
5/15/17

1

Operating	Systems	and	Networks

TCP	Summary

Adrian	Perrig
Network	Security	Group
ETH	Zürich

2

Connection	Establishment	(6.5.5,	6.5.7,	6.2.2)

• How	to	set	up	connections
– We’ll	see	how	TCP	does	it

SYN!	ACK!

Network

SYNACK!

3

Connection	Establishment
• Both	sender	and	receiver	must	be	ready	before	we	
start	the	transfer	of	data
– Need	to	agree	on	a	set	of	parameters
– e.g.,	the	Maximum	Segment	Size	(MSS)

• This	is	signaling
– It	sets	up	state	at	the	endpoints
– Like	“dialing”	for	a	telephone	call

4

Three-Way	Handshake
• Three	steps:

– Client	sends	SYN(x)
– Server	replies	with	SYN(y)ACK(x+1)
– Client	replies	with	ACK(y+1)
– SYNs	are	retransmitted	if	lost

• Sequence	and	ack numbers	
carried	on	further	segments

1

2

3

Active	party
(client)

Passive	party
(server)

Time

TCP	Connection	State	Machine
• Captures	the	states	(rectangles)	and	transitions	(arrows)

– A/B	means	event	A	triggers	the	transition,	with	action	B

5

Both	parties	
run	instances	
of	this	state	
machine

6

Connection	Release	(6.5.6-6.5.7,	6.2.3)

• How	to	release	connections
– We’ll	see	how	TCP	does	it

Network

FIN! FIN!

5/15/17

2

7

TCP	Connection	Release
• Two	steps:

– Active	party	sends	FIN(x),	passive
party	sends	ACK

– Passive	party	sends	FIN(y),	active
party	sends	ACK

– FINs	are	retransmitted	if	lost

• Each	FIN/ACK	closes	one	direction	
of	data	transfer

Active	party Passive	party

1

2

TCP	Connection	State	Machine

8

Both	parties	
run	instances	
of	this	state	
machine

9

Sliding	Windows	(§3.4,	§6.5.8)
• The	sliding	window	algorithm

– Pipelining	and	reliability
– Building	on	Stop-and-Wait	

Yeah!

Network

10

Sliding	Window	– Sender	
• Sender	buffers	up	to	W	segments	until	they	are	
acknowledged
– LFS=LAST FRAME SENT,	LAR=LAST ACK REC’D
– Sends	while	LFS	– LAR	≤	W	

.. 5 6 7 .. 2 3 4 5 2 3 ..

LAR LFS

W=5

Acked Unacked 3 ..Unavailable

Available

seq.	number

Sliding
Window

11

Flow	Control	(§6.5.8)
• Adding	flow	control	to	the	sliding	window	algorithm

– To	slow	the	over-enthusiastic	sender	

Please	slow	down!

Network

12

Flow	Control
• Avoid	loss	at	receiver	by	telling	sender	the	available	
buffer	space
– WIN=#Acceptable,	not	W	(from	LAS)

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too	high

Acceptable

seq.	number

555 544Acked

5/15/17

3

13

Flow	Control	(3)
• TCP-style	example
– SEQ/ACK sliding	window
– Flow	control	with	WIN

– SEQ +	length	<	ACK+WIN

– 4KB	buffer	at	receiver
– Circular	buffer	of	bytes

14

Retransmissions
• With	sliding	window,	the	strategy	for	detecting	loss	is	
the	timeout
– Set	timer	when	a	segment	is	sent
– Cancel	timer	when	ack is	received
– If	timer	fires,	retransmit data	as	lost

Retransmit!

15

Adaptive	Timeout
• Keep	smoothed	estimates	of	the	RTT	(1)	and	variance	in	RTT	(2)

– Update	estimates	with	a	moving	average
1. SRTTN+1 =	0.9*SRTTN +	0.1*RTTN+1
2. SvarN+1 =	0.9*SvarN +	0.1*|RTTN+1– SRTTN+1|

• Set	timeout	to	a	multiple	of	estimates
– To	estimate	the	upper	RTT	in	practice
– TCP	TimeoutN =	SRTTN +	4*SvarN

Example	of	Adaptive	Timeout	(2)

16

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200
Seconds

RT
T	
(m

s)

Timeout	(SRTT	+	4*Svar)

Early
timeout

Effects	of	Congestion
• What	happens	to	performance	as	we	increase	the	load?

17

Congestion	Characteristics
• Link	flooding	causes	high	loss	rates	for	incoming	traffic
• Mathis,	Semke,	Mahdavi,	Ott [Sigcomm ’97]:

TCP	Throughput	~	MSS/RTT*c*q-1/2
q is	loss	prob,	c is	constant	close	to	1

• Note:	very	low	throughput	for	high	loss	rate
• Result

– Few	legitmate
clients	served	
during congestion

5/15/17

4

19

Bandwidth	Allocation
• Important	task	for	network	is	to	allocate	its	capacity	to	
senders
– Good	allocation	is	efficient	and	fair

• Efficient means	most	capacity	is	used	but	there	is	no	
congestion

• Fair means	every	sender	gets	a	reasonable	share	the	
network

20

Max-Min	Fairness
• Intuitively,	flows	bottlenecked	on	a	link	get	an	
equal	share	of	that	link

• Max-min	fair	allocation is	one	that:
– Increasing	the	rate	of	one	flow	will	decrease	the	rate	
of	a	smaller	flow

– This	“maximizes	the	minimum”	flow

Max-Min	Example
• When	rate=2/3,	flow	A	bottlenecks	R2—R3.	Done.	

21

Bottleneck

Bottleneck

22

Additive	Increase	Multiplicative	Decrease	
(AIMD)	(§6.3.2)

• Bandwidth	allocation	models
– Additive	Increase	Multiplicative	Decrease	(AIMD)	control	law

AIMD!

Sawtooth

23

AIMD	Sawtooth
• Produces	a	“sawtooth”	pattern	over	time	for	rate	of	
each	host
– This	is	the	TCP	sawtooth (later)

Multiplicative
Decrease

Additive
Increase

Time

Host	1	or	
2’s	Rate

24

AIMD	Properties
• Converges	to	an	allocation	that	is	efficient	and	fair	when	
hosts	run	it
– Holds	for	more	general	topologies

• Other	increase/decrease	control	laws	do	not!	(Try	MIAD,	
MIMD,	AIAD)

• Requires	only	binary	feedback	from	the	network

5/15/17

5

Feedback	Signals
• Several	possible	signals,	with	different	pros/cons

– We’ll	look	at	classic	TCP	that	uses	packet	loss	as	a	signal

25

Signal Example	Protocol Pros	/	Cons
Packet loss TCP	NewReno

Cubic TCP	(Linux)
+Hard to	get	wrong

-Hear	about	congestion	late
Packet delay Compound TCP	

(Windows)
+Hear about	congestion	early
-Need	to	infer	congestion

Router	
indication

TCPs	with	Explicit	
Congestion	Notification

+Hear	about	congestion	early
-Require router	support

26

Sliding	Window	ACK	Clock
• Each	in-order	ACK advances	the	sliding	window	and	lets	
a	new	segment	enter	the	network
– ACKs “clock”	data	segments

Ack 1		2		3		4		5		6		7		8		9	10

20	19	18	17	16	15	14	13	12	11	Data

27

TCP	Slow	Start	(§6.5.10)
• How	TCP	implements	AIMD,	part	1

– “Slow	start”	is	a	component	of	the	AI	portion	of	AIMD	

Slow-start

28

Slow-Start	Solution
• Combined	behavior,	after	first	time

– Most	time	spend	near	right	value

AI

Fixed

Time

Window

ssthresh

cwndC

cwndIDEAL
AI	phase

Slow-start

Slow-Start	(Doubling)	Timeline

29

Increment	cwnd
by	1	segment	
size	for	each	
ACK

Additive	Increase	Timeline

30

Increment	cwnd by	
1	segment	size	every	
cwnd ACKs	(or	1	
RTT)

5/15/17

6

31

TCP	Fast	Retransmit	/	Fast	Recovery	
(§6.5.10)

• How	TCP	implements	AIMD,	part	2
– “Fast	retransmit”	and	“fast	recovery”	are	the	MD	portion	of	
AIMD

AIMD	sawtooth

32

Fast	Retransmit
• Treat	three	duplicate	ACKs	as	a	loss	

– Retransmit	next	expected	segment
– Some	repetition	allows	for	reordering,	but	still	detects	loss	
quickly

Ack 1		2		3		4		5		5		5		5 5		5

Fast	Retransmit	(2)

33

Ack 10
Ack 11
Ack 12
Ack 13

.	.	.	

Ack 13

Ack 13
Ack 13

Data	14.	.	.	
Ack 13

Ack 20
.	

Data	20
Third	duplicate	
ACK,	so	send	14 Retransmission	fills	

in	the	hole	at	14
ACK	jumps	after	
loss	is	repaired

.	

Data	14	was	
lost	earlier,	but	
got	15	to	20

34

Fast	Recovery
• First	fast	retransmit,	and	MD	cwnd
• Then	pretend	further	duplicate	ACKs	are	the	expected	
ACKs
– Lets	send	new	segments	for	received	ACKs	
– Reconcile	views	when	the	ACK	jumps

Ack 1		2	 	3	 	4	 	5	 	5	 	5	 	5	 	5	 	5

Fast	Recovery	(2)

35

Ack 12
Ack 13
Ack 13

Ack 13
Ack 13

Data	14Ack 13

Ack 20
.	

Data	20
Third	duplicate	
ACK,	so	send	14

Data	14	was	
lost	earlier,	but	
got	15	to	20

Retransmission	fills	
in	the	hole	at	14

Set	ssthresh,	
cwnd =		cwnd/2	

Data	21
Data	22

More	ACKs	advance	
window;	may	send	

segments	before	jump

Ack 13

Exit	Fast	Recovery

36

TCP	Header

5/15/17

7

37

Interesting	Questions
• How	is	MSS	/	MTU	determined?
• What	happens	if	UDP	does	not	implement	congestion	control?

– Do	modern	UDP	applications	need	to	implement	congestion	control?
– What	is	the	relationship	with	network	neutrality?

• What	if	different	congestion	control	schemes	are	used	concurrently?	
What	can	go	wrong?

• Can	a	malicious	host	obtain	an	unfair	advantage?
• Why	size	would	you	pick	for	router	buffers?	Large	or	small?	Which	one	

will	result	in	better	performance	if	standard	TCP	is	used?

