5/15/17

Operating Systems and Networks

TCP Summary

Adrian Perrig
Network Security Group
ETH Zirich

Connection Establishment (6.5.5, 6.5.7, 6.2.2)

* How to set up connections
— We'll see how TCP does it

SYN! ACK!

Connection Establishment

* Both sender and receiver must be ready before we
start the transfer of data

— Need to agree on a set of parameters
— e.g., the Maximum Segment Size (MSS)

* This is signaling
— It sets up state at the endpoints
— Like “dialing” for a telephone call

Three-Way Handshake

* Three steps: Passive party
. (client) (server)
— Client sends SYN(x) 1
— Server replies with SYN(y)ACK(x+1)
— Client replies with ACK(y+1)
— SYNs are retransmitted if lost

Active party

* Sequence and ack numbers
carried on further segments

TCP Connection State Machine

* Captures the states (rectangles) and transitions (arrows)
— A/B means event A triggers the transition, with action B

(Start)
CONNECT/SYN (Step 1 of the 3-way
CLOSED 7

CLOSE N

Both parties USTEN- | | cLose~
. SYNISYN + ACK 1
run instances | (step2 e Sy handsiare
SEND/SYN

i 1
of this §tate o RSTH
machine RCVD] SYN/SYN = ACK
: (Data transfer state)

N ACK— SYN + ACKIACK
"""""""""""""""" ESTABLISHED |~—57253 of the 3-way handshake)

(simultaneous open)

Connection Release (6.5.6-6.5.7, 6.2.3)

* How to release connections
— We'll see how TCP does it

-

/_ = Network —';_‘

5/15/17

TCP Connection Release

Active party Passive party

%}
!)
=y)
g0y, A
o)

* Two steps:
— Active party sends FIN(x), passive
party sends ACK
— Passive party sends FIN(y), active
party sends ACK
— FINs are retransmitted if lost

©
FIN (GEQY,

2
N) (SEQ=;
* Each FIN/ACK closes one direction L ACKsy4)

of data transfer

TCP Connection State Machine

ESTABLISHED
CLOSE/FIN 4\ FINIACK

(Timeout))

CLOSED [wmnnns AR

((Active close) (Passive\,close)
" 1’""”” l H v
Both parties ! -FVN FINACK -CmIN - | -cLosE
. 1 H WAIT
runinstances | | LTI | :
. | Ack-| ACK- | | CLOSEFIN
of this state | R | |
i FIN N = Tme | LAST
i | i

(Go back o start)

Sliding Windows (§3.4, §6.5.8)

* The sliding window algorithm
— Pipelining and reliability
— Building on Stop-and-Wait

Sliding Window — Sender

* Sender buffers up to W segments until they are
acknowledged
— LFS=LAST FRAME SENT, LAR=LAST ACK REC'D
— Sends while LFS—LAR < W
Sliding W=5

Flow Control (§6.5.8)

* Adding flow control to the sliding window algorithm
— To slow the over-enthusiastic sender

Please slow down!
ﬂ — A
Network —, M
=

Window /Available
& : mw? ?z . ‘ A}:ke*u ‘ UInac}(edI . I ‘Un%vaiﬁabl)e -
il | |:| f LAR LFS seq. number
Flow Control

* Avoid loss at receiver by telling sender the available

buffer space
— WIN=#Acceptable, not W (from LAS)

W=5 Acceptable
. ‘ Fi‘nisﬁedlAc*ed T$o I{igh‘ ‘
——
LAS seq. number

5/15/17

Flow Control (3)

Sender Receiver Recelver's
Applcation buter

e TCP-style example
— SEQ/ACK sliding window
— Flow control with wiN

Applcation

— SEQ + length < ACK+WIN .
blocked |

— 4KB buffer at receiver

‘Sender may

— Circular buffer of bytes =558 |~

Retransmissions

* With sliding window, the strategy for detecting loss is

the timeout

— Set timer when a segment is sent

— Cancel timer when ack is received
— If timer fires, retransmit data as lost

Adaptive Timeout

* Keep smoothed estimates of the RTT (1) and variance in RTT (2)
— Update estimates with a moving average
1. SRTTp,; = 0.9%SRTTy + 0.1*RTTy,,
2. Svary,; =0.9*Svary + 0.1% |RTTy,;— SRT Ty, |

* Set timeout to a multiple of estimates
— To estimate the upper RTT in practice
— TCP Timeouty = SRTTy + 4*Svary

Example of Adaptive Timeout (2)

1000

%00 1 Early "
a0 | timeout \O Timeout (SRTT + 4*Svar)
700 —
g 600 |
= s00
£ a00 e
300 - T
200 -
100 PO
0
0 50 100 150 200

Seconds

Effects of Congestion

* What happens to performance as we increase the load?

Capacity

H i
§ I Onset of |
2 '\ ! B | congestion i
%’ Desired 8 i
S response 3 i
k= = i
s Y\\Congestion 5

= collapse 8 é\

o H
o H
o i

Offered load (packets/sec) Offered load (packets/sec)

Congestion Characteristics
Link flooding causes high loss rates for incoming traffic
Mathis, Semke, Mahdavi, Ott [Sigcomm ’97]:
TCP Throughput ~ MSS/RTT*c*q /2
q is loss prob, c is constant close to 1
Note: very low throughput for high loss rate

Result
— Few legitmate

Optimal case

clients served

Typical
Internet host

during congestion

Application throughput

5/15/17

Bandwidth Allocation

* Important task for network is to allocate its capacity to
senders
— Good allocation is efficient and fair

 Efficient means most capacity is used but there is no
congestion

* Fair means every sender gets a reasonable share the
network

Max-Min Fairness

* Intuitively, flows bottlenecked on a link get an
equal share of that link

* Max-min fair allocation is one that:

— Increasing the rate of one flow will decrease the rate
of a smaller flow

— This “maximizes the minimum” flow

Max-Min Example
* When rate=2/3, flow A bottlenecks R2—R3. Done.

Bottleneck
\

LA
Al — ())
R1 R Y "R3B
Be BottIenec\l:
'~ a -C
Ce ! () 1
Do R4 ~ R5 R6 D

Additive Increase Multiplicative Decrease
(AIMD) (§6.3.2)

* Bandwidth allocation models

— Additive Increase Multiplicative Decrease (AIMD) control law

'-
A

AIMD Sawtooth

* Produces a “sawtooth” pattern over time for rate of
each host

— This is the TCP sawtooth (later)

Host 1or pyitiplicative Additive

2sRate " pecrease Increase
Time

AIMD Properties

* Converges to an allocation that is efficient and fair when

hosts run it

— Holds for more general topologies

* Other increase/decrease control laws do not! (Try MIAD,

MIMD, AIAD)

* Requires only binary feedback from the network

5/15/17

Feedback Signals

 Several possible signals, with different pros/cons
— We'll look at classic TCP that uses packet loss as a signal

Signal Example Protocol Pros / Cons

TCP NewReno
Cubic TCP (Linux)

+Hard to get wrong
-Hear about congestion late

Packet loss

Packet delay Compound TCP +Hear about congestion early
(Windows) -Need to infer congestion
Router TCPs with Explicit +Hear about congestion early

indication | Congestion Notification -Require router support

Sliding Window ACK Clock

* Each in-order Ack advances the sliding window and lets
a new segment enter the network

— ACKs “clock” data segments

2019181716 15141312 11 Data

==y —=

Ack1 2345678910

TCP Slow Start (§6.5.10)

* How TCP implements AIMD, part 1
— “Slow start” is a component of the Al portion of AIMD

J—
> | Slow-start
/

Slow-Start Solution

* Combined behavior, after first time
— Most time spend near right value

Window
cwndc
CWndeAL--? --------------- 7‘47'
Fixed Al phase
ssthresh |-
Slow-start Al 7
Time

Slow-Start (Doubling) Timeline

TCP Sender TCP Receiver
cwnd=1 ‘= Data
Acknowledgment ————

cwnd=2 :|> 1 RTT, 1 packet
Increment cwnd cwnd=3 :|> 1 RTT, 2 packets
by 1 segment cwnd=4
size for each CW”g‘:g } 1 RTT, 4 packets

cwnd=
ACK cwnd=7 E

cwnd=8 1 RTT, 4 packets

(pipe is full)

Additive Increase Timeline

TCP Sender TCP Receiver
cwnd=1 Data
Acknowledgment
ownd=2 1 RTT, 1 packet
1 RTT, 2 packets
b cwnd=3
Increment cyvn Y 1 RTT, 3 packets
1 segment size every
cwnd=4
cwnd ACKs (or 1 1 RTT, 4 packets
RTT)
cwnd=5 1 RTT, 4 packets
(pipe is full)

5/15/17

TCP Fast Retransmit / Fast Recovery

(§6.5.10)

* How TCP implements AIMD, part 2

— “Fast retransmit” and “fast recovery” are the MD portion of
AIMD

3

Fast Retransmit

* Treat three duplicate ACKs as a loss
— Retransmit next expected segment

— Some repetition allows for reordering, but still detects loss
quickly

== HHHHAHHAA™
Ackl1 234555555

Fast Retransmit (2)

Ack10 e

Data 14 was
Ack 11 lost earlier, but
Ack 12 got 15 to 20
Ack 13
Ack 13

Data 20

- f Ack 13
Third duplicate
ACK, sosend 14 | 1073 pata 14 | Retransmission fills

in the hole at 14
ACK jumps after | ack 20 /

loss is repaired

Fast Recovery

e First fast retransmit, and MD cwnd

* Then pretend further duplicate ACKs are the expected
ACKs
— Lets send new segments for received ACKs
— Reconcile views when the ACK jumps

- OREREE.

Ack1 234555555

Fast Recovery (2)

Data 14 was
Ack 12 lost earlier, but
Third duplicate | Ack13 got 15t0 20
i
Set ssthresh, (Ack 13] Retrans on fills
cwnd = cwnd/2 Ack 5 Data 14| in the hole at 14

More ACKs advance | /Ack 20 Data 21

Data 22

segments before jump

window; may send o ees
Exit Fast Recovery

TCP Header

Source port Destination port
Sequence number
Acknowledgement number
TCP C|E|U|A|P[R|S|F
header W|CIR|C|S|S|Y]|I Window size
length R|E|G|K|H|[T|IN[N
Checksum Urgent pointer

Options (0 or more 32-bit words)

i
L5

5/15/17

Interesting Questions

How is MSS / MTU determined?
What happens if UDP does not implement congestion control?
— Do modern UDP applications need to implement congestion control?
— What is the relationship with network neutrality?
What if different congestion control schemes are used concurrently?
What can go wrong?
Can a malicious host obtain an unfair advantage?
Why size would you pick for router buffers? Large or small? Which one
will result in better performance if standard TCP is used?

