ETHzirich

. ! Iotastvetur

ext route.

passengers at risk

ETHziirich

Our

© NGO A®ONPRE

ADRIAN PERRIG & TORSTEN HOEFLER
Networks and Operating Systems (252-0062-00)
Chapter 9: I/0 Subsystems

52131 Issue with opening Class 377 doors on
the Thameslink route

January 2014 in Train Operations

Concerns have been raised about intermittent fauits when opening the doors of the Class 377
wains at certain stations on the Thameslink route.

Itis reported that at certain times when Drivers attempt to release the doors at the station, the
Train Management System (TMS) indicates that the beacons cannot be detected, preventing the
doors from opening. The location of the train then needs to be inputted into the TMS, allowing the
doors to open. In some instances, even this will ot release the doors, and trains have needed o
be rebooted. This can take in excess of five minutes, leaving passengers on the train without an

i noted that this has happened at many stations on the Brighton to Bedford route, but occurs
most frequently at St. Pancras Interational, City Thameslink, Farringdon, Blackiriars and Brighton
There are concerns that this could delay an emergency exitif an incident were to occur, leaving

ains,

doors do not release first time.

system,

source.

small quiz

= True or false (raise hand)

Directories can never contain cycles

Access control lists scale to large numbers of principals
Capabilities are stored with the principals and revocation can be complex

dea Lo 1 g
' Response from First Capital Connect

FCC would like to thank the reporter for bringing this matter to our atiention.
‘Operation of Class 377 train doors require a Global Positioning Satellite (GPS) signal to identify
that the train is in a station to allow the Driver to open the doors. Effectively this prevents the doors.
being operated in error when the train is not at a station and as such s a safety feature of the

Where the stations are in tunnels, for example St Pancras International low level, and the train
cannot receive a GPS signal directy, additional GP'S repeater beacons are ftied 1o the track to
relay the signal to the train to enable the Driver to release the doors.

A considerable amount of work has already been done with Network Rail to improve the eficiency

of the beacons and this work has also caused a massive reduction in the number of times that the

However, we are aware that there are sill occasional problems, which results in the Driver having
0 either manually tel the train where it is via the “location not found" option in the TMS, o in the
event of that not working, using the emergency door release option in the train management

Initial investigations are pointing towards the signal from the beacon being distorted by an unknown

POSIX (Unix) access control is scalable to large numbers of files

Named pipes are just (special) files in Unix

Memory mapping improves sequential file access
Accessing different files on disk can have different speeds

The FAT filesystem enables fast random access
FFS enables fast random access for small files

10 The minimum storage for a file in FFS is 8kB (4kB inode + block)
11.Block groups in FFS are used to simplify the implementation
12.Multiple hard links in FFS are stored in the same inode

13.NTFS stores files that are contiguous on disk more efficiently than FFS
14.The volume information in NTFS is a file in NTFS

Cache re-load and a magic trick

= Lasttime
= On-disk data structures
File representation
Block allocation
Directories
= FAT32 case study
Very simple block interface
Single table
= FFS case study
Blocked interface
Uses inodes, direct, (single, double, triple ...) indirect blocks
= NTFS case study
Extent interface
Direct and indirect extent pointers

ETHziirich

In-memory data structures

ETHziirich

Opening a file

open(“foo”);

= Directories translated into kernel data structures on demand:

(L]

directory

directory structure

User space Kernel

D file inode

Disk

ETHziirich

Reading and writing

= Per-process open file table — index into...
= System open file table — cache of inodes

read(5,...)—|

Per-process System
open file table open file table

User space Kernel

ETHzirich

ETHzirich

spcl.inf.ethz.ch
~ _ W @spcl_eth

Efficiency and Performance

= Efficiency dependent on:
= disk allocation and directory algorithms
= types of data kept in file’s directory entry

= Performance
= disk cache — separate section of main memory for frequently used blocks
= free-behind and read-ahead — techniques to optimize sequential access

= improve PC performance by dedicating section of memory as virtual disk,
or RAM disk

LI Vet
Page Cache

= A page cache caches pages rather than disk blocks using virtual
memory techniques

= Memory-mapped I/O uses a page cache
= Routine I/O through the file system uses the buffer (disk) cache

= This leads to the following figure

ETHziirich

Two layers of caching?

File access with

Memory-mapped files read () /write ()

Buffer cache
N

v
File system

ETHziirich

Unified Buffer Cache

File access with

Memory-mapped files read () /write ()

Buffer cache
N

File system

spel.inf.ethz.ch

ETHziirich

ETHziirich

Filesystem Recovery

= Consistency checking — compares data in directory structure
with data blocks on disk, and tries to fix inconsistencies

= Use system programs to back up data from disk to another
storage device (floppy disk, magnetic tape, other magnetic disk,
optical)

= Recover lost file or disk by restoring data from backup

Disks, Partitions and Logical Volumes

ETHZziirich “w [ETHziirich

Partitions Logical volumes
Disk 1 Disk 2 Disk 3
;é o File system ; File system A File system A File system A
E g File system A B File system C (part 1) (part 2) (part 3)
| L J
0 Logical block address (LBA) on a single disk Y

. . . i Single logical volume with file system A
= Multiplex single disk among >1 file systems

= Contiguous block ranges per FS
= Emulate 1 virtual disk from >1 physical ones
= Single file system spanning >1 disk

ETHzrich 7 » W ETHzirich
Multiple file systems Mount points
= How to name files in multiple file systems?
- . htor@rosalo3:~> df -h
" Top AIeveI volume names: . Filesystem Size Used Avail Use% Mounted on
= Windows A:, B:, C:, D:, etc. (problematic) /dev/sdas 6756 42G 599G
devtmpfs 64G 164K B4G 1% /dev
= \\fs-systems.ethz.ch\ tmpfs 64G 0 684G 0% /dev/shm
/Sev/sgaa 316 1.96 276 7% /tmp
i L i ” /dev/sdaz 61G 819M S7G s /var
- Blnd mount pOIntS In name Space /dev/users S9T 4.7T S4T 8% /users
= Unix, etc. (flexible) fdev/scratch 524T 67T 457T 13% /scratch/tencia
! /dev/apps 30T 3.6T 26T 13% /apps
/dev/project 1.9 1.2P 736T 62% /project
63@gn1:/scratch 4g7T 2737 1997 S8% /scratch/rosa

htor@rosalo3:~= []

ETH ziirich : Y » W ETHziirich

File hierarchy with mounts Virtual File Systems

= Virtual File Systems (VFS) provide an object-oriented way of

implementing file systems.

= VFS allows the same system call interface (the API) to be used
for different types of file systems.

Sr |
\ = The APl is to the VFS interface, rather than any specific type of
file system.

|home||etc||dev||var||u
| |

bin |

Mount point \:’
Normal directory l:’

. . spclinf.ethz.ch . . spclinf.ethz.ch
ETHzirich /\r% W @spel_eth ETHzirich /\rm W @spcl_eth

Virtual File System Rest of today: /O

1. Recap: what devices look like
File system interface 2. Device drivers

- 3. Thel/O subsystem
VFS interface

| l

‘ FAT file system ‘ ‘ EXT4 file ‘ ‘ NFS network ‘

system file system

-

Advanced: check out Linux’ FUSE (Filesystem in Userspace)

ETHziirich 1 ETHziirich

Recap: What is a device?

Specifically, to an OS programmer:

= Piece of hardware visible from software
= Occupies some location on a bus

= Set of registers

Recap from CASP: = Memory mapped or I/O space

What does a device look like? * Source of interrupts
= May initiate Direct Memory Access transfers

ETH ziirich : y o W EMHzirich
Recap: Registers Registers
= Details of registers given = Slightly more readable
. s« ” 8.4 LINE STATUS REGISTER L
in Chlp dataSheets or This register provides status information to the CPU con- version:
13 ” ing the data tr fer. Table Il sh the tents of the : H
data books U Sistus Regster.Datas on szen ot olow, * From Barreffish, in a T —
= Information is rarely Bit 0: This bit is the receiver Data Ready (DR) indicator. Bit language called “Mackerel” T T s terninal readars
0is set to a logic 1 whenever a complete incoming charac- '“L: H Rocquest to send”;
ter has by ived and transferred into the Recei i o ¥
trusted by OS B e e e o e * Compiler generates codeto | &= 1
programmers © :g((i)lng all of the data in the Receiver Buffer Register or the do the “blt-banglng” 2]

Bit 1: This bit is the Overrun Error (OE) indicator. Bit 1 indi- }

cates that data in the Receiver Buffer Register was not read 1

by the CPU before the next character was transferred into 1

the Receiver Buffer Register, thereby destroying the previ- e { Jrod intorret g resisten's
ous character. The OE indicator is set to a logic 1 upon Yok 1 “Transmitter empty’s

detection of an overrun condition and reset whenever the erfifo 1 “Errer in RCVR FIFD";

CPU reads the contents of the Line Status Register. If the B

FIFO mode data continues to fill the FIFO beyond the trig- register ner ru addr (base, 0@) “Moden status” {
ger level, an overrun error will occur only after the FIFO is dets. 1 "Delta clear to sen

i 1 eme
full and the next character has been completely received in
From the data the shift register. O is indicated to the CPU as soon as it
sheet for the happens. The character in the shift register is overwritten,

but it is not transferred to the FIFO.
PC16550 UART Bit 2: This bit is the Parity Error (PE) indicator. Bit 2 indi-

(S[andard PC cates that the received data character does not have the
serial port)

spcl.inf.ethz.ch

ETHziirich QL= L R

spclinf.ethz.ch

ETHziirich QL= U R

Using registers

= From the Barrelfish console
driver

1 static void serial_putc(char c)
= Very simple! {
whi le(IPC16550D_UART_Lsr_rd(sconl) .thre)s

5 PCLES50D_UART_thr_ur (kconl, ©);

= Note the issues:

void serial_vrite(char *c, size_t len)

= Polling loop on send R RN RS

= Polling loop on receive i %ﬁ:!ﬁ::jlz”i Cmmmm
Only a good idea for debug L0 serial pute(cliD:

= CPU must write all the data |...c cccsutsonceies
not much in this case o et e et

cher ¢ = PC165500_URRT_rbr_rd(scont)
serial_input(te, 1)

Very simple UART driver

= Actually, far too simple!
= But this is how the first version always looks...
= No initialization code, no error handling.
= Uses Programmed /O (P1O)
= CPU explicitly reads and writes all values to and from registers
= All data must pass through CPU registers
= Uses polling
= CPU polls device register waiting before send/receive
Tight loop!
= Can'’t do anything else in the meantime
Although could be extended with threads and care...
= Without CPU polling, no I/O can occur

ETHziirich

ETHziirich

Recap: Interrupts

= CPU Interrupt-request line triggered by 1/0O device

= Interrupt handler receives interrupts

= Maskable to ignore or delay some interrupts

= Interrupt vector to dispatch interrupt to correct handler
= Based on priority

= Some nonmaskable

= Interrupt mechanism also used for exceptions

Interrupt-driven 1/O cycle

CPU Device

Process A performs
blocking I/0 operation

Driver initiates /0

operation with device

Device starts I/0

Scheduler blocks process
A switches to other
processes

1/0 completes (or
error occurs); device
raises interrupt

Interrupt handler
processes data

CPU resumes interrupted
process

Process A unblocks and
operation returns

ETHziirich

ETHziirich

Recap: Direct Memory Access

= Avoid programmed I/O for lots of data
= E.g., fast network or disk interfaces
= Requires DMA controller
= Generally built-in these days
= Bypasses CPU to transfer data directly between I/O device and
memory
= Doesn't take up CPU time
= Can save memory bandwidth
= Only one interrupt per transfer

I/O protection

I/O operations can be dangerous to normal system operation!

= Dedicated I/O instructions usually privileged
= |/O performed via system calls
= Register locations must be protected
= DMA transfers must be carefully checked
= Bypass memory protection!
= How can that happen today?
Multiple operating systems on the same machine (e.g., virtualized)
= |OMMUs are beginning to appear...

spclinf.ethz.ch

ETHziirich QL= U R

Linf.ethz.ch

ETHzirich » L= e
IOMMUs IOMMUSs
> Security features for VMs
IOMMU does the same for the I/O devices as MMU does for the CPU! > Possibility to assign different devices to different address domains
> Translates device adresses (so called DVAs) into physical ones - By address remapping we can isolate the domains from one another,
> Uses so called IOTLB (I/0 TLB) thus 'sandboxing' untrusted devices
- Works for DMA-capable
devices Z-) System Memory System Memory
. Domain 1 Domain 2
- Examples: Main Memory & lm‘ I Driver A DnverB'sI
N - Dat 1/0 Buffers 1/0 Buffer
Intel VT-d T Physical addresses T x = Driver A .“* Driver B r‘
- AMD IOMMU losues |y Awosuten | | ||| Oteed / | || 1obuten
- ...very similar in functionality] g —— i
Device Taddresses Virtual Taddresses | DMA-Remapping Hardware |
3 el A
Device CPU b - (- (- O
1/0 Devices Device A Device B
Device DMA without isolation Device DMA isolated using DMA remapping hardware
Source: Wikipedia Source: Intel VT-d specification

ETH:zirich oo [ETHziirich
IOMMUs IOMMUs
» IOMMUs were designed for enhancing virtualization - IOMMUs take as the 'input request' the ID consisting of:
N Remqppmg & security features can be applied to guest virtual . Bus ID, stored in root tables (support for multiple buses),
machines) o . Device ID, stored in context tables (support for multiple devices within each bus)
- Better performance than software-based /O virtualization - Function ID, also stored in context tables (support for multiple func. within each
device)
Virtual Machine (0) Virtual Machine (n) Virtual Machine (0) Virtual Machine (n) Dev 31, Func 7) Context entry 255
- Different page
[owos | [owsos] table per I/O device R
o 00, Func)
E ::; Driver (85.25%) [Root entry 255 Dev 0, Func mc::::::; e:;r; 1D-ab|e o Tran‘slauon
oo e for Bus N Structures for Domain A
Virtual Machine Monitor (VMM) or Hosting OS
(Bus 0) Root entry 0
Root-entry Table
[DMA-Remapping Hardware | Context entry 255
- - - S
Device A Device B Device A Device B Address Translation
Exavglzsanwave-based Direct Assignment of I/0 Devices Comerteniy 0 Structures for Domain B
irtualization
valizator Context-entry Table
for Bus 0

Source: Intel VT-d ificati Source: Intel VT-d

ETH_iirich : 4 ETH:iirich

IOMMUSs - address remapping IOMMUs

» IOMMUs support page remapping

- Some PCI devices use 32 bit addressing
> IOMMUs are much broader topic

- They provide also:
> Interrupt remapping (you can control interrupts in a similar

- IOMMU Page Tables bounce

- Similar to 'standard' multi-level buffers IOMMU way as memory accesses)
page tables cPU cPU > Device I/0 TLBs (Intel VT-d)

- Write-only / read-only bits e addr space - Fault logging

> Support for huge pages T

> Currently no support for . . .
more ex¥ended ‘f)gatures — — - You can think of many interesting use cases for them :-)

i B] . 2 ideas?
(e.g., reference bits) s Interested? New ideas?
buffer to
{e}

[
addressable |4 DMA
region.

Source: http://codingrelic.geekhold.com/

ETHzirich

ETHzirich

Device drivers

Device drivers

= Software object (module, object, process, hunk of code) which
abstracts a device
= Sits between hardware and rest of OS
= Understands device registers, DMA, interrupts
= Presents uniform interface to rest of OS

= Device abstractions (“driver models”) vary...
= Unix starts with “block” and “character” devices

ETHziirich

Device driver structure: the basic problem

= Hardware is interrupt driven.

= System must respond to unpredictable I/O events
(or events it is expecting, but doesn’t know when)

= Applications are (often) blocking
= Process is waiting for a specific 1/0O event to occur

= Often considerable processing in between
= TCP/IP processing, retries, etc.
= File system processing, blocks, locking, etc.

ETHziirich

Example: network receive

Recv()
User process \ 7
Kernel
AAAAAAAAAAAAAAAAAAAAAAAAA

Demux
TCP processing
Retransmissions

Timeouts
Port allocation
etc.

Packet arrives; NS

Interrupt w Interrupt handler ’\

ETHziirich

Example: network receive

Recv()
User process \ 7

Kernel

+ Can't take too long
« Interrupts disabled?
+ Can't change much
+ Interrupt context
+ Arbitrary system state
+ Can't hold locks

Demux
TCP processing
Retransmissions

Timeouts
Port allocation
etc.

~—

Interrupt handler ’\

Packet arrives;

Interrupt W

ETHziirich

Example: network receive

Recv()
User process \ 7

......................... D

« Process is blocked
Demux « Don’t even know it's this
TCP processing process until demux
Retransmissions
Timeouts
Port allocation
etc.

Packet arrives; NS

Interrupt&\f{ Interrupt handler ’\

Kernel

spel.inf.ethz.ch

ETHziirich & (AL

ETHzirich

spel.inf.ethz.ch

W @spcl_eth

ol

Solution 1: driver threads

Recv()

User process \]

.........................

Driver thread

Kernel

Packet arrives;

Interrupt W Interrupt handler f\

Pess

Solution 1: driver threads

Recv()

User process \]

Kernel

1. Interrupt handler

i. Masks interrupt
ii. Does minimal processing
iii. Unblocks driver thread

Driver thread

Packet arrives;

ETHziirich

ETHziirich

Solution 1: driver threads

Recv()
User process \ 7
Kernel
AAAAAAAAAAAAAAAAAAAAAAAAA

2.Thread
i. Performs all necessary
packet processing
ii. Unblocks user processes

Driver thread iii.Unmasks interrupt

Packet arrives;

Interrupt W Interrupt handler

Solution 1: driver threads

Recv()
User process \ 7

Kernel

3.User process
i. Per-process handling
ii. Copies packet to user space
iii.Returns from kernel

Driver thread

Packet arrives;

ETHziirich

Terminology — very confused!

= 1stlevel Interrupt Handler (FLIH)
= Linux calls this the “top half".
= In contrast to every other OS on the planet.

= Thread is an “interrupt handler thread” in Solaris
= Other names in other systems... ®

Interrupt W Interrupt handler ’\
A

Solution 2: deferred procedure calls (DPCs)

ETHziirich

Recv()
User process
Kernel
.................................
Run all
pending
Enqueue DPCs
DPC
(closure)

Packet arrives;
Interrupt

ETHzirich

Deferred Procedure Calls

= Instead of using a thread, execute on the next process to be
dispatched
= Before it leaves the kernel

= Solution in most versions of Unix
= Don'’t need kernel threads
= Saves a context switch
= Can'’t account processing time to the right process

= 3 3rd solution: demux early, run in user space
= Covered in Advanced OS Course!

ETHzirich

More confusing terminology

= DPCs: also known as:
= 2nd-level interrupt handlers
= Soft interrupt handlers
= Slow interrupt handlers
= In Linux ONLY: bottom-half handlers

= Any non-Linux OS (the way to think about it):
= Bottom-half = FLIH + SLIH, called from “below”
= Top-half = Called from user space (syscalls etc.), “above”

ETHziirich

Life cycle of an I/0 request

Request /0 User process 1/0 complete
ystem call TReturn from system call
b Transfer data to/from user
an satisfy’ space,
e h
{EuesZ~" Yes Return ion code

1/0 subsystem

Send request to driver
Block process if needed

Issue commands to N) Demultiplex I/O complete
device Device driver Determine source of

Block until interrupted request

Handle interrupt

Interrupt handler Signal device driver

Tlnterrupt

Issue interrupt when I/0 Physical device 1/0 complete
completed + Generate Interrupt

| T 3

ETHziirich

The 1/0 subsystem

ETHziirich

Generic I/O functionality

= Device drivers essentially move data to and from I/O devices
= Abstract hardware
= Manage asynchrony

= OS /O subsystem includes generic functions for dealing with
this data
= Suchas...

ETHziirich

The I/O subsystem

= Caching - fast memory holding copy of data
= Always just a copy
= Key to performance

= Spooling - hold output for a device
= |f device can serve only one request at a time
= E.g., printing

ETHzirich

spclinf.ethz.ch
W @spcl_eth

spclinf.ethz.ch
W @spcl_eth

ETHzirich

A

The 1/0 subsystem

= Scheduling
= Some I/O request ordering via per-device queue
= Some OSs try fairness

= Buffering - store data in memory while transferring between
devices or memory
= To cope with device speed mismatch
= To cope with device transfer size mismatch
= To maintain “copy semantics”

ress
Naming and discovery

= What are the devices the OS needs to manage?
= Discovery (bus enumeration)
= Hotplug / unplug events
= Resource allocation (e.g., PCI BAR programming)

= How to match driver code to devices?
= Driver instance # driver module
= One driver typically manages many models of device

= How to name devices inside the kernel?

= How to name devices outside the kernel?

ETHziirich

Matching drivers to devices

= Devices have unique (model) identifiers
= E.g., PCI vendor/device identifiers
Format in Linux (Ispci): bus:device.function

= Drivers recognize particular identifiers
= Typically a list...

= Kernel offers a device to each driver in turn
= Driver can “claim” a device it can handle
= Creates driver instance for it

ETHziirich

Naming devices in the Unix kernel

(Actually, naming device driver instances)

= Kernel creates identifiers for
= Block devices
= Character devices
= [Network devices — see later...]

= Major device number:
= Class of device (e.g., disk, CD-ROM, keyboard)

= Minor device number:
= Specific device within a class

ETHziirich

Unix block devices

= Used for “structured 1/0”
= Deal in large “blocks” of data at a time

= Often look like files (seekable, mappable)
= Often use Unix shared buffer cache

= Mountable:
= File systems implemented above block devices

ETHziirich

Character devices

= Used for “unstructured 1/0”
= Byte-stream interface — no block boundaries
= Single character or short strings get/put
= Buffering implemented by libraries

= Examples:
= Keyboards, serial lines, mice

= Distinction with block devices somewhat arbitrary...

ETHzirich

spcl.inf.ethz.ch
W @spcl_eth

ETHzirich

spclint.ethz.ch
W @spcl_eth

Jreass
Naming devices outside the kernel

= Device files: special type of file
= Inode encodes <type, major num, minor num>
= Created with mknod () system call

= Devices are traditionally put in /dev
* /dev/sda — First SCSI/SATA/SAS disk
= /dev/sda5 - Fifth partition on the above
= /dev/cdrom0 — First DVD-ROM drive
= /dev/ttysl — Second UART

Pseudo-devices in Unix

etc.

A

Devices with no hardware!
Still have major/minor device numbers. Examples:

/dev/stdin (not a real device anymore)
/dev/kmem

/dev/random

/dev/null

/dev/loop0

ETHziirich

Old-style Unix device configuration

= All drivers compiled into the kernel
= Each driver probes for any supported devices
= System administrator populates /dev
= Manually types mknod when a new device is purchased!
= Pseudo devices similarly hard-wired in kernel

ETH ziir|

Linux device configuration today

ich

Physical hardware configuration readable from /sys
= Special fake file system: sysfs

= Plug events delivered by a special socket

Drivers dynamically loaded as kernel modules

= |Initial list given at boot time

= User-space daemon can load more if required

/dev populated dynamically by udev

= User-space daemon which polls /sys

ETHziirich

Next time:

= Network stack implementation

= Network devices and network /O

= Buffering

= Memory management in the I/O subsystem

spel.inf.ethz.ch

Jreasil

