
spcl.inf.ethz.ch

@spcl_eth

ADRIAN PERRIG & TORSTEN HOEFLER

Networks and Operating Systems (252-0062-00)

Chapter 6: Demand Paging
http://redmine.replicant.us/projects/replicant/wiki/SamsungGalaxyBackdoor (2014)

http://redmine.replicant.us/projects/replicant/wiki/SamsungGalaxyBackdoor

spcl.inf.ethz.ch

@spcl_eth

#4 Inverted page table

 One system-wide table now maps PFN -> VPN

 One entry for each real page of memory

 Contains VPN, and which process owns the page

 Bounds total size of all page information on machine

 Hashing used to locate an entry efficiently

 Examples: PowerPC, ia64, UltraSPARC

2

spcl.inf.ethz.ch

@spcl_eth

Inverted page table architecture

Physical

memory
pid p d i d

pid p

CPU

logical

address

physical

address

search

page table

i

3

spcl.inf.ethz.ch

@spcl_eth

The need for more bookkeeping

 Most OSes keep their own translation info

 Per-process hierarchical page table (Linux)

 System wide inverted page table (Mach, MacOS)

 Why?

 Portability

 Tracking memory objects

 Software virtual  physical translation

 Physical  virtual translation

4

spcl.inf.ethz.ch

@spcl_eth

 True or false (raise hand)

1. Base (relocation) and limit registers provide a full virtual address space

2. Base and limit registers provide protection

3. Segmentation provides a base and limit for each segment

4. Segmentation suffers from external fragmentation

5. Segmentation allows libraries to share their code

6. Segmentation provides linear addressing

7. Segment tables are set up for each process in the CPU

8. Segmenting prevents internal fragmentation

9. Paging prevents internal fragmentation

10.Protection information is stored at the physical frame

11.Pages can be shared between processes

12.The same page may be writeable in proc. A and write protected in proc. B

13.The same physical address can be referenced through different

addresses from (a) two different processes – (b) the same process?

14. Inverted page tables are faster to search than hierarchical (asymptotically)

5

Our Small Quiz

spcl.inf.ethz.ch

@spcl_eth

Today

 TLB shootdown

 Uses for virtual memory

 Copy-on-write

 Demand paging

 Page fault handling

 Page replacement algorithms

 Frame allocation policies

 Thrashing and working set

 Book: OSPP Sections 9.5, 9.7 (all of 9 as refresh)

 As always, the book does not cover 100%!

spcl.inf.ethz.ch

@spcl_eth

TLB shootdown

spcl.inf.ethz.ch

@spcl_eth

TLB management

 Recall: the TLB is a cache.

 Machines have many MMUs on many cores

 many TLBs

 Problem: TLBs should be coherent. Why?

 Security problem if mappings change

 E.g., when memory is reused

spcl.inf.ethz.ch

@spcl_eth

TLB management

0 0x0053 0x03 r/w

1 0x20f8 0x12 r/w

0 0x0053 0x03 r/w

1 0x0001 0x05 read

0 0x20f8 0x12 r/w

1 0x0001 0x05 read

Process ID VPN PPN acce

ss

Core 1

TLB:

Core 2

TLB:

Core 3

TLB:

spcl.inf.ethz.ch

@spcl_eth

TLB management

0 0x0053 0x03 r/w

1 0x20f8 0x12 r/w

0 0x0053 0x03 r/w

1 0x0001 0x05 read

0 0x20f8 0x12 r/w

1 0x0001 0x05 read

Process ID VPN PPN acce

ss

Core 1

TLB:

Core 2

TLB:

Core 3

TLB:

Change

to read

only

spcl.inf.ethz.ch

@spcl_eth

TLB management

0 0x0053 0x03 r/w

1 0x20f8 0x12 r/w

0 0x0053 0x03 r/w

1 0x0001 0x05 read

0 0x20f8 0x12 r/w

1 0x0001 0x05 read

Process ID VPN PPN acce

ss

Core 1

TLB:

Core 2

TLB:

Core 3

TLB:

Change

to read

only



spcl.inf.ethz.ch

@spcl_eth

TLB management

0 0x0053 0x03 r/w

1 0x20f8 0x12 r/w

0 0x0053 0x03 r/w

1 0x0001 0x05 read

0 0x20f8 0x12 r/w

1 0x0001 0x05 read

Process ID VPN PPN acce

ss

Core 1

TLB:

Core 2

TLB:

Core 3

TLB:

Change

to read

only



Process 0 on core 1 can only continue once shootdown is complete!

spcl.inf.ethz.ch

@spcl_eth

Keeping TLBs coherent

1. Hardware TLB coherence

 Integrate TLB mgmt with cache coherence

 Invalidate TLB entry when PTE memory changes

 Rarely implemented

2. Virtual caches

 Required cache flush / invalidate will take care of the TLB

 High context switch cost!
 Most processors use physical (last level) caches

3. Software TLB shootdown

 Most common

 OS on one core notifies all other cores - typically an IPI

 Each core provides local invalidation

4. Hardware shootdown instructions

 Broadcast special address access on the bus

 Interpreted as TLB shootdown rather than cache coherence message

 E.g., PowerPC architecture

spcl.inf.ethz.ch

@spcl_eth

Summary/recap: virtual memory

 User logical memory ≠ physical memory.

 Only part of the program must be in RAM for execution

 Logical address space can be larger than physical address space

 Address spaces can be shared by several processes

 More efficient process creation

 Virtualize memory using software+hardware

spcl.inf.ethz.ch

@spcl_eth

 Process isolation

 IPC

 Shared code segments

 Program initialization

 Efficient dynamic memory allocation

 Cache management

 Program debugging

 Efficient I/O

The many uses of address translation

 Memory mapped files

 Virtual memory

 Checkpoint and restart

 Persistent data structures

 Process migration

 Information flow control

 Distributed shared memory

and many more …

spcl.inf.ethz.ch

@spcl_eth

Copy-on-write (COW)

Photo by Josh Hammerling

spcl.inf.ethz.ch

@spcl_eth

Recall fork()

 Can be expensive to create a complete copy of the process’

address space

 Especially just to do exec()!

 vfork(): shares address space, doesn’t copy

 Fast

 Dangerous – two writers to same heap

 Better: only copy when you know something is going to get

written

 Requires MMU/memory virtualization

spcl.inf.ethz.ch

@spcl_eth

Copy-on-write

 COW allows both parent and child processes to initially share

the same pages in memory

If either process modifies a shared page, only then is the page

copied

 COW allows more efficient process creation as only modified

pages are copied

 Free pages are allocated from a pool of zeroed-out pages

spcl.inf.ethz.ch

@spcl_eth

Example: processes sharing an area of memory

page A

page B

page C

Process 1 physical

memory

Process 2

spcl.inf.ethz.ch

@spcl_eth

Example: processes sharing an area of memory

page A

page B

page C

Process 1 physical

memory

Process 2

Not necessarily

the same virtual

addresses

(but would be
after fork())

spcl.inf.ethz.ch

@spcl_eth

How does it work?

 Initially mark all pages as read-only

 Either process writes  page fault

 Fault handler allocates new frame

 Makes copy of page in new frame

 Maps each copy into resp. processes writeable

 Only modified pages are copied

 Less memory usage, more sharing

 Cost is page fault for each mutated page

spcl.inf.ethz.ch

@spcl_eth

After process 1 writes to page C

page A

page B

page C

Process 1 physical

memory

Process 2

copy of

page C

spcl.inf.ethz.ch

@spcl_eth

After process 1 writes to page C

page A

page B

page C

Process 1 physical

memory

Process 2

copy of

page C

Still read-

only

spcl.inf.ethz.ch

@spcl_eth

After process 1 writes to page C

page A

page B

page C

Process 1 physical

memory

Process 2

copy of

page C

Still read-

only

Now

writeable

spcl.inf.ethz.ch

@spcl_eth

General principle

 Mark a VPN as invalid or read-only

 trap indicates attempt to read or write

 On a page fault, change mappings somehow

 Restart instruction, as if nothing had happened

 General: allows emulation of memory as well as multiplexing.

 E.g. on-demand zero-filling of pages

 And…

spcl.inf.ethz.ch

@spcl_eth

Paging concepts



page 0

page 1

page 2

page 3

page v

virtual

address

space

…

page table
physical

address

space

…

disk

spcl.inf.ethz.ch

@spcl_eth

Paging concepts



page 0

page 1

page 2

page 3

page v

virtual

address

space

page table
physical

address

space

disk

memory-resident

page

…

…

spcl.inf.ethz.ch

@spcl_eth

Paging concepts



page 0

page 1

page 2

page 3

page v

virtual

address

space

page table
physical

address

space

disk

Keep track of

where pages are on

disk

…

…

spcl.inf.ethz.ch

@spcl_eth

Paging concepts



page 0

page 1

page 2

page 3

page v

virtual

address

space

page table
physical

address

space

disk

Write “dirty” pages

out to disk

…

…Keep track of

where pages are on

disk

spcl.inf.ethz.ch

@spcl_eth

Paging concepts



page 0

page 1

page 2

page 3

page v

virtual

address

space

page table
physical

address

space

disk

Read in pages from

disk on demand

…

…

spcl.inf.ethz.ch

@spcl_eth

Demand paging

 Bring a page into memory only when it is needed

 Less I/O needed

 Less memory needed

 Faster response

 More users

 Turns RAM into a cache for processes on disk!

spcl.inf.ethz.ch

@spcl_eth

Demand paging

 Page needed  reference (load or store) to it

 invalid reference  abort

 not-in-memory  bring to memory

 Lazy swapper – never swaps a page into memory unless page

will be needed

 Swapper that deals with pages is a pager

 Can do this with segments, but more complex

… or whole processes

 Strict demand paging: only page in when referenced

spcl.inf.ethz.ch

@spcl_eth

Page fault

 If there is a reference to a page, first reference to that
page will trap to operating system:

page fault

1. Operating system looks at another table to decide:

 Invalid reference  abort

 Just not in memory

2. Get empty frame

3. Swap page into frame

4. Reset tables

5. Set valid bit v

6. Restart the instruction that caused the page fault

spcl.inf.ethz.ch

@spcl_eth

Recall: handling a page fault

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip
PTEA

PTE

1

2

3
Disk

spcl.inf.ethz.ch

@spcl_eth

Recall: handling a page fault

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip
PTEA

PTE

1

2

3

4

Disk

Page fault handler
Exception

spcl.inf.ethz.ch

@spcl_eth

Recall: handling a page fault

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler finds a frame to use for missing page

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip
PTEA

PTE

1

2

3

4

5

Disk

Page fault handler
Exception

spcl.inf.ethz.ch

@spcl_eth

Recall: handling a page fault

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler finds a frame to use for missing page

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip
PTEA

PTE

1

2

3

4

Disk

Page fault handler

New page

Exception

6
5

spcl.inf.ethz.ch

@spcl_eth

Recall: handling a page fault

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler finds a frame to use for missing page

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip
PTEA

PTE

1

2

3

4

Disk

Page fault handler

New page

Exception

6
5

7

spcl.inf.ethz.ch

@spcl_eth

Performance of demand paging

 Page fault rate 0  p  1.0

 if p = 0: no page faults

 if p = 1: every reference is a fault

 Effective Access Time (EAT)

EAT = (1 – p) x memory access

+ p (page fault overhead

+ swap page out

+ swap page in

+ restart overhead

)

spcl.inf.ethz.ch

@spcl_eth

Demand paging example

 Memory access time = 50 nanoseconds

 Average page-fault service time = 4 milliseconds

 EAT = (1 – p) x 50 + p (4 milliseconds)

= (1 – p) x 50 + p x 4,000,000

= 50 + p x 3,999,950

 If one access out of 1,000 causes a page fault, then

EAT = 4 microseconds.

This is a slowdown by a factor of 80!!

spcl.inf.ethz.ch

@spcl_eth

Page Replacement

Photo: Urs Flueeler, source:https://aeon.co/essays/swiss-flying-cows-is-this-the-future

spcl.inf.ethz.ch

@spcl_eth

What happens if there is no free frame?

 Page replacement – find “little used” resident page to discard or

write to disk

 “victim page”

 needs selection algorithm

 performance – want an algorithm which will result in minimum number of

page faults

 Same page may be brought into memory several times

spcl.inf.ethz.ch

@spcl_eth

Page replacement

 Try to pick a victim page which won’t be referenced in the future

 Various heuristics – but ultimately it’s a guess

 Use “modify” bit on PTE

 Don’t write “clean” (unmodified) page to disk

 Try to pick “clean” pages over “dirty” ones

(save a disk write)

spcl.inf.ethz.ch

@spcl_eth

Page replacement

victim

Physical

memory

0

f

i

v

Page table

frame valid

f

spcl.inf.ethz.ch

@spcl_eth

Page replacement

victim

Physical

memory

0

f

i

v

Page table

frame valid

f

1. Swap victim

page to disk

spcl.inf.ethz.ch

@spcl_eth

Page replacement

victim

Physical

memory

0

0

i

i

Page table

frame valid

f

2. Change victim

PTE to invalid

1. Swap victim

page to disk

spcl.inf.ethz.ch

@spcl_eth

Page replacement

victim

Physical

memory

0

0

i

i

Page table

frame valid

f

3. Load desired

page in from disk

spcl.inf.ethz.ch

@spcl_eth

Page replacement

victim

Physical

memory

f

0

v

i

Page table

frame valid

f

3. Load desired

page in from disk

4. Change fault

PTE to valid

spcl.inf.ethz.ch

@spcl_eth

Page replacement algorithms

 Want lowest page-fault rate

 Evaluate algorithm by running it on a particular string of

memory references (reference string) and computing the

number of page faults on that string

 E.g.

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

spcl.inf.ethz.ch

@spcl_eth

Page faults vs. number of frames

What we might

expect…

Number of frames

N
u
m

b
e
r

o
f
p
a
g
e
 f

a
u
lt
s

Plenty of

memory: more

doesn’t help

much

Very little memory:

thrashing (see later)

spcl.inf.ethz.ch

@spcl_eth

FIFO (First-In-First-Out) page replacement

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1reference string:

page

frames:

spcl.inf.ethz.ch

@spcl_eth

FIFO (First-In-First-Out) page replacement

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7

reference string:

page

frames:

spcl.inf.ethz.ch

@spcl_eth

FIFO (First-In-First-Out) page replacement

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7

0

reference string:

page

frames:

spcl.inf.ethz.ch

@spcl_eth

FIFO (First-In-First-Out) page replacement

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7

0 0

1

reference string:

page

frames:

spcl.inf.ethz.ch

@spcl_eth

FIFO (First-In-First-Out) page replacement

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2

0 0 0

1 1

reference string:

page

frames:

spcl.inf.ethz.ch

@spcl_eth

FIFO (First-In-First-Out) page replacement

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2

0 0 0 3

1 1 1

reference string:

page

frames:

spcl.inf.ethz.ch

@spcl_eth

FIFO (First-In-First-Out) page replacement

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 2 4 4 4 0

0 0 0 3 3 3 2 2 2

1 1 1 0 0 0 3 3

reference string:

page

frames:

spcl.inf.ethz.ch

@spcl_eth

FIFO (First-In-First-Out) page replacement

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 2 4 4 4 0 0 0

0 0 0 3 3 3 2 2 2 1 1

1 1 1 0 0 0 3 3 3 2

reference string:

page

frames:

spcl.inf.ethz.ch

@spcl_eth

FIFO (First-In-First-Out) page replacement

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 2 4 4 4 0 0 0 7 7 7

0 0 0 3 3 3 2 2 2 1 1 1 0 0

1 1 1 0 0 0 3 3 3 2 2 2 1

reference string:

page

frames:

Here, 15 page faults.

spcl.inf.ethz.ch

@spcl_eth

More memory is better?

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

rames:

Belady’s Anomaly: more frames  more page faults

spcl.inf.ethz.ch

@spcl_eth

More memory is better?

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory):

4 frames:

Belady’s Anomaly: more frames  more page faults

1

2

3

1

2

1

spcl.inf.ethz.ch

@spcl_eth

More memory is better?

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory):

4 frames:

Belady’s Anomaly: more frames  more page faults

4

2

3

1

2

3

1

2

1

spcl.inf.ethz.ch

@spcl_eth

More memory is better?

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory):

4 frames:

Belady’s Anomaly: more frames  more page faults

5

1

2

4

1

2

4

1

3

4

2

3

1

2

3

1

2

1

spcl.inf.ethz.ch

@spcl_eth

More memory is better?

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory):

4 frames:

Belady’s Anomaly: more frames  more page faults

5

3

2

5

1

2

4

1

2

4

1

3

4

2

3

1

2

3

1

2

1

spcl.inf.ethz.ch

@spcl_eth

More memory is better?

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory):

4 frames:

Belady’s Anomaly: more frames  more page faults

9 page faults

5

3

4

5

3

2

5

1

2

4

1

2

4

1

3

4

2

3

1

2

3

1

2

1

spcl.inf.ethz.ch

@spcl_eth

More memory is better?

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory):

 4 frames:

Belady’s Anomaly: more frames  more page faults

9 page faults

5

3

4

5

3

2

5

1

2

4

1

2

4

1

3

4

2

3

1

2

3

1

2

1

1 1

2

1

2

3

1

2

3

4

spcl.inf.ethz.ch

@spcl_eth

5

2

3

4

More memory is better?

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory):

 4 frames:

Belady’s Anomaly: more frames  more page faults

9 page faults

5

3

4

5

3

2

5

1

2

4

1

2

4

1

3

4

2

3

1

2

3

1

2

1

1 1

2

1

2

3

1

2

3

4

spcl.inf.ethz.ch

@spcl_eth

5

2

3

4

5

1

3

4

5

1

2

4

5

1

2

3

4

1

2

3

4

5

2

3

More memory is better?

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory):

 4 frames:

Belady’s Anomaly: more frames  more page faults

9 page faults

10 page faults!

5

3

4

5

3

2

5

1

2

4

1

2

4

1

3

4

2

3

1

2

3

1

2

1

1 1

2

1

2

3

1

2

3

4

spcl.inf.ethz.ch

@spcl_eth

5

2

3

4

5

1

3

4

5

1

2

4

5

1

2

3

4

1

2

3

4

5

2

3

More memory is better?

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory):

 4 frames:

Belady’s Anomaly: more frames  more page faults

9 page faults

10 page faults!

5

3

4

5

3

2

5

1

2

4

1

2

4

1

3

4

2

3

1

2

3

1

2

1

1 1

2

1

2

3

1

2

3

4

spcl.inf.ethz.ch

@spcl_eth

FIFO showing Belady’s Anomaly
N

u
m

b
e
r

o
f
p

a
g
e
 f

a
u
lt
s

Number of frames

spcl.inf.ethz.ch

@spcl_eth

1

2

3

4

1

2

3

5

Optimal algorithm

Replace page that will not be used for longest period of time

4 frames example:

1 2 3 4 1 2 5 1 2 3 4 5

How do you know this? – you can’t!

Used for measuring how well your algorithm performs

 6 page faults

4

2

3

5

spcl.inf.ethz.ch

@spcl_eth

Optimal page replacement

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 2 2 2 7

0 0 0 0 4 0 0 0

1 1 3 3 3 1 1

reference string:

page

frames:

Here, 9 page faults.

spcl.inf.ethz.ch

@spcl_eth

Least Recently Used (LRU) algorithm

 Reference string: 1 2 3 4 1 2 5 1 2 3 4 5

 Counter implementation

 Every page entry has a counter; every time page is referenced

through this entry, copy the clock into the counter

 When a page needs to be changed, look at the counters to

determine which are to change

5

2

4

3

1

2

3

4

1

2

5

4

1

2

5

3

1

2

4

3

spcl.inf.ethz.ch

@spcl_eth

LRU page replacement

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 4 4 4 0 1 1 1

0 0 0 0 0 0 3 3 3 0 0

1 1 3 3 2 2 2 2 2 7

reference string:

page

frames:

Here, 12 page faults.

spcl.inf.ethz.ch

@spcl_eth

LRU stack algorithm

 Stack implementation – keep a stack of page numbers in a

double link form:

 Page referenced:

move it to the top

requires 6 pointers to be changed

 No search for replacement

 General term: stack algorithms

 Have property that adding frames always reduces page faults (no Belady’s

Anomaly)

spcl.inf.ethz.ch

@spcl_eth

2

1

0

7

4

7

2

1

0

4

Use a stack to record most recent page references

4 7 0 7 1 0 1 2 1 2 7 1 2

Reference string

spcl.inf.ethz.ch

@spcl_eth

LRU approximation algorithms

 Reference bit

 With each page associate a bit, initially = 0

 When page is referenced bit set to 1

 Replace a page which is 0 (if one exists)

We do not know the order, however

 Second chance

 Need reference bit

 Clock replacement

 If page to be replaced (in clock order) has reference bit = 1 then:

set reference bit 0

leave page in memory

replace next page (in clock order), subject to same rules

spcl.inf.ethz.ch

@spcl_eth

Second-chance (clock) page replacement algorithm

0

0

1

1

0

1

1

……

Circular

queue

of

pages

Reference

bits

Next victim

(“clock hand”)

spcl.inf.ethz.ch

@spcl_eth

Second-chance (clock) page replacement algorithm

0

0

1

1

0

1

1

……

Circular

queue

of

pages

Reference

bits

Next victim

(“clock hand”)

spcl.inf.ethz.ch

@spcl_eth

Second-chance (clock) page replacement algorithm

0

0

0

1

0

1

1

……

Circular

queue

of

pages

Reference

bits

Next victim

(“clock hand”)

spcl.inf.ethz.ch

@spcl_eth

Second-chance (clock) page replacement algorithm

0

0

0

0

0

1

1

……

Circular

queue

of

pages

Reference

bits

Next victim

(“clock hand”)

spcl.inf.ethz.ch

@spcl_eth

Frame allocation policies (multi-process)

spcl.inf.ethz.ch

@spcl_eth

Allocation of frames

 Each process needs minimum number of pages

 Example: IBM 370 – 6 pages to handle SS MOVE instruction:

 instruction is 6 bytes, might span 2 pages

 2 pages to handle from

 2 pages to handle to

 Two major allocation schemes

 fixed allocation

 priority allocation

spcl.inf.ethz.ch

@spcl_eth

 Equal allocation

 all processes get equal share

 Proportional allocation

 allocate according to the size of process

Fixed allocation

m
S

s
pa

m

sS

ps

i
ii

i

ii











for allocation

frames ofnumber total

 process of size

5964
137

127

564
137

10

127

10

64

2

1

2

1











a

a

s

s

m

spcl.inf.ethz.ch

@spcl_eth

Priority allocation

 Proportional allocation scheme

 Using priorities rather than size

 If process Pi generates a page fault, select:

1. one of its frames, or

2. frame from a process with lower priority

spcl.inf.ethz.ch

@spcl_eth

Global vs. local allocation

 Global replacement – process selects a

replacement frame from the set of all frames;

one process can take a frame from another

 Local replacement – each process selects from

only its own set of allocated frames

spcl.inf.ethz.ch

@spcl_eth

Thrashing

 If a process does not have “enough” pages, the page-

fault rate is very high. This leads to:

 low CPU utilization

 operating system thinks that it needs to

increase the degree of multiprogramming

 another process added to the system

 Thrashing  a process is busy swapping

pages in and out

Source: wikipedia

spcl.inf.ethz.ch

@spcl_eth

Thrashing

U
s
e
fu

l
C

P
U

 u
ti
liz

a
ti
o
n

Demand for virtual memory (e.g., more procs)

Thrashing

begins!

spcl.inf.ethz.ch

@spcl_eth

Demand paging and thrashing

 Why does demand paging work?

Locality model

 Process migrates from one locality to another

 Localities may overlap

 Why does thrashing occur?

 size of localities > total memory size

spcl.inf.ethz.ch

@spcl_eth

Locality in a memory reference pattern

spcl.inf.ethz.ch

@spcl_eth

Working-set model

   working-set window

 a fixed maximum number of page references

 Example: 10,000 instruction

 WSSi (working set of process Pi) = total number of pages

referenced in the most recent  (varies in time)

  too small  will not encompass entire locality

  too large  will encompass several localities

  =   will encompass entire program

spcl.inf.ethz.ch

@spcl_eth

Allocate demand frames

 D =  WSSi  total demand frames

 Intuition: how much space is really needed

 D > m  Thrashing

 Policy: if D > m, suspend some processes

spcl.inf.ethz.ch

@spcl_eth

Working-set model

. . . 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4 4 4 3 4 4 4 . . .



WS(t1) = {1,2,5,6,7}
t1



WS(t2) = {3,4}
t2

Page reference string:

spcl.inf.ethz.ch

@spcl_eth

Keeping track of the working set

 Approximate with interval timer + a reference bit

 Example:  = 10,000

 Timer interrupts after every 5,000 time units

 Keep in memory 2 bits for each page

 Whenever a timer interrupts shift+copy and sets the values of all reference

bits to 0

 If one of the bits in memory = 1  page in working set

 Why is this not completely accurate?

 Hint: Nyquist-Shannon!

spcl.inf.ethz.ch

@spcl_eth

Keeping track of the working set

 Approximate with interval timer + a reference bit

 Example:  = 10,000

 Timer interrupts after every 5000 time units

 Keep in memory 2 bits for each page

 Whenever a timer interrupts shift+copy and sets the values of all reference

bits to 0

 If one of the bits in memory = 1  page in working set

 Why is this not completely accurate?

 Improvement = 10 bits and interrupt every 1,000 time units

spcl.inf.ethz.ch

@spcl_eth

Page-fault frequency scheme

 Establish “acceptable” page-fault rate

 If actual rate too low, process loses frame

 If actual rate too high, process gains frame

Number of frames

R
a

te
 o

f
p
a
g
e
 f

a
u
lt
s

Lower bound

Upper bound

Increase

number of

frames

Decrease

number of

frames

