Linf.ethz.ch
1_eth

ETHzirich

ADRIAN PERRIG & TORSTEN HOEFLER
Networks and Operating Systems (252-0062-00)
Chapter 2: Processes 2

11-Year Old Linux Kernel Local Privilege Escalauon Flaw
Discovered

|

EVE017%8074] Yet Another Nasty

Linux kernel Bug I

IF SOMEONE STEALS My LAPTOP WHILE TM 5
LDCGED N, THEY CAN RERD MY EMAIL, TRKE MY
MONEY AND MPERSONATE. ME T MY FRIENDS,
BUT AT LEAST THEY CANT INSTALL
DRIVERS WITHOUT MY PERMISSION.

© source: xkcd.com

oy -

Another y in Linux kerel that dates back to 2005

£ and affects major distro of the Linux operating system, including Redhat, Debian, OpenSUSE, and Ubuntu.

rer a decade old Linux Kernel bug (CVE-2017-6074) has been discovered by security researcher Andrey
Konovalov in the DCCP (Datagram Congestion Control Protocol) implementation using Sy
fuzzing tool released by Google.

ler, a kernel

The vulnerability is a use-after-free flaw in the way the Linux kernel's “DCCP protocol implementation
freed SKB (socket buffer) resources for a DCCP_PKT_REQUEST packet when the IPV6_RECVPKTINFO option
is set on the socket”

ETHzirich

Last time: introduction

¢ Introduction: Why? —

* Roles of the OS
* Referee
« lllusionist
* Glue

+ Structure of an OS

Date bug will 64
inoperable even t fail

Qo

Setting the date to 1 January 1970 will
brick your iPhone, iPad or iPod touch
February 12, 2016

103 devices from bootin

Manually setting the date of your iPhone or iPad to 1 January 1970, or tricking

. endering them
e metho

able to repair the problem.

ur friends into doing it, will cause it to get p
boot back up ifit's switched off.

‘The bug within Apple’s date and time settings within i0S causes such an issue
that users are reporting that the fail-safe restore techniques using iTunes are not

stuck while tryingto

ETHziirich

This time

= Entering and exiting the kernel
= Process concepts and lifecycle
= Context switching

= Process creation

= Kernel threads

= Kernel architecture

= System calls in more detail

= User-space threads

ETHziirich

General OS structure

Application

Application

Server process
(daemon)

System Library

System Library

System Library

System calls

User mode

Kernel

Privileged mode

ETHziirich

Kernel

= That part of the OS which runs in privileged mode
= Large part of Unix and Windows (except libraries)
= Small part of L4, Barrelfish, etc. (microkernels)
= Does not exist in some embedded systems

= Also known as:
= Nucleus, nub, supervisor, ...

ETHziirich

The kernel is a program!

= Kernel is just a (special) computer program.
= Typically an event-driven server.
= Responds to multiple entry points:

= System calls
= Hardware interrupts
= Program traps

= May also include internal threads.

spclinf.ethz.ch
W @spcl_eth

ETHzirich

spclinf.ethz.ch
W @spcl_eth

ETHzirich

A

General OS structure

Server process

Application (daemon)

Application

~ = — s — e
(éystem leraryJ) (_System Library) (_System Library)

| System calls

v

User mode

Privileged mode

Kernel

oss
System Libraries

= Convenience functions
= printf(), etc.
= Common functionality

= System call wrappers
= Create and execute system calls from high-level languages
= See ‘man syscalls’ on Linux

ETHziirich

General OS structure

bt (Server process;

Application (daemon)
System Library System Library sttem Libray
LS|ystem calls User mode
v Privileged mode
Kernel

ETHziirich

Daemons

= Processes which are part of the OS
= Microkernels: most of the OS
= Linux: increasingly large quantity

= Advantages:
= Modularity, fault tolerance
= Easier to schedule...

ETHziirich

Entering and exiting the kernel

11

ETHziirich

When is the kernel entered?

= System startup and ...

= Exception (aka. trap): caused by user program
= Interrupt: caused by “something else”

= System calls

= Exception vs. Interrupt vs. System call (analog technology quiz, raise hand)
= Division by zero
= Fork
= Incoming network packet
= Segmentation violation
= Read
= Keyboard input /

12

spclinf.ethz.ch
W @spcl_eth

ETHzirich

spclinf.ethz.ch
W @spcl_eth

ETHzirich

A

Recall: System Calls

= RPC to the kernel
= Kernel is a series of syscall event handlers
= Mechanism is hardware-dependent

Execute
syscall

User process

Process resumes
runs

1

User mode

Privileged mode

\ Execute kernel
code

Systemcalls 13

ress
System call arguments

Syscalls are the way a program requests services from the kernel.

Implementation varies:

= Passed in processor registers

= Stored in memory (address (pointer) in register)
= Pushed on the stack

= System library (libc) wraps as a C function
= Kernel code wraps handler as C call

14

ETHziirich

ETHziirich

When is the kernel exited?

= Creating a new process
= Including startup

= Resuming a process after a trap
= Exception, interrupt or system call

= User-level upcall
= Much like an interrupt, but to user-level

= Switching to another process

15

Processes

16

ETHziirich

Process concept

= Q: What is the relation between a process and a program?
= Aprocess is the execution of a program with restricted rights.

= Virtual machine, of sorts

= On older systems:
= Single dedicated processor
= Single address space
= System calls for OS functions

= In software:
computer system = (kernel + processes)

17

ETHziirich

Process ingredients
= Virtual processor

= Address space

= Registers

= |Instruction pointer / program counter
= Program text (object code)

= Program data (static, heap, stack)

= OS “stuff”:
= Open files, sockets, CPU share,
= Security rights, etc.

18

ETHZziirich TN+ oo ETHZziirich

Process address space Process lifecycle

familiar ...

JEEFFEEFE Should look
created

Stack

preemption

(addresses are examples: some
machines used the top address

runnable
(ready)
bit to indicate kernel mode)

ﬁ /10

BSS completes operation
blocked terminated
Data (waiting)
Text
00000000
19 20

ETH ziirich 7 » [ETH:ziirich
Multiplexing Process control block
= OStime-division multiplexes processes
= Or space-division on multiprocessors ®
2 2
©
2 Stack g
= Each process has a Process Control Block (PCB) s g
= In-kernel data structure < 5
o
= Holds all virtual processor state B @ g
Identifier and/or name 2 ~ | (other kernel
Q
Registers S data structures)
Memory used, pointer to page table a
Files and sockets open, etc. ﬁ
BSS
Data Process
Control
Text Block
21 22

ETH ziirich : Y » W ETHziirich

Process switching

Process A Kernel Process B

[Process A executes]

\" Save state to PCB(A) |

[Kernel executes]

Time

Process Creation

| Restore from PCB(B) };

[Process B executes]

| Save state to PCB(B) }-7

[Kernel executes]

/ Restore from PCB(A)]

, mss A executes]

23 24

ETHzirich

Process creation

= Bootstrapping problem. Need:
= Code to run
= Memory to run it in
= Basic I/O set up (so you can talk to it)
= Way to refer to the process

= Typically, “spawn” system call takes enough arguments to
construct, from scratch, a new process.

25

spl.inf.ethz.ch

ETHzirich /\,7%, Tt

Process creation on Windows

Did it work?
BOOL CreateProcess (
in_opt LPCTSTR ApplicationName,
inout_opt LPTSTR CommandLine, What to run?
in_opt LPSECURITY_ ATTRIBUTES ProcessAttributes,
in_opt LPSECURITY_ATTRIBUTES ThreadAttributes, What rights
in BOOL InheritHandles, will it have?
in DWORD CreationFlags,
in_opt LPVOID Environment,
in_opt LPCTSTR CurrentDirectory, What will it see
in LPSTARTUPINFO StartupInfo, when it starts up?
out LPPROCESS_INFORMATION ProcessInformation

\ The result

Moral: the parameter space is large! ‘

26

ETHziirich

Unix fork () and exec ()

Dramatically simplifies creating processes:

1. fork (): creates “child” copy of calling process

2. exec (): replaces text of calling process with a new program
3. Thereis no “CreateProcess(...)”.

Unix is entirely constructed as a family tree of such processes.

ETHziirich

Unix as a process tree

FPID PID FGID SIDTIY TPGID STAT UID TIWE COND =
0 1 1 ? -1 Ss o 101 /sbindinit
437 438 4,7 -] upstart-udev-bridge --daemon
433 433 439 7 -1 s udevd —-daemon
4 209 439 437 1 \- udevd —~dencn
433 2096 433 439 7 -1 8K _ udevd --daenon
7 657 6977 N A4 bs=1. 1F=/procrkusg of =/var/run/reysloa/k
664 B 659 ? -1 81 101 rsyslogd —c4
ABEE i BESEea
15 - avahi-dagnon: chroot helper s
7T ALY 4% W hald ~-daencn-es Exercise:
R E e bl nald-sddonr 1K1 k out
? E _ Jusr/1ib/hal/hald-addon-rFki 11k
2R R vEamEe [
? - " Jusr/1ib/hal/hal d-sddon-ceneric-bac
%g ; ; Z - :‘_ :a{g-&:gcn-slcr&gaﬁ polling /dB;QSd how to do
? -] . hald-addon-input: Listening on /dev H
100 73 737 - \Z fusr/1ibrhal/hal d-addon-cpufreq this on your
17.33 ; ; : - \ 1 N \Enhald-addon-'acpi: listening on acpid f .t U .
-1 Ss etuorkManager
o s vz 07 - A Jabin/drlient = ~sF fusr/ o Metuer avorite Unix
15 gdnbinary R
795 7L 7617 - \. Juse\ib/gdn/adirsinple-slave —display or Linux
102 11(1102 tty? 1102 Rs+ N\ fusr/bin/X 0 -br -verbose -auth /v| .
Mg 75l 757 - N Zuer/1ib/adn/adn-sess on-uarker machine...
1 361 13 1361 ? -1 Ssl 1000 . gnone-session
L 113 U3 LiE7 1% 100 (e h R ————
1 445 1446 1446 7 -1 Ss 1000 _ /usr/bin/seahorse-agent —-e
1L 1789 1381 13817 - 1000 A2 /bin/sh fuer/bin/conpiz
1i 904 13 1361 ? - 1000 I _ fusr/bin/compiz.real -
1904 194 1984 1984 7 1% 100 17 bindsh =2 Juserbin
1984 1985 1984 1984 7 - 1000 I N Ausr/bind/gtk-ui
L 1905 181 13617 - 1000 _ gnone=panel
1 907 13 1361 ? - 1000 - nautilus
1 1902 181 13817 - 1000 A2 gnone-pover-nanager
1 913 13 1361 ? -1 81 1000 _ fusr/libfevelution/2. 28/evo’
L 1906 L1 13817 - 1000 A2 usr/Lib/pol icuk -1 gnone/
917 13 1361 ? - 1000 _ bluetcoth-applet
918 131 13617 - 1000 A7 wpdatennotifier —startup-d/—|
921 13 1361 ? - 1000 _ python /usr/share/system—co| =
gy - 1000 0

13 N fusr/lib/gnone-disk-utility| |
lhelene: ..ce-2.6.31/arch/xB86/1a32> L

28

ETHziirich

Fork in action

Return code from
fork() tells you
whether you're in the
parent or child
(cf. setjimp())

pid t p = fork();
if (p<0) {
// Error..
exit(-1);
} else if (p ==0) {
// We’'re in the child
execlp (“/bin/1s”, “1s”, NULL) ;
} else {
// We’'re a parent.
// p is the pid of the child
wait (NULL) ;
exit(0);

Child process can’t

} actually be cleaned

up until parent
“waits” for it.

29

ETHziirich

Process state diagram for Unix

preemption
forked It really is
called a
' Zombie
runnable

(ready)
“undead”

110
operation

blocked
(waiting)

parent

dead calls wait()

(and gone)

30

ETHzirich

Kernel Threads

31

ETHzirich

How do threads fit in?

= It depends...

= Types of threads:
= Kernel threads
= One-to-one user-space threads
= Many-to-one
= Many-to-many

= Do NOT confuse this with hardware threads/SMT/Hyperthreading
= In these, the CPU offers more physical resources for threads!

32

ETHziirich

Kernel threads

= Kernels can (and some do) implement threads

= Multiple execution contexts inside the kernel
= Much asin a JVM

= Says nothing about user space
= Context switch still required to/from user process

= First, how many stacks are there in the kernel?

33

ETHziirich

Process switching

Process A Kernel Process B

[Process A executes]

Save state to PCB(A)]

What's
happening
here?
Athread?

s]

Time

Restore from PCB(B) };

[Process B executes]

| Save state to PCB(B) }_7

[Kernel executes]

Restore from PCB(A)]

[Process A executes]

34

ETHziirich

Kernel architecture

= Basic Question: How many kernel stacks?

= Unix 6t edition has a kernel stack per process
= Arguably complicates design
= Q. On which stack does the thread scheduler run?

= A. On the first thread (#1)
= Every context switch is actually two!

= Linux et al. replicate this, and try to optimize it.

= Others (e.g., Barrelfish) have only one kernel stack per CPU
= Kernel must be purely event driven: no long-running kernel tasks
= More efficient, less code, harder to program (some say).

35

ETHziirich

Process switching revisited

Kernel stack A Kernel stack B| Process B

Kernel stack 0

Process A

L

For a kernel with
multiple kernel

Save to PCB(A)

Decide to
switch
process

Pick
process to run

Switch to
stacks Kernel
stack B
With clever_ness, Restore
can sometimes PCB(B)
run scheduler on T

current process’
kernel stack.

36

ETHzirich

System calls in more detail

] We can now say in more detail what happens during a system
call

] Precise details are very dependent on OS and hardware
. Linux has 3 different ways to do this for 32-bit x86 alone!

. Linux:
. Good old int 0x80 or 0x2e (software interrupt, syscall number in EAX)
Set up registers and call handler
. Fast system calls (sysenter/sysexit, >Pentium II)
CPU sets up registers automatically

http://www.int80h.org/ ©

37

ETHzirich

Performing a system call

In user space:
1. Marshall the arguments somewhere safe
2. Saves registers
3. Loads system call number
4

Executes SYSCALL instruction
(or SYSENTER, or INT 0x80, or..)

5. And?

38

ETHziirich

System calls in the kernel

. Kernel entered at fixed address
. Privileged mode is set
] Need to call the right function and return, so:
1. Save user stack pointer and return address
— Inthe Process Control Block
2. Load SP for this process’ kernel stack
3. Create a C stack frame on the kernel stack
4. Look up the syscall number in a jump table
5. Call the function (e.g., read (), getpid (), open (), etc.)

39

ETHziirich

Returning in the kernel

. When function returns:
1. Load the user space stack pointer
2. Adjust the return address to point to:
Return path in user space back from the call, OR
Loop to retry system call if necessary
3. Execute “syscall return” instruction
. Result is execution back in user space, on user stack

= Alternatively, can do this to a different process...

40

ETHziirich

User-space threads

41

ETHziirich

From now on assume:

= Previous example was Unix 6t Edition:
= Which had no threads per se, only processes
= i.e., Process < Kernel stack

= From now on, we’ll assume:
= Multiple kernel threads per CPU

= Efficient kernel context switching

* How do we implement user-visible threads?

42

ETHzirich

spl.inf.ethz.ch

W @spo

1_eth

ETHzirich

spclinf.ethz.ch
W @spcl_eth

A

What are the options?

1. Implement threads within a process (one kernel thread)
2. Multiple kernel threads in a process
3. Some combination of the above

and other more unusual cases we won’t talk about...

43

Jreasy
Many-to-one threads

= Early “thread libraries”
= Green threads (original Java VM)
= GNU Portable Threads
= Standard student exercise: implement them!

= Sometimes called “pure user-level threads”
= aka. lightweight threads, tasks (differences in control)
= No kernel support required
= Also (confusingly) “Lightweight Processes”

44

ETHziirich

Many-to-one threads

Kernel

45

ETHziirich

Address space layout for user level threads

Thread 1 stack

Stack =

1

Thread 3 stack
Thread 2 stack

»

Just
B allocate ESS
Data on the Data
heap
Text Text

46

ETHziirich

z.ch
eth

ETHziirich

One-to-one user threads

= Every user thread is/has a kernel thread.
= Equivalent to:

= multiple processes sharing an address space

= Except that “process” now refers to a group of threads
= Most modern OS threads packages:

= Linux, Solaris, Windows XP, MacOSX, etc.

/\W&a 5;‘ Ifetiag

47

One-to-one user threads

;@|@|;;;

User

Kernel

48

spelinf.ethz.ch
W @spcl_eth

ETHzirich

ETHzirich

spclinf.ethz.ch
W @spcl_eth

A

One-to-one user threads

Thread 1 stack

Stack =
Thread 2 stack

@ sk
Thread 3 stack

Em

BSS BSS

Data Data

Text Text

49

A

Comparison

User-level threads One-to-one threads

= Cheap to create and = Memory usage (kernel
destroy stack)

= Fast to context switch = Slow to switch

= Can block entire process = Easier to schedule
= Not just on system calls = Nicely handles blocking

50

ETHziirich

Many-to-many threads

= Multiplex user-level threads over several kernel-level threads
= Only way to go for a multiprocessor
= |.e., pretty much everything these days

= Can “pin” user thread to kernel thread for
performance/predictability

= Thread migration costs are “interesting”...

51

ETHziirich

User

Kernel

52

ETHziirich

W&—v spcl.inf.ethz.ch
/ eth
<7 T L

Next week

= Synchronization:

= How to implement those useful primitives
= [nterprocess communication

= How processes communicate
= Scheduling:

= Now we can pick a new process/thread to run, how do we decide which
one?

53

