 16:00

 Recitation: Do 13:15 – 15:00

 Takes place as announced on website

 Sometimes used as lecture or swapped with lecture

 Also used for project updates

 Help: 

 Email Salvatore: salvatore.digirolamo@inf.ethz.ch

4

Administrative

mailto:salvatore.digirolamo@inf.ethz.ch


spcl.inf.ethz.ch

@spcl_eth

 Website: http://spcl.inf.ethz.ch/Teaching/2018-dphpc/

 Will contain all material (slides, homeworks, schedule, etc.)

 Mailing list: https://spcl.inf.ethz.ch/cgi-bin/mailman/listinfo/dphpc-2018

 Background material:

 Maurice Herlihy and Nir Shavit: The Art of Multiprocessor Programming. Morgan Kaufmann, 2012

 Papers as mentioned

5

Administrative

http://spcl.inf.ethz.ch/Teaching/2018-dphpc/
https://spcl.inf.ethz.ch/cgi-bin/mailman/listinfo/dphpc-2018


spcl.inf.ethz.ch

@spcl_eth

 Work during semester:

 Regular homeworks

 Project

 Grade:

 50% Project

 50% Written exam (120 minutes, in exam period as usual)

6

Work and Grading



spcl.inf.ethz.ch

@spcl_eth

 Count 50% of the grade (work, presentation, report)

 Teams of three-four

 Important: organize yourselves

 You may use the mailinglist

 Topic: Some suggestions in a minute

 Timeline:

 Oct 4th: Announce project teams to TA

 Oct 11th: Present your project in recitation – to get a baseline

 Oct 29th: Initial progress presentations during class

 Last class (Dec 17th): Final project presentations

 Report:

 6 pages, template provided on webpage, due January

Project: Rules



spcl.inf.ethz.ch

@spcl_eth

 Pick an important algorithm/application

 Develop a parallel implementation that scales well on multicore

 Includes thorough benchmarking and experimental evaluation

 You are in charge of the project: shrink or expand as necessary!

 Requirements:

 No numerical algorithm (dominated by floating point operations)

Exceptions possible if directly related to student’s research

 Not sorting or anything that is mainly sorting

Projects: Performance Optimization



spcl.inf.ethz.ch

@spcl_eth

Example From Before



spcl.inf.ethz.ch

@spcl_eth

Example From Before



spcl.inf.ethz.ch

@spcl_eth

11

Best project so far!

ACM Principles and Practice of Parallel Programming 2018



spcl.inf.ethz.ch

@spcl_eth

Some (lame but inspiring) Project Ideas



spcl.inf.ethz.ch

@spcl_eth

 Modified specification: Maintain a collection of data items, identified by a key. Finding the k smallest items 
(with the k smallest keys) should be supported in O(k) time. Finding any item by key should also be 
supported.

Required Operations

 queue_t init()

 void insert(queue_t q, void* data, uint64_t key)

 void*find(queue_t q, uint64_t key)

 void delete(queue_t q, uint64_t key)

 void*pop_front(queue_t q, int k) // returns k smallest elements

 void finalize(queue_t q)

Parallel Data Structure: Example Priority Queue



spcl.inf.ethz.ch

@spcl_eth

 Requirements contd.

 Multiple threads will be accessing the queue simultaneously (with all operations)

 Code may be written in C/C++ (gcc inline assembly is allowed ;-))

 Tips:

 Experiment with different locking strategies and compare the performance

 Pay attention to larger number of threads

 Maybe try MPI-3 One Sided

Parallel Priority Queue (II)

To make is more interesting: Brodal et al.: “A Parallel Priority Queue with Constant Time Operations”, JPDC’98
Check parallel in-time simulations from computational science for use-cases!



spcl.inf.ethz.ch

@spcl_eth

 Assume P threads in shared memory

 Each thread p has:

 a set of input elements ij,p (0≤j<n-1)

 a set of output elements oj,p (0≤j<n-1)

 The post-condition (result) is:



 i.e., all oj,p are identical on all p

 Tips:

 Use the memory hierarchy and CC protocols (inline assembly is allowed!)

 First optimize small n, then large n

Collective Communications

Check: Li et al.: “NUMA-Aware Shared Memory Collective Communication for MPI”, HPDC’13



spcl.inf.ethz.ch

@spcl_eth

 Generate an Erdős–Rényi graph G(n,p) given n and p

 Perform a breadth-first search (BFS) from n/2 vertices

 Print the average maximum distance for any vertex

 Your implementation should exploit all available cores and perform the BFS as fast as possible

Parallel Algorithms: Example BFS

Check: Lin et al.: “ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds”, SC18

https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model


spcl.inf.ethz.ch

@spcl_eth

 Many more!

 Connected Components (CC)

 Single-source shortest path (SSSP)

 All-pairs-shortest path (APSP) - too simple, looks like MatVec

 Minimum spanning tree (MST)

 Vertex coloring

 Strongly connected components

 … pick one and enjoy!

 Others

 A* search 

 Various ML and AI algorithms (only nontrivial ones)

 Always implement infrastructure to validate your code!

Parallel Graph Algorithms

Check: Quinn, Deo: “Parallel graph algorithms”, CSUR’84 (outdated but still good base) – HUGE space to invent!



spcl.inf.ethz.ch

@spcl_eth

 Try to relate your project to the contents of the lecture!

 E.g., analyze sequential consistency (was very successful!)

 E.g., deal with memory models!

 E.g., write litmus tests for various architectures (would be very cool)

 Analyze overheads of atomic operations on various architectures in detail

 Reason about the performance obtained

 Many more (be creative!)

 Or talk to the TA(s)

 Remember: you have until the end of October

 You can also check the slides from last year for later lecture topics (mind that this year will be slightly different!)

 This is of course all up to you

Mind the Lecture!!!


