inf.ethz.ch

ETHzirich ETHzirich / eth

ADRIAN PERRIG & TORSTEN HOEFLER
Networks and Operating Systems (252-0062-00)
Chapter 5: Memory Management

Signal types (some of them)

Description / meaning Default action

one page. This issue was addressed through additional validation of the
¢ arguments to copyin and copyout.”

o 2 i SIGHUP Hangup / death of controlling process Terminate process
.-— SIGINT Interrupt character typed (CTRL-C) ':]z':gn?e:'rﬁintzle process
SIGQUIT Quit character typed (CTRL-\) ore dump
SIGKILL kill -9 <process id> Terminate process
SIGSEGV  Segfault (invalid memory referencg g:;btlgg', ump
g - SIGPIPE Write on pipe with no reader Terminate process
. et JIIH : i = SIGALRM  alarm() goes off E.g., after other side of ninate process
http://support.apple.com/kb/HT5642 (Jul ! SIGCHLD Child process stopped or e IeaS closed it gnored
1 “Description: The iOS kernel has checks to validate that the user-mode - SIGSTOP  Stop brocess Sto
pointer and length passed to the copyin and copyout functions would not PP
. N . : Used by debuggers (e.g.,
= result in a user-mode process being able to directly access kernel peii SIGCONT  Continue process gab) and shell (CTRL-z
memory. The checks were not being used if the length was smaller than . ] SIGUSR1,2 User-defined signals Terminate process

Etc. — see man 7 signal for the full list

ETHziirich oo [ ETHziirich
Where do signals come from? Sending a signal to a process
= Memory management subsystem: = From the Unix shell:
= SIGSEGV, etc. $ kill -HUP 4234
= |PC system = FromC:
* SIGPIPE

#include <signal.h>

int kill(pid_t pid, int signo);

= Other user processes
= SIGUSR1 ’ 2, SIGKILL, SIGSTOP, SIGCONT = “Kill” is a rather unfortunate name ®

= Kernel trap handlers
= SIGFPE

= The “TTY Subsystem”
®* SIGINT, SIGQUIT, SIGHUP

ETH ziirich : TN o W ETHzirich

Unix signal handlers Oldskool: signal ()
= Change what happens when a signal is delivered: = Test your C parsing skills:

= Default action

= Ignore signal #include <signal.h>

= Call a user-defined function in the process

— the signal handler void (*signal (int sig, void (*handler) (int))) (int);

= Allows signals to be used like “user-space interrupts” = What does this mean?




ETHzirich

Oldskool: signal ()

void (*signal (int sig, void (*handler) (int))) (int);
L )

T

L )

T

= Unpacking this:

= Ahandler looks like
void my handler (int);

= Signal takes two arguments...
An integer (the signal type, e.g. SIGPIPE)
A pointer to a handler function

= ... and returns a pointer to a handler function
The previous handler,

= “Special” handler arguments:
= SIG_IGN (ignore), SIG_DFL (default), SIG_ERR (error code)

ETHzirich
Unix signal handlers

= Signal handler can be called at any time!

= Executes on the current user stack
= |f process is in kernel, may need to retry current system call
= Can also be set to run on a different (alternate) stack

= User process is in undefined state when signal delivered

ETHziirich

Implications

= Thereis very little you can safely do in a signal handler!
= Can't safely access program global or static variables
= Some system calls are re-entrant, and can be called
including signal() and sigaction()
full list see in “man 7 signal”
= Many C library calls cannot (including _r variants!)
= Can sometimes execute a longjmp if you are careful

= What happens if another signal arrives?

ETHziirich

Multiple signals

= |f multiple signals of the same type are to be delivered, Unix will
discard all but one.

= If signals of different types are to be delivered, Unix will deliver
them in any order.

= Serious concurrency problem:
How to make sense of this?

10

ETHziirich

LI

A better signal () POSIX sigaction ()

New action for

signal signo

#include <signal.h>

int sigaction(int signo,
const struct sigaction *act,
struct sigaction *oldact);
Signal
struct sigaction { handler
void (*sa_handler) (int);
sigset_t sa_mask;
int sa_flags;

Signals to be blocked in this
handler (cf., £d_set)

}i
More sophisticated signal

handler (depending on flags)

Previous action

is returned

void (*sa_sigaction) (int, siginfo_t *, void ¥*);

11

ETHziirich

Signals as upcalls

= Particularly specialized (and complex) form of an upcall
= Kernel RPC to user process

= Other OSes use upcalls much more heavily
= Including Barrelfish

= “Scheduler Activations”: dispatch every process using an upcall instead of
return

= Very important structuring concept for systems!

12




spl.inf.ethz.ch

spl.inf.ethz.ch

ETHziirich Sk YN+ W aspcien [l ETHziirich g 7 (Y T A= 9 @speletn

Our Small Quiz Goals of Memory Management

= True or false (raise hand) .
= Mutual exclusion on a multicore can be achieved by disabling interrupts
= Test and set can be used to achieve mutual exclusion
= Test and set is more powerful than compare and swap
= The CPU retries load-linked/store conditional instructions after a conflict
= The best spinning time is 2x the context switch time
= Priority inheritance can prevent priority inversion
= The receiver never blocks in asynchronous IPC
= The sender blocks in synchronous IPC if the receiver is not ready
= Apipe file descriptor can be sent to a different process
= Pipes do not guarantee ordering
= Named pipes in Unix behave like files
= Aprocess can catch all signals with handlers
= Signals always trigger actions at the signaled process
= One can implement a user-level tasking library using signals
= Signals of the same type are buffered in the kernel

Allocate physical memor
= Protect an application’s
= Allow applications to sha|
= Data, code, etc.

spel.int.ethz.ch

ETHziirich i 2 Gzl

ETHziirich X

In CASP last semester we saw:

= Assorted uses for virtual memory
= x86 paging
= Page table format
= Translation process
= Translation lookaside buffers (TLBs)
= Interaction with caches
= Performance implications
= For application code, e.g., matrix multiply

http://en.wikipedia.org/wiki/lmagery - : 16
ETHziirich 2 v s «n [ ETHziirich e ¥ N Y e
What’s new this semester? Terminology
= Wider range of memory management hardware = Physical address: address as seen by the memory unit
= Base/limit, segmentation = Virtual or Logical address: address issued by the processor
= Inverted page tables, etc. = Loads
= How the OS uses the hardware = Stores
= Demand paging and swapping = Instruction fetches
= Page replacement algorithms = Possible others (e.g., TLB fills)...

= Frame allocation policies

® $




P ¥ spcl.inf.ethz.ch . ¥ spcl.inf.ethz.ch
ETHzirich /{7&7&; W @spcl_eth ETHzirich N T A o @spelen

Memory management

1. Allocating physical addresses to applications

2. Managing the name translation of virtual addresses to physical
addresses

3. Performing access control on memory access

* Functions 2 & 3 usually involve the hardware Memory ; . e
Management Unit (MMU) Simple(st) scheme: partitioned memory

19 20

ETHziirich od oo [ ETHziirich
Base and Limit Registers Issue: address binding
= A pair of base and limit registers define the logical address * Base address isn’t known until load time
space = Options:

1.  Compiled code must be completely position-independent, or
2. Relocation Register maps compiled addresses dynamically to

0x0000000

Operating physical addresses
System
0x1000000
Process
< - ox56000a0
0x5600ba0
base
Process
0x8££0010 Timit
Process imi
0xB000000
OxfEEEFEE

ETH ziirich : TN o W ETHzirich

Dynamic relocation using a relocation register Contiguous allocation

= Main memory usually into two partitions:
= Resident OS, usually in low memory with interrupt vector

] = User processes in high memory
0 ‘ = Relocation registers protect user processes from
Relocation

: 1. each other
register K .
14000 2. changing operating-system code and data
Logical Physical = Registers:
address /D address = Base register contains value of smallest physical address
CRY 346 + 14346 Memory = Limit register contains range of logical addresses
each logical address must be less than the limit register

= MMU maps logical address dynamically
MMU




ETHzirich

spclinf.ethz.ch
X ) W @spcl_eth

Hardware Support for Relocation and Limit Registers

Limit Relocation
register register
Logical Physical
address yes address
CPU < d-/ Memory

® - @

trap: addressing error

ETHzirich

Base & Limit summary

= Simple to implement (addition & compare)
= Physical memory fragmentation
= Only asingle contiguous address range

= How to share data between applications?

= How to share program text (code)?

= How to load code dynamically?

= Total logical address space < physical memory

spclinf.ethz.ch
X b W @spcl_eth

26

ETHziirich

Segmentation

27

ETHziirich

Segmentation

= Generalize base + limit:
= Physical memory divided into segments
= Logical address = (segment id, offset)
= Segment identifier supplied by:
= Explicit instruction reference
= Explicit processor segment register
= Implicit instruction or process state

28

ETHziirich

W&—v spcl.inf.ethz.ch
/ eth
<7 T L

User’s view of a program

®

~

k
shared stac
library
symbol
table
heap main
program

A& >

logical address

ETHziirich

Segmentation reality

®

< >

logical address

physical memory

30




ETHzirich

Segmentation hardware

——

A

r—_limit | base
Segment
cPU = table
Physical
yes address
y &
no

trap: addressing error

Memory

spelinf.ethz.ch
W @spcl_eth

31

ETHzirich ’/\" y -

Segmentation reality

.

6000

\ 1
5000

3
2 4600
1 limit | base
0 300 | 1500
1| 1000 | 5000 3800
2| 400 | 3400 2
3 3| 400 | 4600 3400
4| 1000 | 1800
segment 2800
table
0 4
% 1800
0
1500

< 4

logical address

physical memory

spclinf.ethz.ch
W @spcl_eth

32

ETHziirich

Segmentation architecture

= Segment table — each entry has:
= Dbase — starting physical address of segment
= |imit — length of the segment
= Segment-table base register (STBR)
= Current segment table location in memory
= Segment-table length register (STLR)
= Current size of segment table

segment number s is legal if s < STLR

33

ETHziirich

Segmentation summary

= Fast context switch
= Simply reload STBR/STLR
= Fast translation
= 2loads, 2 compares
= Segment table can be cached
= Segments can easily be shared
= Segments can appear in multiple segment tables
= Physical layout must still be contiguous
= (External) fragmentation still a problem

34

ETHziirich

Paging

35

ETHziirich
Paging

= Solves contiguous physical memory problem
= Process can always fit if there is available free memory
= Divide physical memory into frames
= Size is power of two, e.g., 4096 bytes
= Divide logical memory into pages of the same size
= For aprogram of n pages in size:
= Find and allocate n frames
= Load program
= Set up page table to translate logical pages to physical frames

36




spclinf.ethz.ch
W @spcl_eth

ETHzirich

spclinf.ethz.ch
W @spcl_eth

ETHzirich

A

Page table jargon

= Page tables maps VPNs to PFNs
= Page table entry = PTE
= VPN = Virtual Page Number
= Upper bits of virtual or logical address
= PFN = Page Frame Number
= Upper bits of physical or logical address
= Same number of bits (usually).

37

Pess

Recall: P6 Page tables (32bit)

®

20 12

Logical address: VPN VPO
20 12
VPN1 | VPN2 PFN PFO
PDE Ip=1—l PTE [p=1 data
PDBR

Page Page table Data page

directory

®

= Pages, page directories, page tables all 4kB

38

ETHziirich

x86-64 paging

Virtual address

9 9 9 9 12
[ went [ wena [ vens VPN4 VPO |
Page
Directory Page
Page Map Pointer Directory Page
Table Table Table Table

PDPE PDE PTE

| __PMA4LE '|"

PDBR

40 l 12
PEN PFO

| Physical address

39

ETHziirich

Problem: performance

= Every logical memory access needs more than two physical
memory accesses
= Load page table entry — PFN
= Load desired location
= Performance = half as fast as with no translation
= Solution: cache page table entries

40

ETHziirich

Translating with the P6 TLB

1. Partition VPN into
TLBT and TLBI.

2. Is the PTE for VPN
cached in set
TLBI?

3. Yes: Check
permissions, build
physical address

4. No: Read PTE (and
PDE if not cached)
from memory and
build physical
address

physical

page table translation address

41

ETHziirich

In fact, x86 combines segmentation and paging

= Segments do (still) have uses
= Thread-local state
= Sandboxing (Google NativeClient, etc.)
= Virtual machine monitors (Xen, etc.)

CPU segmentation

unit

physical
memory

®

paging
unit

linear
address

physical
address

logical
address

$




ETHzirich

Linf.ethz.ch

1_eth

ETHzirich

spl.inf.ethz.ch

Effective Access Time

= Associative Lookup = g time units
= Assume memory cycle time is 1 time unit
= Assume no other CPU caches
= Hitratioa =
= % time that a page number is found in the TLB;
= Depends on locality and TLB entries (coverage)

Then Effective Access Time:
EAT

=(l+g)a+(2+eg)(l-a)

=2+g-aqa Assuming single-

level page table.

Exercise: work this
out for the P6 2-level

43

A

Page Protection

W @spcl_eth

44

ETHziirich

Memory protection

= Associate protection info with each frame
= Actually no - with the PTE.

= Valid-invalid bit
= ‘“valid” = page mapping is “legal”
= ‘“invalid” = page is not part of address space,

i.e., entry does not exist

= Requesting an “invalid” address = “fault”

= A“page fault’, or....

45

ETHziirich /

Remember the P6 Page Table Entry (PTE)

31 1211
| Page physical base address I

o el

Page base address: 20 most significant bits of physical page address (forces
pages to be 4 KB aligned)

Avail: available for system programmers

G: global page (don’t evict from TLB on task switch)

D: dirty (set by MMU on writes)

A: accessed (set by MMU on reads and writes)

CD: cache disabled or enabled

WT: write-through or write-back cache policy for this page
U/S: user/supervisor

R/W: read/write

P: page is present in physical memory (1) or not (0)

ETHziirich

P6 protection bits

31 1211
| Page physical base address l

9 8 7 6 5 4 3 2 1 0
Avail | G | 0o | D | A |CD|WT|U/S|R/W|P=1‘

Page base address: 20 most significant bits of physical page address (forces
pages to be 4 KB aligned)

Avail: available for system programmers
G: global page (don’t evict from TLB on task switch)
D: dirty (set by MMU on writes)
A: accessed (set by MMU on reads and writes)
CD: cache disabled or enabled
WT: write-through or write-back cache policy for this page
I:> U/S: user/supervisor
|:> R/W: read/write
|:> P: page is present in physical memory (1) or not (0)

P bit can be used to trap
on any access (read or
write)

47

ETHziirich

Protection information

= Protection information typically includes:
= Readable
= Writeable
= Executable (can fetch to i-cache)
= Reference bits used for demand paging

= Observe: same attributes can be (and are) associated with
segments as well

48




ETHzirich

ETHzirich

Page sharing

49

Shared pages example

text 1
3; 0
text 2 E
[6] 1| datal
text 3
2| data3
datal | page table
for P. 3| code 1
Process P, ! text1
text 2 4 | code 2
text 3 5
data2 | page table 6 e
text 1 for P,
Process P, ? 7 e
text 2 8
text 3 9
data 3 | page table 10
for P,
Process P, 11

50

ETHziirich

Shared pages

= Shared code
= One copy of read-only code shared among processes
= Shared code (often) appears in same location in the
logical address space of all processes
= Data segment is not shared, different for each process
= But still mapped at same address (so code can find it)

= Private code and data
= Allows code to be relocated anywhere in address space

51

ETHziirich

Per-process protection

= Protection bits are stored in page table
= Plenty of bits available in PTEs
= = independent of frames themselves
= Different processes can share pages
= Each page can have different protection to different processes
= Many uses! E.g., debugging, communication, copy-on-write, etc.

52

ETHziirich

Page Table Structures

53

ETHziirich

Page table structures

= Problem: simple linear page table is too big

= Solutions:
} Saw these last

Hierarchical page tables

Virtual memory page tables (VAX) semester.
Hashed page tables

Inverted page tables

EalN o o

54




spclinf.ethz.ch

ETHziirich & (AL

A

#3 Hashed page tables

= VPN is hashed into table
= Hash bucket has chain of logical->physical page mappings
= Hash chain is traversed to find match.
= Can be fast, but can be unpredicable
= Often used for
= Portability
= Software-loaded TLBs (e.g., MIPS)

55

ETHzirich

Hashed page table

logical
address

hash table

physical
r

A

physical
memory

spclint.ethz.ch
W @spcl_eth

56

ETHziirich

#4 Inverted page table

= One system-wide table now maps PFN -> VPN
= One entry for each real page of memory
= Contains VPN, and which process owns the page

= Bounds total size of all page information on machine
= Hashing used to locate an entry efficiently

= Examples: PowerPC, ia64, UltraSPARC

57

ETHziirich

Inverted page table architecture

Physical
memory

logical physical
address address
CPU pid p [d] Li]df——
search l ]»i
pid| p
page table

58

ETHziirich

?JQ/-\: spcl.inf.ethz.ch
/ b\ eth
<7 T L

The need for more bookkeeping

= Most OSes keep their own translation info

= Per-process hierarchical page table (Linux)

= System wide inverted page table (Mach, MacOS)
= Why?

= Portability

= Tracking memory objects

= Software virtual — physical translation

= Physical — virtual translation

59

ETHziirich

TLB shootdown

60




ETHzirich

TLB management

= Recall: the TLB is a cache.

= Machines have many MMUs on many cores
= many TLBs

= Problem: TLBs should be coherent. Why?
= Security problem if mappings change
= E.g., when memory is reused

spclinf.ethz.ch
X ) W @spcl_eth

61

ETHzirich ohd
TLB management

Process ID VPN PPN acce

SS

Core 1 0x0053 | 0x03 | riw

TLB: 1 0x20f8 0x12 riw

Core 2 0x0053 | 0x03 r'w

TLB: 1 0x0001 | Ox05 | read

Core 3 0x20f8 0x12 riw

TLB: 0x0001 | 0x05 | read

spclinf.ethz.ch
W @spcl_eth

62

ETHziirich

TLB management

Process ID VPN PPN | acce
ss
Core 1 0x0053 | 0x03 riw
TLB: 0x20f8 0x12 riw
Core 2 0x0053 | 0x03 riw
TLB: 0x0001 | 0x05 | read
Core 3 0x20f8 0x12 riw
TLB: 0x0001 | Ox05 | read

63

ETHziirich

TLB management

Process ID VPN PPN | acce
ss
Core 1 0x0053 | 0x03 riw
TLB: 1 0x20f8 0x12 riw
Core 2 ox@G3 | 0x03 | rw
TLB: 0x0001 | 0x05 | read
Core 3 0x20f8 | 0Ox12 riw
TLB: 1 0x0001 | 0x05 | read

64

ETHziirich

TLB management

Process ID VPN PPN acce
ss
Core 1 0x0053 | 0x03 riw
TLB: 0x20f8 0x12 riw
Core 2 0%3 0x03 riw
TLB: 0x0001 | 0x05 | read
Core 3 0x20f8 0x12 riw
TLB: 0x0001 | 0x05 | read

Process 0 on core 1 can only continue once shootdown is complete!

65

ETHziirich

Keeping TLBs consistent

1. Hardware TLB coherence
. Integrate TLB mgmt with cache coherence
. Invalidate TLB entry when PTE memory changes
. Rarely implemented
2. Virtual caches
. Required cache flush / invalidate will take care of the TLB
= High context switch cost!
= Most processors use physical (last-level) caches
3. Software TLB shootdown
= Most common
= OS on one core notifies all other cores - Typically an IPI
. Each core provides local invalidation
4. Hardware shootdown instructions
. Broadcast special address access on the bus
= Interpreted as TLB shootdown rather than cache coherence message
- E.g., PowerPC architecture

66




ETHzirich

Friday: demand paging

67




